Rui L Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452433/publications.pdf

Version: 2024-02-01

1,420 papers

75,258 citations

122 h-index 200 g-index

1491 all docs

1491 docs citations

1491 times ranked

58278 citing authors

#	Article	IF	CITATIONS
1	Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chemistry and Engineering, 2014, 2, 1063-1071.	6.7	1,598
2	Bone Tissue Engineering: State of the Art and Future Trends. Macromolecular Bioscience, 2004, 4, 743-765.	4.1	1,460
3	Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 2007, 59, 207-233.	13.7	1,201
4	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	3.4	969
5	The stiffness of living tissues and its implications for tissue engineering. Nature Reviews Materials, 2020, 5, 351-370.	48.7	756
6	Naturalâ€Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 2015, 27, 1143-1169.	21.0	743
7	From basics to clinical: A comprehensive review on spinal cord injury. Progress in Neurobiology, 2014, 114, 25-57.	5.7	626
8	Graft copolymerized chitosanâ€"present status and applications. Carbohydrate Polymers, 2005, 62, 142-158.	10.2	550
9	Cork: properties, capabilities and applications. International Materials Reviews, 2005, 50, 345-365.	19.3	499
10	Adipose Tissue Derived Stem Cells Secretome: Soluble Factors and Their Roles in Regenerative Medicine. Current Stem Cell Research and Therapy, 2010, 5, 103-110.	1.3	497
11	Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomaterialia, 2011, 7, 1009-1018.	8.3	487
12	Natural polymers for the microencapsulation of cells. Journal of the Royal Society Interface, 2014, 11, 20140817.	3.4	480
13	Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP) Tj ETQq1 1 0).784314 r 2.7	gBT/Overlock
14	Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of Human Mesenchymal Stem Cells. Advanced Materials, 2013, 25, 3329-3336.	21.0	448
15	The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules, 2014, 15, 2327-2346.	5.4	417
16	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	11.4	411
17	Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004, 64, 789-817.	7.8	374
18	Vascularization in Bone Tissue Engineering: Physiology, Current Strategies, Major Hurdles and Future Challenges. Macromolecular Bioscience, 2010, 10, 12-27.	4.1	370

#	Article	IF	CITATIONS
19	Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2010609.	14.9	370
20	A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials, 2001, 22, 883-889.	11.4	354
21	Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, 2010, 31, 7494-7502.	11.4	342
22	Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research Part B, 2003, 67A, 87-95.	3.1	326
23	Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2018, 36, 68-91.	11.7	320
24	The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials, 2002, 23, 1471-1478.	11.4	319
25	Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 2002, 23, 1955-1966.	11.4	311
26	Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 1099-1104.	3.6	310
27	Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 2019, 12, 1824.	2.9	309
28	Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine, 2003, 14, 127-135.	3.6	306
29	Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 635-643.	5.4	306
30	Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials, 2009, 30, 3551-3559.	11.4	304
31	Marine Origin Collagens and Its Potential Applications. Marine Drugs, 2014, 12, 5881-5901.	4.6	300
32	Genipinâ€crossâ€linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 95A, 465-475.	4.0	291
33	Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends in Biotechnology, 2007, 25, 577-583.	9.3	289
34	Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 2010, 6, 2208-2220.	10.0	289
35	Selfâ€assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 582-612.	6.1	286
36	Scaffolds Based Bone Tissue Engineering: The Role of Chitosan. Tissue Engineering - Part B: Reviews, 2011, 17, 331-347.	4.8	285

#	Article	IF	CITATIONS
37	Biocompatible ionic liquids: fundamental behaviours and applications. Chemical Society Reviews, 2019, 48, 4317-4335.	38.1	280
38	Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 2016, 215, 534-540.	4.9	277
39	Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomaterialia, 2012, 8, 289-301.	8.3	276
40	Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 1-13.	2.7	273
41	Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 2014, 11, 20140459.	3.4	269
42	Controlling Cancer Cell Fate Using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile. Journal of the American Chemical Society, 2015, 137, 576-579.	13.7	260
43	Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small, 2009, 5, 1195-1206.	10.0	244
44	Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 2008, 9, 2764-2774.	5. 4	240
45	Natural and genetically engineered proteins for tissue engineering. Progress in Polymer Science, 2012, 37, 1-17.	24.7	227
46	Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annual Review of Biomedical Engineering, 2017, 19, 1-26.	12.3	227
47	Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials, 2014, 35, 9023-9032.	11.4	226
48	Production and Characterization of Chitosan Fibers and 3â€D Fiber Mesh Scaffolds for Tissue Engineering Applications. Macromolecular Bioscience, 2004, 4, 811-819.	4.1	224
49	Properties of melt processed chitosan and aliphatic polyester blends. Materials Science & Drocessed Chitosan and Aliphatic polyester blends. Materials Science & Drocessing A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 57-68.	5.6	224
50	Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38, 1415-1441.	24.7	224
51	Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 2012, 8, 2483-2492.	8.3	210
52	Osteochondral defects: present situation and tissue engineering approaches. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 261-273.	2.7	209
53	Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomaterialia, 2012, 8, 4173-4180.	8.3	209
54	Chitosan/Poly(É>-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.	11.4	204

#	Article	IF	CITATIONS
55	Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e97-e107.	2.7	201
56	Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. Journal of Molecular Liquids, 2017, 241, 654-661.	4.9	194
57	Influence of the Porosity of Starch-Based Fiber Mesh Scaffolds on the Proliferation and Osteogenic Differentiation of Bone Marrow Stromal Cells Cultured in a Flow Perfusion Bioreactor. Tissue Engineering, 2006, 12, 801-809.	4.6	193
58	Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone–starch scaffold and the in vitro development of vascularization. Biomaterials, 2009, 30, 4407-4415.	11.4	193
59	Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials, 2001, 22, 2057-2064.	11.4	192
60	Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Materials Science and Engineering C, 2002, 20, 19-26.	7.3	191
61	Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 37-42.	2.7	191
62	lonic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 2017, 19, 1208-1220.	9.0	190
63	Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Frontiers in Bioengineering and Biotechnology, 2019, 7, 337.	4.1	186
64	Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 93A, 852-863.	4.0	185
65	Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials, 2009, 30, 526-534.	11.4	184
66	Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. Journal of Clinical Periodontology, 2014, 41, 283-294.	4.9	179
67	Photocrosslinkable <i>Kappa</i> â€Carrageenan Hydrogels for Tissue Engineering Applications. Advanced Healthcare Materials, 2013, 2, 895-907.	7.6	178
68	Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterialia, 2017, 59, 2-11.	8.3	178
69	Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials, 2001, 22, 1911-1917.	11.4	175
70	Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. Journal of Supercritical Fluids, 2015, 105, 1-8.	3.2	175
71	Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine, 2007, 2, 929-942.	3.3	173
72	Materials of marine origin: a review on polymers and ceramics of biomedical interest. International Materials Reviews, 2012, 57, 276-306.	19.3	173

