Francesca Fornari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4455691/publications.pdf

Version: 2024-02-01

43 papers

4,752 citations

28 h-index 42 g-index

43 all docs 43 docs citations

43 times ranked

6454 citing authors

#	Article	IF	CITATIONS
1	Cyclin G1 Is a Target of miR-122a, a MicroRNA Frequently Down-regulated in Human Hepatocellular Carcinoma. Cancer Research, 2007, 67, 6092-6099.	0.9	782
2	MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 2008, 27, 5651-5661.	5.9	619
3	MiR-199a-3p Regulates mTOR and c-Met to Influence the Doxorubicin Sensitivity of Human Hepatocarcinoma Cells. Cancer Research, 2010, 70, 5184-5193.	0.9	389
4	MiR-122/Cyclin G1 Interaction Modulates p53 Activity and Affects Doxorubicin Sensitivity of Human Hepatocarcinoma Cells. Cancer Research, 2009, 69, 5761-5767.	0.9	380
5	MicroRNA-221 Targets Bmf in Hepatocellular Carcinoma and Correlates with Tumor Multifocality. Clinical Cancer Research, 2009, 15, 5073-5081.	7.0	298
6	Oncogenic Role of <i>miR-483-3p</i> at the <i>IGF2/483</i> Locus. Cancer Research, 2010, 70, 3140-3149.	0.9	272
7	MicroRNA involvement in hepatocellular carcinoma. Journal of Cellular and Molecular Medicine, 2008, 12, 2189-2204.	3.6	248
8	In hepatocellular carcinoma <i>miRâ€519d</i> is upâ€regulated by p53 and DNA hypomethylation and targets <i>CDKN1A/p21, PTEN, AKT3</i> and <i>TIMP2</i> Journal of Pathology, 2012, 227, 275-285.	4.5	180
9	Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology, 2012, 56, 1025-1033.	7. 3	150
10	In Hepatocellular Carcinoma miR-221 Modulates Sorafenib Resistance through Inhibition of Caspase-3–Mediated Apoptosis. Clinical Cancer Research, 2017, 23, 3953-3965.	7.0	137
11	Significance of serum and hepatic micro <scp>RNA < /scp>â€122 levels in patients with nonâ€alcoholic fatty liver disease. Liver International, 2014, 34, e302-7.</scp>	3.9	124
12	Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, Identify Cirrhotic Patients with HCC. PLoS ONE, 2015, 10, e0141448.	2.5	113
13	Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget, 2016, 7, 32375-32393.	1.8	83
14	Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget, 2018, 9, 15350-15364.	1.8	79
15	The epigenetically regulated miR-494 associates with stem-cell phenotype and induces sorafenib resistance in hepatocellular carcinoma. Cell Death and Disease, 2018, 9, 4.	6.3	68
16	The Natural Inhibitor of DNA Topoisomerase I, Camptothecin, Modulates HIF-1α Activity by Changing miR Expression Patterns in Human Cancer Cells. Molecular Cancer Therapeutics, 2014, 13, 239-248.	4.1	63
17	Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats. Hepatology, 2015, 61, 249-259.	7.3	63
18	CDKN1C/P57 Is Regulated by the Notch Target Gene Hes1 and Induces Senescence in Human Hepatocellular Carcinoma. American Journal of Pathology, 2012, 181, 413-422.	3.8	58

#	Article	IF	Citations
19	Anti-Tumor Activity of a miR-199-dependent Oncolytic Adenovirus. PLoS ONE, 2013, 8, e73964.	2.5	53
20	MiR-30e-3p Influences Tumor Phenotype through <i>MDM2</i> / <i>/TP53</i> Axis and Predicts Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Research, 2020, 80, 1720-1734.	0.9	47
21	LncRNAs as novel players in hepatocellular carcinoma recurrence. Oncotarget, 2018, 9, 35085-35099.	1.8	46
22	Over-expression of the $\langle i \rangle$ miR-483-3p $\langle i \rangle$ overcomes the miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma. Oncotarget, 2016, 7, 31361-31371.	1.8	45
23	Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene, 2016, 35, 977-989.	5.9	44
24	p53/mdm2 Feedback Loop Sustains miR-221 Expression and Dictates the Response to Anticancer Treatments in Hepatocellular Carcinoma. Molecular Cancer Research, 2014, 12, 203-216.	3.4	43
25	Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget, 2014, 5, 10607-10620.	1.8	39
26	Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming. Journal of Hepatology, 2020, 72, 1159-1169.	3.7	38
27	MiR-122 Targets SerpinB3 and Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Journal of Clinical Medicine, 2019, 8, 171.	2.4	37
28	The metabolic gene HAO2 is downregulated in hepatocellular carcinoma and predicts metastasis and poor survival. Journal of Hepatology, 2016, 64, 891-898.	3.7	34
29	Design, synthesis and biological evaluation of pyrazole derivatives as potential multi-kinase inhibitors in hepatocellular carcinoma. European Journal of Medicinal Chemistry, 2012, 48, 391-401.	5.5	29
30	Elucidating the Molecular Basis of Sorafenib Resistance in HCC: Current Findings and Future Directions. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 741-757.	3.7	29
31	TP53/MicroRNA Interplay in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2016, 17, 2029.	4.1	26
32	MicroRNAs in Animal Models of HCC. Cancers, 2019, 11, 1906.	3.7	25
33	MiR-199-3p replacement affects E-cadherin expression through Notch1 targeting in hepatocellular carcinoma. Acta Histochemica, 2018, 120, 95-102.	1.8	22
34	MicroRNA-Based Prophylaxis in a Mouse Model of Cirrhosis and Liver Cancer. Molecular Therapy - Nucleic Acids, 2019, 14, 239-250.	5.1	14
35	Direct Antiviral Treatments for Hepatitis C Virus Have Off-Target Effects of Oncologic Relevance in Hepatocellular Carcinoma. Cancers, 2020, 12, 2674.	3.7	13
36	Association of <i>NOS3</i> and <i>ANGPT2</i> Gene Polymorphisms with Survival in Patients with Hepatocellular Carcinoma Receiving Sorafenib: Results of the Multicenter Prospective INNOVATE Study. Clinical Cancer Research, 2020, 26, 4485-4493.	7.0	13

#	Article	IF	Citations
37	Notch Signaling Regulation in HCC: From Hepatitis Virus to Non-Coding RNAs. Cells, 2021, 10, 521.	4.1	13
38	MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 369-385.	3.7	12
39	Animal Models of Hepatocellular Carcinoma Prevention. Cancers, 2019, 11, 1792.	3.7	10
40	Hepatic Cancer Stem Cells: Molecular Mechanisms, Therapeutic Implications, and Circulating Biomarkers. Cancers, 2021, 13, 4550.	3.7	6
41	Aflatoxin B1 DNA-Adducts in Hepatocellular Carcinoma from a Low Exposure Area. Nutrients, 2022, 14, 1652.	4.1	6
42	MicroRNAs at the Crossroad between Immunoediting and Oncogenic Drivers in Hepatocellular Carcinoma. Biomolecules, 2022, 12, 930.	4.0	2
43	Pathophysiology roles and translational opportunities of miRNAs in hepatocellular carcinoma. , 2022, , 301-315.		0