
Antonio Di Pietro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/445350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Monitoring of Cytosolic pH Using the Ratiometric pH Sensor pHluorin. Methods in Molecular Biology, 2022, 2391, 99-107.	0.9	3
2	Quantification and Isolation of Spontaneous Colony Growth Variants. Methods in Molecular Biology, 2022, 2391, 55-62.	0.9	1
3	Localisation of phosphoinositides in the grass endophyte Epichloë festucae and genetic and functional analysis of key components of their biosynthetic pathway in E. festucae symbiosis and Fusarium oxysporum pathogenesis. Fungal Genetics and Biology, 2022, 159, 103669.	2.1	2
4	<i>Marchantia polymorpha</i> model reveals conserved infection mechanisms in the vascular wilt fungal pathogen <i>Fusarium oxysporum</i> . New Phytologist, 2022, 234, 227-241.	7.3	22
5	Impairment of the cellulose degradation machinery enhances <i>Fusarium oxysporum</i> virulence but limits its reproductive fitness. Science Advances, 2022, 8, eabl9734.	10.3	8
6	Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. Current Opinion in Plant Biology, 2022, 67, 102226.	7.1	23
7	Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. Plant Cell, 2022, 34, 3214-3232.	6.6	20
8	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
9	Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. Trends in Plant Science, 2021, 26, 111-123.	8.8	25
10	Dual-specificity protein phosphatase Msg5 controls cell wall integrity and virulence in Fusarium oxysporum. Fungal Genetics and Biology, 2021, 146, 103486.	2.1	5
11	A diversity of resistance sources to Fusarium oxysporum f. sp. pisi found within grass pea germplasm. Plant and Soil, 2021, 463, 19-38.	3.7	12
12	TEfinder: A Bioinformatics Pipeline for Detecting New Transposable Element Insertion Events in Next-Generation Sequencing Data. Genes, 2021, 12, 224.	2.4	4
13	A 'Hydrolase Switch' for Vascular Specialization in Plant Pathogenic Bacteria. Trends in Plant Science, 2021, 26, 427-429.	8.8	3
14	Chemotropic Assay for Testing Fungal Response to Strigolactones and Strigolactone-Like Compounds. Methods in Molecular Biology, 2021, 2309, 105-111.	0.9	1
15	Rapid evolution in plant–microbe interactions – a molecular genomics perspective. New Phytologist, 2020, 225, 1134-1142.	7.3	96
16	A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nature Communications, 2020, 11, 5264.	12.8	41
17	No to <i>Neocosmospora</i> : Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus <i>Fusarium</i> . MSphere, 2020, 5, .	2.9	61
18	Chemotropism Assays for Plant Symbiosis and Mycoparasitism Related Compound Screening in Trichoderma atroviride. Frontiers in Microbiology, 2020, 11, 601251.	3.5	27

#	Article	IF	CITATIONS
19	Structure of Fungal α Mating Pheromone in Membrane Mimetics Suggests a Possible Role for Regulation at the Water-Membrane Interface. Frontiers in Microbiology, 2020, 11, 1090.	3.5	5
20	The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications Biology, 2020, 3, 50.	4.4	55
21	Nutritional factors modulating plant and fruit susceptibility to pathogens: BARD workshop, Haifa, Israel, February 25–26, 2018. Phytoparasitica, 2020, 48, 317-333.	1.2	0
22	Expansion Microscopy for Cell Biology Analysis in Fungi. Frontiers in Microbiology, 2020, 11, 574.	3.5	37
23	NADPH oxidase regulates chemotropic growth of the fungal pathogen <i>Fusarium oxysporum</i> towards the host plant. New Phytologist, 2019, 224, 1600-1612.	7.3	48
24	A Conserved Microbial Motif †Traps' Protease Activation in Host Immunity. Trends in Plant Science, 2019, 24, 665-667.	8.8	0
25	The Role of Volatile Organic Compounds and Rhizosphere Competence in Mode of Action of the Non-pathogenic Fusarium oxysporum FO12 Toward Verticillium Wilt. Frontiers in Microbiology, 2019, 10, 1808.	3.5	27
26	Autocrine pheromone signalling regulates community behaviour in the fungal pathogen Fusarium oxysporum. Nature Microbiology, 2019, 4, 1443-1449.	13.3	54
27	Fusaric acid contributes to virulence of <i>Fusarium oxysporum</i> on plant and mammalian hosts. Molecular Plant Pathology, 2018, 19, 440-453.	4.2	105
28	Improved Assembly of Reference Genome Fusarium oxysporum f. sp. lycopersici Strain Fol4287. Microbiology Resource Announcements, 2018, 7, .	0.6	31
29	Adapt your shuttling proteins for virulence: a lesson from the corn smut fungus <i>Ustilago maydis</i> . New Phytologist, 2018, 220, 353-356.	7.3	2
30	Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum. PLoS ONE, 2018, 13, e0195634.	2.5	21
31	Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. International Journal of Food Microbiology, 2018, 283, 45-51.	4.7	11
32	Three <i>Fusarium oxysporum</i> mitogenâ€activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and crossâ€kingdom pathogenicity. Molecular Plant Pathology, 2017, 18, 912-924.	4.2	77
33	Histomorphologic and ultrastructural recovery of myopathy in rats treated with low-level laser therapy. Lasers in Medical Science, 2017, 32, 841-849.	2.1	2
34	Stress Adaptation. Microbiology Spectrum, 2017, 5, .	3.0	46
35	Fungal pathogenesis: Combatting the oxidative burst. Nature Microbiology, 2017, 2, 17095.	13.3	12
36	Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum. Frontiers in Microbiology, 2017, 8, 1627.	3.5	4