#	Article	IF	CITATIONS
73	Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Advanced Materials, 2019, 31, e1902409.	21.0	173
74	Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 2015, 26, 1571-1581.	3.6	172
75	Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Progress in Polymer Science, 2010, 35, 1163-1194.	24.7	171
76	Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials, 2008, 29, 4306-4313.	11.4	167
77	Osteogenic Induction of Human Bone Marrow-Derived Mesenchymal Progenitor Cells in Novel Synthetic Polymer–Hydrogel Matrices. Tissue Engineering, 2003, 9, 689-702.	4.6	165
78	Carrageenan-Based Hydrogels for the Controlled Delivery of PDGF-BB in Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 1392-1401.	5.4	165
79	Could 3D models of cancer enhance drug screening?. Biomaterials, 2020, 232, 119744.	11.4	165
80	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	4.3	164
81	Chemical modification of starch based biodegradable polymeric blends: effects on water uptake, degradation behaviour and mechanical properties. Polymer Degradation and Stability, 2000, 70, 161-170.	5.8	162
82	Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials, 2003, 24, 4213-4221.	11.4	162
83	A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 296-304.	4.3	162
84	In Vitro Assessment of the Enzymatic Degradation of Several Starch Based Biomaterials. Biomacromolecules, 2003, 4, 1703-1712.	5.4	160
85	Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials, 2010, 31, 5875-5885.	11.4	160
86	Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. Journal of Controlled Release, 2010, 142, 312-318.	9.9	159
87	Cell Delivery Systems Using Alginate–Carrageenan Hydrogel Beads and Fibers for Regenerative Medicine Applications. Biomacromolecules, 2011, 12, 3952-3961.	5.4	156
88	A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology, 2013, 25, 407-424.	2.8	156
89	Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs. Biomacromolecules, 2010, 11, 3228-3236.	5.4	155
90	Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials, 2017, 149, 98-115.	11.4	155

#	Article	IF	Citations
91	Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomaterialia, 2015, 18, 196-205.	8.3	154
92	New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials, 2002, 23, 1883-1895.	11.4	152
93	Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2, 278-289.	2.6	151
94	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	4.0	150
95	Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Journal of Materials Science: Materials in Medicine, 2019, 30, 32.	3.6	150
96	Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2011, 17, 717-730.	2.1	149
97	Nanoparticles for bone tissue engineering. Biotechnology Progress, 2017, 33, 590-611.	2.6	149
98	Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4, 1297-1306.	8.3	148
99	Electrospinning: processing technique for tissue engineering scaffolding. International Materials Reviews, 2008, 53, 257-274.	19.3	147
100	Novel Starch-Based Scaffolds for Bone Tissue Engineering: Cytotoxicity, Cell Culture, and Protein Expression. Tissue Engineering, 2004, 10, 465-474.	4.6	145
101	Preparation and <i>in vitro</i> characterization of novel bioactive glass ceramic nanoparticles. Journal of Biomedical Materials Research - Part A, 2009, 88A, 304-313.	4.0	144
102	Designing biomaterials based on biomineralization of bone. Journal of Materials Chemistry, 2010, 20, 2911.	6.7	144
103	Distinct Stem Cells Subpopulations Isolated from Human Adipose Tissue Exhibit Different Chondrogenic and Osteogenic Differentiation Potential. Stem Cell Reviews and Reports, 2011, 7, 64-76.	5.6	143
104	Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Science Advances, 2019, 5, eaaw1317.	10.3	143
105	Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: <i>In Vitro</i> studies and Preliminary <i>In Vivo</i> Evaluation. Tissue Engineering - Part A, 2010, 16, 343-353.	3.1	142
106	Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nature Chemistry, 2015, 7, 897-904.	13.6	142
107	Starch–poly(εâ€caprolactone) and starch–poly(lactic acid) fibreâ€mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 243-252.	2.7	140
108	Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomaterialia, 2015, 12, 227-241.	8.3	140

#	Article	IF	Citations
109	Adipose Tissue-Derived Stem Cells and Their Application in Bone and Cartilage Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 113-125.	4.8	139
110	Design of controlled release systems for THEDESâ€"Therapeutic deep eutectic solvents, using supercritical fluid technology. International Journal of Pharmaceutics, 2015, 492, 73-79.	5.2	139
111	Silk fibroin for skin injury repair: Where do things stand?. Advanced Drug Delivery Reviews, 2020, 153, 28-53.	13.7	139
112	Bilayered chitosan-based scaffolds for osteochondral tissue engineering: Influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomaterialia, 2009, 5, 644-660.	8.3	137
113	Inhibition of human neutrophil oxidative burst by pyrazolone derivatives. Free Radical Biology and Medicine, 2006, 40, 632-640.	2.9	135
114	Porous starch-based drug delivery systems processed by a microwave route. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1227-1241.	3.5	133
115	Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering - Part B: Reviews, 2017, 23, 211-224.	4.8	133
116	Emerging tumor spheroids technologies for 3D in vitro cancer modeling., 2018, 184, 201-211.		133
117	Engineering tendon and ligament tissues: present developments towards successful clinical products. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 673-686.	2.7	132
118	Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 2008, 8, 568-576.	4.1	131
119	The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials, 2009, 30, 804-813.	11.4	131
120	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems. Tissue Engineering - Part B: Reviews, 2013, 19, 308-326.	4.8	131
121	The potential of hyaluronic acid in immunoprotection and immunomodulation: Chemistry, processing and function. Progress in Materials Science, 2018, 97, 97-122.	32.8	131
122	Cosmetic Potential of Marine Fish Skin Collagen. Cosmetics, 2017, 4, 39.	3.3	130
123	The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials, 2012, 33, 6345-6354.	11.4	129
124	Preparation of macroporous alginate-based aerogels for biomedical applications. Journal of Supercritical Fluids, 2015, 106, 152-159.	3.2	129
125	Glycosaminoglycans from marine sources as therapeutic agents. Biotechnology Advances, 2017, 35, 711-725.	11.7	128
126	Recent progress in gellan gum hydrogels provided by functionalization strategies. Journal of Materials Chemistry B, 2016, 4, 6164-6174.	5.8	126

#	Article	IF	CITATIONS
127	Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Current Opinion in Solid State and Materials Science, 2017, 21, 92-112.	11.5	126
128	Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. Journal of Materials Science: Materials in Medicine, 2003, 14, 103-107.	3.6	125
129	Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. Journal of Controlled Release, 2020, 321, 324-347.	9.9	125
130	Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. Journal of Materials Science: Materials in Medicine, 2005, 16, 1077-1085.	3.6	124
131	A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. International Journal of Oral and Maxillofacial Surgery, 2006, 35, 928-934.	1.5	124
132	Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. Acta Biomaterialia, 2015, 28, 64-75.	8.3	124
133	Functional nanostructured chitosan–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3952.	6.7	123
134	Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomaterialia, 2016, 43, 160-169.	8.3	123
135	Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 2019, 21, 145-169.	12.3	122
136	Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. Journal of Orthopaedic Research, 2010, 28, 1193-1199.	2.3	121
137	Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal, 2014, 253, 408-417.	12.7	121
138	Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials, 2003, 24, 2575-2584.	11.4	120
139	In Vitro Localization of Bone Growth Factors in Constructs of Biodegradable Scaffolds Seeded with Marrow Stromal Cells and Cultured in a Flow Perfusion Bioreactor. Tissue Engineering, 2006, 12, 177-188.	4.6	120
140	Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Seeded on Melt Based Chitosan Scaffolds for Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 2067-2073.	5.4	120
141	Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. Biosensors, 2020, 10, 79.	4.7	120
142	Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia, 2010, 6, 1149-1157.	8.3	118
143	An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomaterialia, 2013, 9, 6790-6797.	8.3	118
144	Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials, 2007, 28, 240-248.	11.4	116

