Sakhrat Khizroev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4454424/publications.pdf

Version: 2024-02-01

567281 501196 1,170 32 15 28 citations h-index g-index papers 36 36 36 1648 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Scientific Reports, 2016, 6, 20867.	3.3	199
2	Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nature Communications, 2013, 4, 1707.	12.8	193
3	Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells. Scientific Reports, 2013, 3, 2953.	3.3	123
4	Magnetoelectric â€~spin' on stimulating the brain. Nanomedicine, 2015, 10, 2051-2061.	3.3	116
5	Magneto-Electric Nano-Particles for Non-Invasive Brain Stimulation. PLoS ONE, 2012, 7, e44040.	2.5	93
6	Room-temperature Magnetic Ordering in Functionalized Graphene. Scientific Reports, 2012, 2, 624.	3.3	71
7	Chemically Engineered Graphene-Based 2D Organic Molecular Magnet. ACS Nano, 2013, 7, 10011-10022.	14.6	47
8	Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles. Applied Physics Reviews, 2017, 4, .	11.3	39
9	Colossal Magnetoelectric Effect in Core–Shell Magnetoelectric Nanoparticles. Nano Letters, 2020, 20, 5765-5772.	9.1	39
10	Magnetoelectric nanoparticles for delivery of antitumor peptides into glioblastoma cells by magnetic fields. Nanomedicine, 2018, 13, 423-438.	3.3	36
11	Magnetic Fieldâ€Controlled Release of Paclitaxel Drug from Functionalized Magnetoelectric Nanoparticles. Particle and Particle Systems Characterization, 2014, 31, 605-611.	2.3	34
12	In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles. Neurotherapeutics, 2021, 18, 2091-2106.	4.4	32
13	Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Nanomedicine, 2017, 12, 1801-1822.	3.3	23
14	Multiferroic coreshell magnetoelectric nanoparticles as NMR sensitive nanoprobes for cancer cell detection. Scientific Reports, 2017, 7, 1610.	3.3	21
15	Size-dependent intranasal administration of magnetoelectric nanoparticles for targeted brain localization. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102337.	3.3	20
16	Technobiology's Enabler: The Magnetoelectric Nanoparticle. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034207.	6.2	11
17	A Dual Magnetic Tunnel Junctionâ€Based Neuromorphic Device. Advanced Intelligent Systems, 2020, 2, 2000143.	6.1	11
18	Energy-efficient spin-transfer torque magnetization reversal in sub-10-nm magnetic tunneling junction point contacts. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	9

#	Article	IF	Citations
19	The Physics of Spin-Transfer Torque Switching in Magnetic Tunneling Junctions in Sub-10 nm Size Range. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
20	Engineering Future Medicines With Magnetoelectric Nanoparticles: Wirelessly controlled, targeted therapies. IEEE Nanotechnology Magazine, 2020, 14, 23-29.	1.3	9
21	Micromagnetics of Magnetization Reversal in Patterned Magnetic Recording Medium. IEEE Transactions on Magnetics, 2006, 42, 2411-2413.	2.1	6
22	Demonstration of spin transfer torque (STT) magnetic recording. Applied Physics Letters, 2019, 114, .	3.3	5
23	Accurate 3D source localization of focal epileptic foci using interictal EEG spikes., 2011,,.		4
24	Influence of low anisotropy inclusions on magnetization reversal in bit-patterned arrays. Journal of Applied Physics, $2012,111,$	2.5	4
25	Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1781.	6.1	4
26	Influence of a low anisotropy grain on magnetization reversal in polycrystalline bit-patterned media. Journal of Applied Physics, 2013, 114, 123909.	2.5	2
27	Nanomagnetic Particle-Based Information Processing. IEEE Nanotechnology Magazine, 2019, 18, 983-988.	2.0	2
28	Effect of functionalization on the electrostatic charging, tunneling, and Raman spectroscopy of epitaxial graphene. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 03D103.	1.2	1
29	Anomalous properties of sub-10-nm magnetic tunneling junctions. , 2015, , .		1
30	Image-guided Placement of Magnetic Neuroparticles as a Potential High-Resolution Brain-Machine Interface. , 0 , , .		0
31	Shape transformation and self-alignment of Fe-based nanoparticles. Nanoscale Advances, 2019, 1, 2523-2528.	4.6	0
32	One-step fabrication of size-controllable nicotine containing core–shell structures. Nanoscale Advances, 2019, 1, 1305-1313.	4.6	0