#	Article	IF	CITATIONS
37	Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum. Journal of Biological Chemistry, 2017, 292, 3591-3602.	3.4	13
38	How alkalinization drives fungal pathogenicity. PLoS Pathogens, 2017, 13, e1006621.	4.7	73
39	Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi. International Journal of Molecular Sciences, 2016, 17, 1473.	4.1	8
40	A conserved coâ€chaperone is required for virulence in fungal plant pathogens. New Phytologist, 2016, 209, 1135-1148.	7.3	31
41	A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiology, 2016, 1, 16043.	13.3	249
42	Hyphal chemotropism in fungal pathogenicity. Seminars in Cell and Developmental Biology, 2016, 57, 69-75.	5.0	25
43	Editorial. Seminars in Cell and Developmental Biology, 2016, 57, 68.	5.0	0
44	Combined action of the major secreted exo―and endopolygalacturonases is required for full virulence of <scp><i>F</i></scp> <i>usarium oxysporum</i> . Molecular Plant Pathology, 2016, 17, 339-353.	4.2	50
45	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
46	Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research, 2015, 43, gkv711.	14.5	605
47	Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in <i>Fusarium oxysporum</i> . Autophagy, 2015, 11, 131-144.	9.1	47
48	Chemotropic sensing in fungus–plant interactions. Current Opinion in Plant Biology, 2015, 26, 135-140.	7.1	46
49	Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature, 2015, 527, 521-524.	27.8	164
50	The transmembrane protein <scp>S</scp> ho1 cooperates with the mucin <scp>M</scp> sb2 to regulate invasive growth and plant infection in <i><scp>F</scp>usarium oxysporum</i> . Molecular Plant Pathology, 2015, 16, 593-603.	4.2	37
51	Murine Model for Fusarium oxysporum Invasive Fusariosis Reveals Organ-Specific Structures for Dissemination and Long-Term Persistence. PLoS ONE, 2014, 9, e89920.	2.5	14
52	Hyphal Growth of Phagocytosed Fusarium oxysporum Causes Cell Lysis and Death of Murine Macrophages. PLoS ONE, 2014, 9, e101999.	2.5	9
53	The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7. PLoS Pathogens, 2014, 10, e1004331.	4.7	186
54	Protein Kinases in Plant-Pathogenic Fungi: Conserved Regulators of Infection. Annual Review of Phytopathology, 2014, 52, 267-288.	7.8	199

#	Article	IF	CITATIONS
55	Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 2014, 70, 42-67.	2.1	133
56	Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism. Fungal Genetics and Biology, 2014, 62, 78-84.	2.1	34
57	The velvet complex governs mycotoxin production and virulence of <i><scp>F</scp>usarium oxysporum</i> on plant and mammalian hosts. Molecular Microbiology, 2013, 87, 49-65.	2.5	132
58	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	2.2	219
59	Targeting Iron Acquisition Blocks Infection with the Fungal Pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathogens, 2013, 9, e1003436.	4.7	101
60	Iron competition in fungus-plant interactions. Plant Signaling and Behavior, 2013, 8, e23012.	2.4	9
61	The CAP protein superfamily: function in sterol export and fungal virulence. Biomolecular Concepts, 2013, 4, 519-525.	2.2	61
62	HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen <i>Fusarium oxysporum</i> Â Â Â. Plant Cell, 2012, 24, 3805-3822.	6.6	138
63	A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts. Journal of Biological Chemistry, 2012, 287, 21970-21979.	3.4	52
64	Role of new bacterial surfactins in the antifungal interaction between <i>Bacillus amyloliquefaciens</i> and <i>Fusarium oxysporum</i> . Plant Pathology, 2012, 61, 689-699.	2.4	63
65	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13, 414-430.	4.2	3,270
66	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13, 804-804.	4.2	72
67	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, , no-no.	4.2	22
68	Signaling of Infectious Growth in Fusarium oxysporum. Topics in Current Genetics, 2012, , 61-79.	0.7	0
69	Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genetics and Biology, 2011, 48, 1124-1129.	2.1	47
70	Antifungal Lipopeptides from <i>Bacillus amyloliquefaciens</i> Strain BO7. Journal of Natural Products, 2011, 74, 145-151.	3.0	49
71	The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in <i>Fusarium oxysporum</i> Â. Plant Cell, 2011, 23, 1171-1185.	6.6	97
72	The Molecular Pathogenicity of Fusarium Keratitis. Cornea, 2010, 29, 1440-1444.	1.7	16