#	Article	IF	Citations
145	Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials, 2013, 34, 9210-9219.	11.4	116
146	Bioactive glass/polymer composite scaffolds mimicking bone tissue. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2654-2667.	4.0	115
147	Engineering bioinks for 3D bioprinting. Biofabrication, 2021, 13, 032001.	7.1	115
148	New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. Journal of Materials Science: Materials in Medicine, 1998, 9, 825-833.	3.6	114
149	Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.	8.3	114
150	Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. Journal of Materials Chemistry, 2007, 17, 4064.	6.7	112
151	Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. European Polymer Journal, 2009, 45, 141-148.	5.4	111
152	The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Research and Therapy, 2012, 3, 18.	5 . 5	111
153	Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Materials Science and Engineering C, 2014, 43, 27-36.	7. 3	110
154	Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomaterialia, 2018, 77, 155-171.	8.3	109
155	Microstructural characterization of glass-reinforced hydroxyapatite composites. Biomaterials, 1994, 15, 5-10.	11.4	108
156	Physical properties and biocompatibility of chitosan/soy blended membranes. Journal of Materials Science: Materials in Medicine, 2005, 16, 575-579.	3.6	108
157	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery. Tissue Engineering - Part B: Reviews, 2013, 19, 327-352.	4.8	108
158	Thermal and Thermomechanical Behaviour of Polycaprolactone and Starch/Polycaprolactone Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 792-801.	3.6	107
159	Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydrate Polymers, 2007, 70, 25-31.	10.2	107
160	Tissue Engineering and Regenerative Medicine. International Review of Neurobiology, 2013, 108, 1-33.	2.0	107
161	In Vitro Model of Vascularized Bone: Synergizing Vascular Development and Osteogenesis. PLoS ONE, 2011, 6, e28352.	2.5	107
162	Processing andin vitro Degradation of Starch/EVOH Thermoplastic Blends. Polymer International, 1997, 43, 347-352.	3.1	106

#	Article	IF	Citations
163	Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 2010, 345, 2194-2200.	2.3	106
164	Layerâ€byâ€Layer Assembly of Lightâ€Responsive Polymeric Multilayer Systems. Advanced Functional Materials, 2014, 24, 5624-5648.	14.9	106
165	3D Mimicry of Nativeâ€Tissueâ€Fiber Architecture Guides Tendonâ€Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs. Small, 2017, 13, 1700689.	10.0	106
166	Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Materials Science and Engineering C, 2002, 20, 27-33.	7.3	105
167	Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 392-400.	2.7	105
168	Light-triggered release of photocaged therapeutics - Where are we now?. Journal of Controlled Release, 2019, 298, 154-176.	9.9	105
169	Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e55451.	2.5	105
170	Hybrid cork–polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures, 2013, 105, 153-162.	5.8	104
171	The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials, 2014, 35, 9087-9099.	11.4	104
172	Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochemical and Photobiological Sciences, 2007, 6, 152-158.	2.9	103
173	Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal Cord Injury Repair. Tissue Engineering - Part A, 2010, 16, 45-54.	3.1	103
174	Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies. Biointerphases, 2012, 7, 46.	1.6	103
175	3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering. Macromolecular Symposia, 2008, 269, 92-99.	0.7	102
176	Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 2010, 30, 200-221.	9.0	102
177	Dual Effect of Platelet Lysate on Human Articular Cartilage: A Maintenance of Chondrogenic Potential and a Transient Proinflammatory Activity Followed by an Inflammation Resolution. Tissue Engineering - Part A, 2013, 19, 1476-1488.	3.1	101
178	Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 Available systems and their properties. International Materials Reviews, 2004, 49, 261-273.	19.3	100
179	Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010, 6, 5184.	2.7	100
180	Tissue Engineering and Regenerative Medicine Strategies in Meniscus Lesions. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2011, 27, 1706-1719.	2.7	100

#	Article	IF	Citations
181	Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small, 2016, 12, 4308-4342.	10.0	100
182	Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials, 2008, 29, 3914-3926.	11.4	99
183	Supercritical fluids in biomedical and tissue engineering applications: a review. International Materials Reviews, 2009, 54, 214-222.	19.3	99
184	Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models. Trends in Biotechnology, 2015, 33, 667-678.	9.3	99
185	Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomaterials Science and Engineering, 2017, 3, 3098-3122.	5.2	99
186	Carboxymethyl chitosan-graft-phosphatidylethanolamine: Amphiphilic matrices for controlled drug delivery. Reactive and Functional Polymers, 2007, 67, 43-52.	4.1	98
187	Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydrate Polymers, 2013, 98, 581-588.	10.2	98
188	Water Absorption and Degradation Characteristics of Chitosan-Based Polyesters and Hydroxyapatite Composites. Macromolecular Bioscience, 2007, 7, 354-363.	4.1	97
189	Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials, 2007, 28, 307-315.	11.4	97
190	Chondrogenic potential of injectable <i>κ</i> -carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 550-563.	2.7	97
191	Silk fibroin/amniotic membrane 3D bi-layered artificial skin. Biomedical Materials (Bristol), 2018, 13, 035003.	3.3	97
192	Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Applied Bio Materials, 2019, 2, 4346-4355.	4.6	96
193	Materials in particulate form for tissue engineering. 2. Applications in bone. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 97-109.	2.7	95
194	Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 349-355.	2.7	95
195	Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring. Acta Biomaterialia, 2015, 17, 170-181.	8.3	95
196	Gellan Gum-Hyaluronic Acid Spongy-like Hydrogels and Cells from Adipose Tissue Synergize Promoting Neoskin Vascularization. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19668-19679.	8.0	94
197	Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomaterials Research, 2017, 21, 22.	6.9	94
198	Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. Journal of Materials Science: Materials in Medicine, 2004, 15, 1105-1112.	3.6	93

#	Article	IF	Citations
199	Materials in particulate form for tissue engineering. 1. Basic concepts. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 4-24.	2.7	93
200	The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chemistry, 2012, 14, 1463.	9.0	93
201	Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomaterialia, 2018, 72, 167-181.	8.3	93
202	Design of Functional Therapeutic Deep Eutectic Solvents Based on Choline Chloride and Ascorbic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 10355-10363.	6.7	93
203	Natural-Based Hydrogels for Tissue Engineering Applications. Molecules, 2020, 25, 5858.	3.8	93
204	Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Current Opinion in Solid State and Materials Science, 2003, 7, 309-318.	11.5	92
205	Antimicrobial functionalized genetically engineered spider silk. Biomaterials, 2011, 32, 4255-4266.	11.4	92
206	Knee donor-site morbidity after mosaicplasty $\hat{a} \in \hat{a}$ a systematic review. Journal of Experimental Orthopaedics, 2016, 3, 31.	1.8	92
207	Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1261-1278.	3.5	91
208	Microglia Response and In Vivo Therapeutic Potential of Methylprednisolone‣oaded Dendrimer Nanoparticles in Spinal Cord Injury. Small, 2013, 9, 738-749.	10.0	91
209	Biocompatibility Evaluation of Ionic―and Photo rosslinked Methacrylated Gellan Gum Hydrogels: In Vitro and In Vivo Study. Advanced Healthcare Materials, 2013, 2, 568-575.	7.6	91
210	Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals. Advanced Healthcare Materials, 2016, 5, 1364-1375.	7.6	91
211	Mesenchymal Stem Cells in the Umbilical Cord: Phenotypic Characterization, Secretome and Applications in Central Nervous System Regenerative Medicine. Current Stem Cell Research and Therapy, 2011, 6, 221-228.	1.3	90
212	Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioactive Materials, 2021, 6, 1375-1387.	15.6	90
213	Understanding the Role of Growth Factors in Modulating Stem Cell Tenogenesis. PLoS ONE, 2013, 8, e83734.	2.5	90
214	The enhancement of the mechanical properties of a high-density polyethylene. Journal of Applied Polymer Science, 1999, 73, 2473-2483.	2.6	89
215	Meltâ€based compressionâ€molded scaffolds from chitosan–polyester blends and composites: Morphology and mechanical properties. Journal of Biomedical Materials Research - Part A, 2009, 91A, 489-504.	4.0	89
216	Angiogenic Potential of Gellan-Gum-Based Hydrogels for Application in Nucleus Pulposus Regeneration: <i>In Vivo</i> Study. Tissue Engineering - Part A, 2012, 18, 1203-1212.	3.1	89

#	Article	IF	Citations
217	Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomaterialia, 2012, 8, 1530-1542.	8.3	89
218	Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology, 2018, 83, 15-26.	0.7	89
219	Melanin nanoparticles as a promising tool for biomedical applications– a review. Acta Biomaterialia, 2020, 105, 26-43.	8.3	89
220	Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s47-s59.	2.7	88
221	Human Adipose Stem Cells Cell Sheet Constructs Impact Epidermal Morphogenesis in Full-Thickness Excisional Wounds. Biomacromolecules, 2013, 14, 3997-4008.	5.4	88
222	Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate. Biomacromolecules, 2014, 15, 3817-3826.	5.4	88
223	Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends in Biotechnology, 2020, 38, 24-49.	9.3	88
224	Characterization of two biodegradable polymers of potential application within the biomaterials field. Journal of Materials Science: Materials in Medicine, 1995, 6, 786-792.	3.6	87
225	Development of Gellan Gum-Based Microparticles/Hydrogel Matrices for Application in the Intervertebral Disc Regeneration. Tissue Engineering - Part C: Methods, 2011, 17, 961-972.	2.1	87
226	Polysaccharide-based materials for cartilage tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 421-436.	2.7	86
227	Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Composites Science and Technology, 2013, 78, 56-62.	7.8	86
228	Targeted Delivery System Based on Gemcitabine-Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31600-31611.	8.0	86
229	Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends in Biotechnology, 2021, 39, 90-104.	9.3	86
230	Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications. Journal of Biomedical Materials Research Part B, 2003, 65A, 60-70.	3.1	85
231	Synthesis and Characterization of pH-Sensitive Thiol-Containing Chitosan Beads for Controlled Drug Delivery Applications. Drug Delivery, 2007, 14, 9-17.	5.7	85
232	Preparation and characterization of starch-poly- $\hat{l}\mu$ -caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomaterialia, 2009, 5, 1035-1045.	8.3	85
233	Rheological and mechanical properties of acellular and cellâ€laden methacrylated gellan gum hydrogels. Journal of Biomedical Materials Research - Part A, 2013, 101, 3438-3446.	4.0	84
234	Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomaterialia, 2016, 33, 203-212.	8.3	84

#	Article	IF	Citations
235	Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends in Biotechnology, 2015, 33, 471-479.	9.3	83
236	Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3781-3799.	8.0	83
237	Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 258-265.	3.4	82
238	Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomaterialia, 2009, 5, 2054-2062.	8.3	82
239	Biodegradable Polymeric Fiber Structures in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 17-27.	4.8	82
240	Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydrate Polymers, 2012, 88, 537-546.	10.2	81
241	Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomaterialia, 2014, 10, 4787-4797.	8.3	81
242	Instructive Nanofibrous Scaffold Comprising Runt-Related Transcription Factor 2 Gene Delivery for Bone Tissue Engineering. ACS Nano, 2014, 8, 8082-8094.	14.6	81
243	Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment. Stem Cell Reports, 2016, 6, 284-291.	4.8	81
244	Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11392-11404.	8.0	81
245	Dendrimer nanoparticles for colorectal cancer applications. Journal of Materials Chemistry B, 2020, 8, 1128-1138.	5.8	81
246	Processing ulvan into 2D structures: Cross-linked ulvan membranes as new biomaterials for drug delivery applications. International Journal of Pharmaceutics, 2012, 426, 76-81.	5.2	80
247	Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies. Osteoarthritis and Cartilage, 2014, 22, 1271-1281.	1.3	80
248	Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure. Tissue Engineering - Part A, 2012, 18, 1979-1991.	3.1	79
249	Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomaterialia, 2013, 9, 8972-8982.	8.3	79
250	In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 2014, 29, 137-151.	2.1	79
251	How Do Animals Survive Extreme Temperature Amplitudes? The Role of Natural Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 9542-9553.	6.7	79
252	In vitro degradation and cytocompatibility evaluation of novel soy and sodium caseinate-based membrane biomaterials. Journal of Materials Science: Materials in Medicine, 2003, 14, 1055-1066.	3.6	78

#	Article	IF	CITATIONS
253	Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 722-732.	2.7	78
254	Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. Journal of Controlled Release, 2012, 162, 19-27.	9.9	78
255	The Potential of Liquid Marbles for Biomedical Applications: A Critical Review. Advanced Healthcare Materials, 2017, 6, 1700192.	7.6	78
256	Adult Stem Cells in Bone and Cartilage Tissue Engineering. Current Stem Cell Research and Therapy, 2006, $1,345-364$.	1.3	78
257	Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites. Advances in Polymer Technology, 1997, 16, 263-277.	1.7	77
258	Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 253-263.	2.7	77
259	Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Applied Surface Science, 2019, 486, 499-507.	6.1	77
260	A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers, 2020, 239, 116131.	10.2	77
261	Mechanical Behavior of Injection-molded Starch-based Polymers. Polymers for Advanced Technologies, 1996, 7, 784-790.	3.2	76
262	In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy. Biomaterials, 2003, 24, 579-585.	11.4	76
263	Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. Journal of Supercritical Fluids, 2009, 49, 279-285.	3.2	76
264	The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.	4.1	76
265	Biopolymers and polymers in the search of alternative treatments for meniscal regeneration: State of the art and future trends. Applied Materials Today, 2018, 12, 51-71.	4.3	76
266	Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Marine Drugs, 2018, 16, 495.	4.6	76
267	3D biosensors in advanced medical diagnostics of high mortality diseases. Biosensors and Bioelectronics, 2019, 130, 20-39.	10.1	76
268	Progenitor and stem cells for bone and cartilage regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 327-337.	2.7	75
269	Multilayered Hierarchical Capsules Providing Cell Adhesion Sites. Biomacromolecules, 2013, 14, 743-751.	5.4	7 5
270	Use of coupling agents to enhance the interfacial interactions in starch–EVOH/hydroxylapatite composites. Biomaterials, 2002, 23, 629-635.	11.4	74

#	Article	IF	CITATIONS
271	Plasma surface modification of poly(<scp>D,L</scp> â€lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 59-66.	3.4	74
272	Spray-assisted layer-by-layer assembly on hyaluronic acid scaffolds for skin tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 330-340.	4.0	74
273	Fast Setting Silk Fibroin Bioink for Bioprinting of Patientâ€Specific Memoryâ€Shape Implants. Advanced Healthcare Materials, 2017, 6, 1701021.	7.6	74
274	Management of knee osteoarthritis. Current status and future trends. Biotechnology and Bioengineering, 2017, 114, 717-739.	3.3	74
275	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	4.0	73
276	Novel injectable gel (system) as a vehicle for human articular chondrocytes in cartilage tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 97-106.	2.7	73
277	Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration. Journal of Materials Science: Materials in Medicine, 2010, 21, 2999-3008.	3.6	73
278	Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomaterials Science and Engineering, 2015, 1, 726-739.	5.2	73
279	Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh. PLoS ONE, 2012, 7, e35422.	2.5	73
280	Phosphorous Containing Chitosan Beads for Controlled Oral Drug Delivery. Journal of Bioactive and Compatible Polymers, 2006, 21, 327-340.	2.1	72
281	Starch-based microspheres produced by emulsion crosslinking with a potential media dependent responsive behavior to be used as drug delivery carriers. Journal of Materials Science: Materials in Medicine, 2006, 17, 371-377.	3.6	72
282	Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: Preparation and characterization. Journal of Supercritical Fluids, 2010, 54, 282-289.	3.2	72
283	Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. Journal of Materials Chemistry, 2010, 20, 1638-1645.	6.7	72
284	Cell Adhesion and Proliferation onto Chitosan-based Membranes Treated by Plasma Surface Modification. Journal of Biomaterials Applications, 2011, 26, 101-116.	2.4	72
285	Cell sheet technology-driven re-epithelialization and neovascularization of skin wounds. Acta Biomaterialia, 2014, 10, 3145-3155.	8.3	72
286	Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomaterialia, 2019, 99, 236-246.	8.3	72
287	Biodegradable Nanomats Produced by Electrospinning: Expanding Multifunctionality and Potential for Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2007, 7, 862-882.	0.9	71
288	A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. Journal of Materials Science: Materials in Medicine, 2007, 18, 295-302.	3.6	71