#	Article	IF	CITATIONS
73	The twoâ€component histidine kinase Fhk1 controls stress adaptation and virulence of <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2010, 11, 395-407.	4.2	62
74	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	27.8	1,442
75	Nuclear Dynamics during Germination, Conidiation, and Hyphal Fusion of Fusarium oxysporum. Eukaryotic Cell, 2010, 9, 1216-1224.	3.4	60
76	A Nitrogen Response Pathway Regulates Virulence Functions in <i>Fusarium oxysporum</i> via the Protein Kinase TOR and the bZIP Protein MeaB Â. Plant Cell, 2010, 22, 2459-2475.	6.6	207
77	The homeodomain transcription factor Ste12. Communicative and Integrative Biology, 2010, 3, 327-332.	1.4	45
78	A nitrogen response pathway regulates virulence in plant pathogenic fungi. Plant Signaling and Behavior, 2010, 5, 1623-1625.	2.4	17
79	The <i>Fusarium oxysporum</i> cell wall proteome under adhesionâ€inducing conditions. Proteomics, 2009, 9, 4755-4769.	2.2	34
80	ldentification of virulence genes in <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> by largeâ€scale transposon tagging. Molecular Plant Pathology, 2009, 10, 95-107.	4.2	40
81	Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum. Journal of Steroid Biochemistry and Molecular Biology, 2009, 113, 241-247.	2.5	2
82	From Tools of Survival to Weapons of Destruction: The Role of Cell Wall-Degrading Enzymes in Plant Infection. , 2009, , 181-200.		9
83	Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46, 287-298.	2.1	302
84	<i>Fusarium oxysporum</i> Ste12 Controls Invasive Growth and Virulence Downstream of the Fmk1 MAPK Cascade. Molecular Plant-Microbe Interactions, 2009, 22, 830-839.	2.6	87
85	Differential toxicity of antifungal protein AFP against mutants of Fusarium oxysporum. International Microbiology, 2009, 12, 115-21.	2.4	12
86	Rho1 has distinct functions in morphogenesis, cell wall biosynthesis and virulence of Fusarium oxysporum. Cellular Microbiology, 2008, 10, 1339-1351.	2.1	75
87	Ctf1, a transcriptional activator of cutinase and lipase genes inFusarium oxysporumis dispensable for virulence. Molecular Plant Pathology, 2008, 9, 293-304.	4.2	33
88	Isolation and expression analysis of a cobalamin-independent methionine synthase gene from the parasitic plant Orobanche ramosa. Scientia Horticulturae, 2008, 116, 337-341.	3.6	2
89	Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum. Fungal Genetics and Biology, 2008, 45, 28-34.	2.1	8
90	The Fusarium oxysporum sti35 gene functions in thiamine biosynthesis and oxidative stress response. Fungal Genetics and Biology, 2008, 45, 6-16.	2.1	23

#	Article	IF	CITATIONS
91	Vegetative Hyphal Fusion Is Not Essential for Plant Infection by Fusarium oxysporum. Eukaryotic Cell, 2008, 7, 162-171.	3.4	98
92	Role of the Transcriptional Activator XInR of Fusarium oxysporum in Regulation of Xylanase Genes and Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 977-985.	2.6	73
93	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	12.6	837
94	Identification and expression analysis of a MYB family transcription factor in the parasitic plant Orobanche ramosa. Annals of Applied Biology, 2007, 150, 123-130.	2.5	5
95	Distinct signalling pathways coordinately contribute to virulence of Fusarium oxysporum on mammalian hosts. Microbes and Infection, 2006, 8, 2825-2831.	1.9	20
96	A peroxidase gene expressed during early developmental stages of the parasitic plant Orobanche ramosa. Journal of Experimental Botany, 2006, 57, 185-192.	4.8	19
97	Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection. Molecular Plant Pathology, 2005, 6, 459-470.	4.2	43
98	Fusarium oxysporum gas1 Encodes a Putative β-1, 3-Glucanosyltransferase Required for Virulence on Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 1140-1147.	2.6	62
99	An Improved Axenic System for Studying Pre-infection Development of the Parasitic Plant Orobanche ramosa. Annals of Botany, 2005, 96, 1121-1127.	2.9	18
100	G-protein ? subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genetics and Biology, 2005, 42, 61-72.	2.1	61
101	Fusarium oxysporum as a Multihost Model for the Genetic Dissection of Fungal Virulence in Plants and Mammals. Infection and Immunity, 2004, 72, 1760-1766.	2.2	164
102	Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Molecular Microbiology, 2003, 47, 257-266.	2.5	139
103	The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 2003, 48, 765-779.	2.5	196
104	Fusarium oxysporum : exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 2003, 4, 315-325.	4.2	360
105	Fusarium as a model for studying virulence in soilborne plant pathogens. Physiological and Molecular Plant Pathology, 2003, 62, 87-98.	2.5	123
106	pH Response Transcription Factor PacC Controls Salt Stress Tolerance and Expression of the P-Type Na + -ATPase Ena1 in Fusarium oxysporum. Eukaryotic Cell, 2003, 2, 1246-1252.	3.4	76
107	Role in Pathogenesis of Two Endo-β-1,4-xylanase Genes from the Vascular Wilt Fungus Fusarium oxysporum. Fungal Genetics and Biology, 2002, 35, 213-222.	2.1	96
108	Molecular Characterization of a Subtilase from the Vascular Wilt Fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2001, 14, 653-662.	2.6	41