#	Article	IF	Citations
289	Genipinâ∈Modified Silkâ∈Fibroin Nanometric Nets. Macromolecular Bioscience, 2008, 8, 766-774.	4.1	71
290	Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine, 2010, 5, 539-554.	3.3	71
291	Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials. Advanced Healthcare Materials, 2014, 3, 797-810.	7.6	71
292	Adhesion, Proliferation, and Osteogenic Differentiation of a Mouse Mesenchymal Stem Cell Line (BMC9) Seeded on Novel Melt-Based Chitosan/Polyester 3D Porous Scaffolds. Tissue Engineering - Part A, 2008, 14, 1049-1057.	3.1	70
293	A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening. Biomaterials Science, 2015, 3, 581-585.	5.4	70
294	Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacological Research, 2016, 111, 523-533.	7.1	70
295	Micro-CT – a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomaterials Research, 2018, 22, 26.	6.9	70
296	Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment. Acta Biomaterialia, 2008, 4, 1349-1359.	8.3	69
297	Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 316-323.	2.7	69
298	Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing. Journal of Investigative Dermatology, 2017, 137, 1541-1551.	0.7	68
299	3D Protein-Based Bilayer Artificial Skin for the Guided Scarless Healing of Third-Degree Burn Wounds in Vivo. Biomacromolecules, 2018, 19, 2409-2422.	5.4	68
300	The Meniscus in Normal and Osteoarthritic Tissues: Facing the Structure Property Challenges and Current Treatment Trends. Annual Review of Biomedical Engineering, 2019, 21, 495-521.	12.3	68
301	Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials, 2015, 43, 23-31.	11.4	67
302	Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 21-28.	2.7	66
303	PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. Journal of Supercritical Fluids, 2012, 65, 32-38.	3.2	66
304	Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations. Macromolecular Bioscience, 2019, 19, e1800384.	4.1	66
305	Nanotechnology in peripheral nerve repair and reconstruction. Advanced Drug Delivery Reviews, 2019, 148, 308-343.	13.7	66
306	Terpene-Based Natural Deep Eutectic Systems as Efficient Solvents To Recover Astaxanthin from Brown Crab Shell Residues. ACS Sustainable Chemistry and Engineering, 2020, 8, 2246-2259.	6.7	66

#	Article	IF	Citations
307	Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. Journal of Materials Science: Materials in Medicine, 2004, 15, 73-83.	3.6	65
308	Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 378-380.	2.7	65
309	New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability. Acta Biomaterialia, 2013, 9, 8167-8181.	8.3	65
310	Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS ONE, 2018, 13, e0194441.	2.5	65
311	Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Materials Science and Engineering C, 2020, 112, 110920.	7.3	65
312	In vivo response to starchâ€based scaffolds designed for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2007, 80A, 983-989.	4.0	64
313	Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. Journal of Supercritical Fluids, 2010, 54, 320-327.	3.2	64
314	Effect of Anatomical Origin and Cell Passage Number on the Stemness and Osteogenic Differentiation Potential of Canine Adipose-Derived Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 1211-1222.	5.6	64
315	Chondrogenic phenotype of different cells encapsulated in κâ€carrageenan hydrogels for cartilage regeneration strategies. Biotechnology and Applied Biochemistry, 2012, 59, 132-141.	3.1	64
316	A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polymer Chemistry, 2018, 9, 4063-4072.	3.9	64
317	Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: a controlled, double-blind clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 1989-1999.	4.2	64
318	Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 1157-1165.	3.6	63
319	Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications. Acta Biomaterialia, 2008, 4, 1637-1645.	8.3	63
320	Silk Fibroin Microparticles as Carriers for Delivery of Human Recombinant Bone Morphogenetic Protein-2: In Vitro and In Vivo Bioactivity. Tissue Engineering - Part C: Methods, 2010, 16, 937-945.	2.1	63
321	Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone, 2010, 46, 1424-1435.	2.9	63
322	Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnology Advances, 2013, 31, 1514-1531.	11.7	63
323	Superhydrophobic Surfaces Engineered Using Diatomaceous Earth. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4202-4208.	8.0	63
324	Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. Journal of Controlled Release, 2014, 187, 66-73.	9.9	63

#	Article	IF	CITATIONS
325	Photo-Cross-Linked Laminarin-Based Hydrogels for Biomedical Applications. Biomacromolecules, 2016, 17, 1602-1609.	5.4	63
326	Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e136-e143.	2.7	62
327	Hydrogels in acellular and cellular strategies for intervertebral disc regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 85-98.	2.7	62
328	Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Scientific Reports, 2016, 6, 21883.	3.3	62
329	Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33464-33474.	8.0	62
330	Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific Reports, 2016, 6, 31037.	3.3	62
331	Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate. Acta Biomaterialia, 2017, 51, 279-293.	8.3	62
332	Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Materials Science and Engineering C, 2019, 99, 1502-1508.	7.3	62
333	Engineering Hydrogelâ€Based Biomedical Photonics: Design, Fabrication, and Applications. Advanced Materials, 2021, 33, e2006582.	21.0	62
334	The morphology, mechanical properties and ageing behavior of porous injection molded starch-based blends for tissue engineering scaffolding. Materials Science and Engineering C, 2005, 25, 195-200.	7.3	61
335	Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Acta Biomaterialia, 2012, 8, 3765-3776.	8.3	61
336	Selfâ€Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Microâ€Nanoscale Hierarchy of Collagen. Advanced Functional Materials, 2017, 27, 1606273.	14.9	61
337	Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams. Journal of Materials Science: Materials in Medicine, 1997, 8, 897-905.	3.6	60
338	Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polymer Engineering and Science, 2007, 47, 1141-1147.	3.1	60
339	Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: Effect of porosity and pore size. Acta Biomaterialia, 2008, 4, 950-959.	8.3	60
340	Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 493-500.	2.7	60
341	Evaluation of Extracellular Matrix Formation in Polycaprolactone and Starch-Compounded Polycaprolactone Nanofiber Meshes When Seeded with Bovine Articular Chondrocytes. Tissue Engineering - Part A, 2009, 15, 377-385.	3.1	60
342	Migration of "bioabsorbable―screws in ACL repair. How much do we know? A systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 986-994.	4.2	60

#	Article	IF	CITATIONS
343	In Vitro and In Vivo Analysis of RTK Inhibitor Efficacy and Identification of Its Novel Targets in Glioblastomas. Translational Oncology, 2013, 6, 187-IN20.	3.7	60
344	Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.	3.3	60
345	Unveil the Anticancer Potential of Limomene Based Therapeutic Deep Eutectic Solvents. Scientific Reports, 2019, 9, 14926.	3.3	60
346	Minimalistic supramolecular proteoglycan mimics by co-assembly of aromatic peptide and carbohydrate amphiphiles. Chemical Science, 2019, 10, 2385-2390.	7.4	60
347	Processing and properties of bone-analogue biodegradable and bioinert polymeric composites. Composites Science and Technology, 2003, 63, 389-402.	7.8	59
348	Evaluation of Two Biodegradable Polymeric Systems as Substrates for Bone Tissue Engineering. Tissue Engineering, 2003, 9, 91-101.	4.6	59
349	Starch–chitosan hydrogels prepared by reductive alkylation cross-linking. Journal of Materials Science: Materials in Medicine, 2004, 15, 759-765.	3.6	59
350	Cork based composites using polyolefin's as matrix: Morphology and mechanical performance. Composites Science and Technology, 2010, 70, 2310-2318.	7.8	59
351	Surface phosphorylation of chitosan significantly improves osteoblastcell viability, attachment and proliferation. Journal of Materials Chemistry, 2010, 20, 483-491.	6.7	59
352	Development of Osteogenic Cell Sheets for Bone Tissue Engineering Applications. Tissue Engineering - Part A, 2011, 17, 1507-1515.	3.1	59
353	Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 671-678.	4.2	59
354	Extraction of Collagen/Gelatin from the Marine Demosponge <i>Chondrosia reniformis</i> (Nardo,) Tj ETQq0 0 CC Chemistry Research, 2016, 55, 6922-6930.	gBT /Ove 3.7	erlock 10 Tf 5 59
355	Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Advanced Drug Delivery Reviews, 2018, 129, 376-393.	13.7	59
356	Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 897-908.	3.3	59
357	Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Materials Science and Engineering C, 2005, 25, 215-229.	7.3	58
358	The Role of Lipase and α-Amylase in the Degradation of Starch/Poly(É)-Caprolactone) Fiber Meshes and the Osteogenic Differentiation of Cultured Marrow Stromal Cells. Tissue Engineering - Part A, 2009, 15, 295-305.	3.1	58
359	Silicon–hydroxyapatite bioactive coatings (Si–HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. Journal of Materials Science: Materials in Medicine, 2009, 20, 1131-1136.	3.6	58
360	A new route to produce starchâ€based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. Journal of Biomedical Materials Research - Part A, 2010, 92A, 369-377.	4.0	58

#	Article	IF	Citations
361	Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 1-11.	2.7	58
362	<i>In Vitro</i> Cytotoxicity Assessment of Ulvan, a Polysaccharide Extracted from Green Algae. Phytotherapy Research, 2013, 27, 1143-1148.	5.8	58
363	Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomaterials Science and Engineering, 2015, 1, 183-200.	5.2	58
364	pH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir, 2015, 31, 11318-11328.	3.5	58
365	Building the basis for patient-specific meniscal scaffolds: From human knee MRI to fabrication of 3D printed scaffolds. Bioprinting, 2016, 1-2, 1-10.	5.8	58
366	Drug-eluting biodegradable ureteral stent: New approach for urothelial tumors of upper urinary tract cancer. International Journal of Pharmaceutics, 2016, 513, 227-237.	5.2	58
367	Ion-doped Brushite Cements for Bone Regeneration. Acta Biomaterialia, 2021, 123, 51-71.	8.3	58
368	Processing and characterization of biodegradable soy plastics: Effects of crosslinking with glyoxal and thermal treatment. Journal of Applied Polymer Science, 2005, 97, 604-610.	2.6	57
369	AnIn Vivo Study of the Host Response to Starch-Based Polymers and Composites Subcutaneously Implanted in Rats. Macromolecular Bioscience, 2005, 5, 775-785.	4.1	57
370	From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine, 2012, 7, 1045-1066.	3.3	57
371	Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomaterialia, 2013, 9, 9086-9097.	8.3	57
372	Liquified chitosan–alginate multilayer capsules incorporating poly(<scp> </scp> -lactic acid) microparticles as cell carriers. Soft Matter, 2013, 9, 2125-2130.	2.7	57
373	Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Research, 2018, 11, 4489-4506.	10.4	57
374	Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. International Journal of Nanomedicine, 2018, Volume 13, 7019-7031.	6.7	57
375	Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions: structure and properties of the composites. Journal of Materials Science: Materials in Medicine, 1995, 6, 348-352.	3.6	56
376	Tissue Engineering: Key Elements and Some Trends. Macromolecular Bioscience, 2004, 4, 737-742.	4.1	56
377	Surface Engineered Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles for Intracellular Targeting. Advanced Functional Materials, 2008, 18, 1840-1853.	14.9	56
378	Fabrication of Endothelial Cell-Laden Carrageenan Microfibers for Microvascularized Bone Tissue Engineering Applications. Biomacromolecules, 2014, 15, 2849-2860.	5.4	56

#	Article	IF	CITATIONS
379	Evaluation of the in vitro in vitro in vivo in	4.0	56
380	Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015, 17, 1-15.	8.3	56
381	A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendonâ€toâ€Bone Interface Gradient Scaffolds. Advanced Healthcare Materials, 2019, 8, e1900200.	7.6	56
382	Recent advances on open fluidic systems for biomedical applications: A review. Materials Science and Engineering C, 2019, 97, 851-863.	7.3	56
383	Viscoelastic behaviour and time–temperature correspondence of HDPE with varying levels of process-induced orientation. Polymer, 2001, 42, 6187-6198.	3.8	55
384	Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2 Systems for temporary replacement and advanced tissue regeneration. International Materials Reviews, 2004, 49, 274-285.	19.3	55
385	Perspectives on: Supercritical Fluid Technology for 3D Tissue Engineering Scaffold Applications. Journal of Bioactive and Compatible Polymers, 2009, 24, 385-400.	2.1	55
386	Design of Nano- and Microfiber Combined Scaffolds by Electrospinning of Collagen onto Starch-Based Fiber Meshes: A Man-Made Equivalent of Natural Extracellular Matrix. Tissue Engineering - Part A, 2011, 17, 463-473.	3.1	55
387	The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 668-672.	2.7	55
388	Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. Journal of the Royal Society Interface, 2014, 11, 20130784.	3.4	55
389	Surface modification tailors the characteristics of biomimetic coatings nucleated on starch-based polymers. Journal of Materials Science: Materials in Medicine, 1999, 10, 827-835.	3.6	54
390	In vitro degradation behaviour of biodegradable soy plastics: effects of crosslinking with glyoxal and thermal treatment. Polymer Degradation and Stability, 2003, 81, 65-74.	5.8	54
391	The Effect of Chitosan on the In Vitro Biological Performance of Chitosanâ^Poly(butylene succinate) Blends. Biomacromolecules, 2008, 9, 1139-1145.	5.4	54
392	Properties of new cork–polymer composites: Advantages and drawbacks as compared with commercially available fibreboard materials. Composite Structures, 2011, 93, 3120-3120.	5.8	54
393	Thermoresponsive poly(<i>N</i> â€isopropylacrylamide)â€ <i>g</i> â€methylcellulose hydrogel as a threeâ€dimensional extracellular matrix for cartilageâ€engineered applications. Journal of Biomedical Materials Research - Part A, 2011, 98A, 596-603.	4.0	54
394	Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs. Tissue Engineering - Part C: Methods, 2012, 18, 852-858.	2.1	54
395	Modulation of bone marrow mesenchymal stem cell secretome byÂECM-like hydrogels. Biochimie, 2013, 95, 2314-2319.	2.6	54
396	Use of Perfusion Bioreactors and Large Animal Models for Long Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 126-146.	4.8	54