#	Article	IF	CITATIONS
109	Molecular characterization of a novel endo-β-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Current Genetics, 2001, 40, 268-275.	1.7	62
110	Molecular Characterization of an Endopolygalacturonase from Fusarium oxysporum Expressed during Early Stages of Infection. Applied and Environmental Microbiology, 2001, 67, 2191-2196.	3.1	84
111	A MAP kinase of the vascular wilt fungus <i>Fusarium oxysporum</i> is essential for root penetration and pathogenesis. Molecular Microbiology, 2001, 39, 1140-1152.	2.5	378
112	A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology, 2001, 39, 1140-1152.	2.5	9
113	Cloning and Disruption of pgx4 Encoding an In Planta Expressed Exopolygalacturonase from Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2000, 13, 359-365.	2.6	73
114	Genetic variability in callus formation and regeneration of garlic (Allium sativum L.). Plant Cell Reports, 1999, 18, 434-437.	5.6	28
115	Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporum. Current Genetics, 1999, 35, 36-40.	1.7	55
116	Two xylanase genes of the vascular wilt pathogen Fusarium oxysporum are differentially expressed during infection of tomato plants. Molecular Genetics and Genomics, 1999, 261, 530-536.	2.4	57
117	An efficient method for the in vitro management of multiple garlic accessions. In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 466-469.	2.1	12
118	Cross protection provides evidence for race-specific avirulence factors inFusarium oxysporum. Physiological and Molecular Plant Pathology, 1999, 54, 63-72.	2.5	32
119	An Efficient Method for Callus Culture and Shoot Regeneration of Garlic (Allium sativum L.). Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 348-349.	1.0	25
120	Biolistic transfer and expression of a uidA reporter gene in different tissues of Allium sativum L Plant Cell Reports, 1998, 17, 737-741.	5.6	39
121	Cloning, Expression, and Role in Pathogenicity of <i>pg1</i> Encoding the Major Extracellular Endopolygalacturonase of the Vascular Wilt Pathogen <i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 1998, 11, 91-98.	2.6	268
122	Endopolygalacturonase PG1 in Different Formae Speciales of <i>Fusarium oxysporum</i> . Applied and Environmental Microbiology, 1998, 64, 1967-1971.	3.1	19
123	Purification and characterization of an acidic endo-β-1,4-xylanase from the tomato vascular pathogen Fusarium oxysporum f. sp. lycopersici. FEMS Microbiology Letters, 1997, 148, 75-82.	1.8	18
124	Purification and characterization of a novel exopolygalacturonase from Fusarium oxysporum f.sp. lycopersici. FEMS Microbiology Letters, 1997, 154, 37-43.	1.8	28
125	Purification and characterization of a pectate lyase fromFusarium oxysporumf.sp.lycopersiciproduced on tomato vascular tissue. Physiological and Molecular Plant Pathology, 1996, 49, 177-185.	2.5	24
126	Purification and characterization of an exo-polygalacturonase from the tomato vascular wilt pathogenFusarium oxysporumf.sp.lycopersici. FEMS Microbiology Letters, 1996, 145, 295-299.	1.8	57

#	Article	IF	CITATIONS
127	Occurrence of a retrotransposon-like sequence among different formae speciales and races of Fusarium oxysporum. Mycological Research, 1994, 98, 993-996.	2.5	16
128	Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene, 1994, 138, 143-148.	2.2	127
129	Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Current Genetics, 1993, 24, 349-356.	1.7	90
130	Stress Adaptation. , 0, , 463-485.		9
131	CHAPTER 3: Host/Pathogen Interactions. , 0, , 21-38.		0