#	Article	IF	Citations
397	Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2014, 2, 1195-1209.	5.4	54
398	Optimization of nanocomposite Au/TiO 2 thin films towards LSPR optical-sensing. Applied Surface Science, 2018, 438, 74-83.	6.1	54
399	Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. ACS Biomaterials Science and Engineering, 2019, 5, 1392-1404.	5.2	54
400	Acid and enzymatic extraction of collagen from Atlantic cod (<i>Gadus Morhua</i>) swim bladders envisaging health-related applications. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 20-37.	3.5	54
401	The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic) Tj ETQq1 1 2007, 18, 185-193.	0.784314 3.6	rgBT Overlo
402	Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 277-286.	3.4	53
403	Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: Effect of static and dynamic coating conditions. Acta Biomaterialia, 2009, 5, 1626-1638.	8.3	53
404	Current strategies for osteochondral regeneration: from stem cells to pre-clinical approaches. Current Opinion in Biotechnology, 2011, 22, 726-733.	6.6	53
405	Bilayered constructs aimed at osteochondral strategies: The influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomaterialia, 2012, 8, 2795-2806.	8.3	53
406	The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine. Stem Cell Reviews and Reports, 2014, 10, 177-190.	5.6	53
407	Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites Part B: Engineering, 2014, 67, 371-380.	12.0	53
408	Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomaterialia, 2016, 44, 168-177.	8.3	53
409	Cork: Current Technological Developments and Future Perspectives for this Natural, Renewable, and Sustainable Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 11130-11146.	6.7	53
410	Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication, 2020, 12, 015012.	7.1	53
411	Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1049-1061.	0.8	52
412	Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Critical Reviews in Biotechnology, 2015, 35, 410-424.	9.0	52
413	Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomaterialia, 2016, 32, 178-189.	8.3	52
414	Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models. Stem Cell Reviews and Reports, 2017, 13, 347-363.	5.6	52

#	Article	IF	Citations
415	Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 78, 787-795.	7.3	52
416	Biological response to pre-mineralized starch based scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 267-275.	3.6	51
417	A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents. Journal of Materials Science: Materials in Medicine, 2008, 19, 1617-1623.	3.6	51
418	Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: An in vitro study. Acta Biomaterialia, 2010, 6, 3704-3712.	8.3	51
419	Hydrogels for nucleus replacement—Facing the biomechanical challenge. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14, 67-77.	3.1	51
420	Asymmetric PDLLA membranes containing Bioglass \hat{A}^{\otimes} for guided tissue regeneration: Characterization and in vitro biological behavior. Dental Materials, 2013, 29, 427-436.	3.5	51
421	Processing of degradable ulvan 3D porous structures for biomedical applications. Journal of Biomedical Materials Research - Part A, 2013, 101A, 998-1006.	4.0	51
422	A Tissue Engineering Approach for Periodontal Regeneration Based on a Biodegradable Double-Layer Scaffold and Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2014, 20, 2483-2492.	3.1	51
423	Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. Npj Regenerative Medicine, 2018, 3, 8.	5.2	51
424	Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Marine Drugs, 2018, 16, 269.	4.6	51
425	Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydrate Polymers, 2019, 223, 115034.	10.2	51
426	Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomaterialia, 2019, 93, 74-85.	8.3	51
427	Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14548-14559.	8.0	51
428	Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior. Advanced Functional Materials, 2020, 30, 1909011.	14.9	51
429	Mechanical performance of starch based bioactive composite biomaterials molded with preferred orientation. Polymer Engineering and Science, 2002, 42, 1032-1045.	3.1	50
430	Soy Matrix Drug Delivery Systems Obtained by Melt-Processing Techniques. Biomacromolecules, 2003, 4, 1520-1529.	5.4	50
431	Fibers and 3D Mesh Scaffolds from Biodegradable Starch-Based Blends: Production and Characterization. Macromolecular Bioscience, 2004, 4, 776-784.	4.1	50
432	Influence of porosity and fibre diameter on the degradation of chitosan fibre-mesh scaffolds and cell adhesion. Journal of Materials Science: Materials in Medicine, 2007, 18, 195-200.	3.6	50

#	Article	IF	CITATIONS
433	Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Materials Science and Engineering C, 2008, 28, 80-86.	7.3	50
434	Controlled Delivery Systems: From Pharmaceuticals to Cells and Genes. Pharmaceutical Research, 2011, 28, 1241-1258.	3.5	50
435	Cork–polymer biocomposites: Mechanical, structural and thermal properties. Materials and Design, 2015, 82, 282-289.	7.0	50
436	Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regenerative Therapy, $2015,\ 1,\ 109-118.$	3.0	50
437	Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustainable Chemistry and Engineering, 2015, 3, 254-260.	6.7	50
438	Development of barley and yeast \hat{l}^2 -glucan aerogels for drug delivery by supercritical fluids. Journal of CO2 Utilization, 2017, 22, 262-269.	6.8	50
439	Gellan gumâ€hydroxyapatite composite spongyâ€like hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 479-490.	4.0	50
440	Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. Journal of Materials Science: Materials in Medicine, 1999, 10, 857-862.	3.6	49
441	Molecular Motions in Chitosan Studied by Dielectric Relaxation Spectroscopy. Biomacromolecules, 2004, 5, 2073-2078.	5.4	49
442	Poly(<i>N</i> â€isopropylacrylamide) surfaceâ€grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnology and Bioengineering, 2008, 101, 1321-1331.	3.3	49
443	Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnology Advances, 2015, 33, 842-855.	11.7	49
444	Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices. Chemistry of Materials, 2016, 28, 3641-3648.	6.7	49
445	Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication, 2021, 13, 015005.	7.1	49
446	Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. International Journal of Nanomedicine, 2007, 2, 433-48.	6.7	49
447	Injection molding of a starch/EVOH blend aimed as an alternative biomaterial for temporary applications. Journal of Applied Polymer Science, 2000, 77, 1303-1315.	2.6	48
448	Drug delivery therapies I. Current Opinion in Solid State and Materials Science, 2002, 6, 283-295.	11.5	48
449	Development of porous lamellar poly(l-lactic acid) scaffolds by conventional injection molding process. Acta Biomaterialia, 2008, 4, 887-896.	8.3	48
450	Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with Mouse Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach. Tissue Engineering - Part A, 2008, 14, 1651-1661.	3.1	48

#	Article	IF	Citations
451	Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation. Journal of Materials Science: Materials in Medicine, 2010, 21, 21-32.	3.6	48
452	The Effect of Storage Time on Adipose-Derived Stem Cell Recovery from Human Lipoaspirates. Cells Tissues Organs, 2011, 194, 494-500.	2.3	48
453	Perivascular-Like Cells Contribute to the Stability of the Vascular Network of Osteogenic Tissue Formed from Cell Sheet-Based Constructs. PLoS ONE, 2012, 7, e41051.	2.5	48
454	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	3.2	48
455	Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Advanced Healthcare Materials, 2014, 3, 433-440.	7.6	48
456	Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials, 2015, 48, 56-65.	11.4	48
457	Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials, 2017, 123, 92-106.	11.4	48
458	Development and Characterization of a <scp>PHB</scp> â€ <scp>HV</scp> â€based 3 <scp>D</scp> Scaffold for a Tissue Engineering and Cellâ€therapy Combinatorial Approach for Spinal Cord Injury Regeneration. Macromolecular Bioscience, 2013, 13, 1576-1592.	4.1	47
459	Xenofree Enzymatic Products for the Isolation of Human Adipose-Derived Stromal/Stem Cells. Tissue Engineering - Part C: Methods, 2013, 19, 473-478.	2.1	47
460	Coâ€Assembled and Microfabricated Bioactive Membranes. Advanced Functional Materials, 2013, 23, 430-438.	14.9	47
461	Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication, 2014, 6, 035006.	7.1	47
462	Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer, 2016, 16, 535.	2.6	47
463	Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomaterialia, 2016, 41, 119-132.	8.3	47
464	In vivo assessment of a novel biodegradable ureteral stent. World Journal of Urology, 2018, 36, 277-283.	2.2	47
465	Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. Scientific Reports, 2018, 8, 16058.	3.3	47
466	Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine, 2018, 13, 2037-2050.	3.3	47
467	Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. Tissue Engineering - Part B: Reviews, 2019, 25, 330-356.	4.8	47
468	Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomaterialia, 2021, 119, 101-113.	8.3	47

#	Article	IF	Citations
469	METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cellular and Molecular Life Sciences, 2022, 79, 135.	5.4	47
470	Novel starch thermoplastic/Bioglass composites: mechanical properties, degradation behavior and in-vitro bioactivity. Journal of Materials Science: Materials in Medicine, 2002, 13, 939-945.	3.6	46
471	Effect of crosslinking, thermal treatment and UV irradiation on the mechanical properties and in vitro degradation behavior of several natural proteins aimed to be used in the biomedical field. Journal of Materials Science: Materials in Medicine, 2003, 14, 789-796.	3.6	46
472	A review on the polymer properties of Hydrophilic, partially Degradable and Bioactive acrylic Cements (HDBC). Progress in Polymer Science, 2008, 33, 180-190.	24.7	46
473	Proteins and Their Peptide Motifs in Acellular Apatite Mineralization of Scaffolds for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2008, 14, 433-445.	4.8	46
474	The Influence of Patterned Nanofiber Meshes on Human Mesenchymal Stem Cell Osteogenesis. Macromolecular Bioscience, 2011, 11, 978-987.	4.1	46
475	Gellan Gum-Based Hydrogel Bilayered Scaffolds for Osteochondral Tissue Engineering. Key Engineering Materials, 2013, 587, 255-260.	0.4	46
476	Undifferentiated human adiposeâ€derived stromal/stem cells loaded onto wetâ€spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect <i>in vivo</i> study. Journal of Biomedical Materials Research - Part A, 2014, 102, 3102-3111.	4.0	46
477	Human Skin Cell Fractions Fail to Self-Organize Within a Gellan Gum/Hyaluronic Acid Matrix but Positively Influence Early Wound Healing. Tissue Engineering - Part A, 2014, 20, 1369-1378.	3.1	46
478	Polypropylene-based cork–polymer composites: Processing parameters and properties. Composites Part B: Engineering, 2014, 66, 210-223.	12.0	46
479	Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement. Biofabrication, 2015, 7, 015008.	7.1	46
480	Bioresorbable ureteral stents from natural origin polymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 608-617.	3.4	46
481	Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. European Polymer Journal, 2017, 95, 232-240.	5.4	46
482	In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. Journal of Biotechnology, 2007, 132, 218-226.	3.8	45
483	The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line. Biomaterials, 2007, 28, 326-334.	11.4	45
484	Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic―electroless coprecipitation route. Journal of Biomedical Materials Research - Part A, 2009, 88A, 470-480.	4.0	45
485	Design and functionalization of chitin-based microsphere scaffolds. Green Chemistry, 2013, 15, 3252.	9.0	45
486	Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function. Journal of Controlled Release, 2017, 254, 107-118.	9.9	45

#	Article	IF	CITATIONS
487	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	5.2	45
488	Bioceramics for Osteochondral Tissue Engineering and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 53-75.	1.6	45
489	Biochemical Gradients to Generate 3D Heterotypic‣ike Tissues with Isotropic and Anisotropic Architectures. Advanced Functional Materials, 2018, 28, 1804148.	14.9	45
490	Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells. Journal of Materials Science: Materials in Medicine, 2005, 16, 81-92.	3.6	44
491	Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. Journal of Materials Chemistry, 2012, 22, 17262.	6.7	44
492	Loss of WNK2 expression by promoter gene methylation occurs in adult gliomas and triggers Rac1-mediated tumour cell invasiveness. Human Molecular Genetics, 2013, 22, 84-95.	2.9	44
493	Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Advances, 2015, 5, 77996-78005.	3.6	44
494	Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomaterials Science and Engineering, 2020, 6, 2175-2185.	5.2	44
495	Collagen from Atlantic cod (Gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. Journal of Polymer Research, 2020, 27, 1.	2.4	44
496	Micro-computed tomography ($\hat{l}\frac{1}{4}$ -CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds. Journal of Materials Science: Materials in Medicine, 2007, 18, 211-223.	3.6	43
497	Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomaterialia, 2009, 5, 1104-1114.	8.3	43
498	Cell interactions in bone tissue engineering. Journal of Cellular and Molecular Medicine, 2010, 14, 93-102.	3.6	43
499	Human Adipose Tissue-Derived SSEA-4 Subpopulation Multi-Differentiation Potential Towards the Endothelial and Osteogenic Lineages. Tissue Engineering - Part A, 2013, 19, 235-246.	3.1	43
500	Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. Expert Review of Precision Medicine and Drug Development, 2016, 1, 93-108.	0.7	43
501	Meniscal allograft transplants and new scaffolding techniques. EFORT Open Reviews, 2019, 4, 279-295.	4.1	43
502	Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers. Journal of Colloid and Interface Science, 2007, 312, 193-200.	9.4	42
503	Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. Journal of Materials Science: Materials in Medicine, 2007, 18, 1279-1286.	3.6	42
504	Biodegradable Nanofibers-Reinforced Microfibrous Composite Scaffolds for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 3599-3609.	3.1	42

#	Article	IF	CITATIONS
505	Effect of flow perfusion conditions in the chondrogenic differentiation of bone marrow stromal cells cultured onto starch based biodegradable scaffolds. Acta Biomaterialia, 2011, 7, 1644-1652.	8.3	42
506	The effect of differentiation stage of amniotic fluid stem cells on bone regeneration. Biomaterials, 2012, 33, 6069-6078.	11.4	42
507	<i>In Vivo</i> Performance of Chitosan/Soy-Based Membranes as Wound-Dressing Devices for Acute Skin Wounds. Tissue Engineering - Part A, 2013, 19, 860-869.	3.1	42
508	Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomaterialia, 2015, 19, 56-65.	8.3	42
509	Chitosan–alginate multilayered films with gradients of physicochemical cues. Journal of Materials Chemistry B, 2015, 3, 4555-4568.	5.8	42
510	Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine. ACS Chemical Biology, 2016, 11, 2962-2980.	3.4	42
511	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	3.3	42
512	Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Materials Science and Engineering C, 2017, 71, 1122-1134.	7.3	42
513	Hyaluronic Acid. Advances in Experimental Medicine and Biology, 2018, 1059, 137-153.	1.6	42
514	Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation. Journal of Materials Science: Materials in Medicine, 2018, 29, 88.	3.6	42
515	Tropoelastin-Coated Tendon Biomimetic Scaffolds Promote Stem Cell Tenogenic Commitment and Deposition of Elastin-Rich Matrix. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19830-19840.	8.0	42
516	Carbohydrate amphiphiles for supramolecular biomaterials: Design, self-assembly, and applications. CheM, 2021, 7, 2943-2964.	11.7	42
517	Recent approaches towards bone tissue engineering. Bone, 2022, 154, 116256.	2.9	42
518	Drug delivery therapies II Current Opinion in Solid State and Materials Science, 2002, 6, 297-312.	11.5	41
519	Novel method for the isolation of adipose stem cells (ASCs). Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 158-159.	2.7	41
520	Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.	4.0	41
521	Spider silk-bone sialoprotein fusion proteins for bone tissue engineering. Soft Matter, 2011, 7, 4964.	2.7	41
522	Hyaluronic acid/poly- <scp>l</scp> -lysine bilayered silica nanoparticles enhance the osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2014, 2, 6939-6946.	5.8	41

#	Article	IF	Citations
523	Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomaterials Science and Engineering, 2016, 2, 1151-1161.	5.2	41
524	Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 637-648.	2.7	41
525	Modulation of Hypertrophic Scar Formation Using Amniotic Membrane/Electrospun Silk Fibroin Bilayer Membrane in a Rabbit Ear Model. ACS Biomaterials Science and Engineering, 2019, 5, 1487-1496.	5.2	41
526	Exosome mediated transfer of miRNAâ€140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. Journal of Cellular Biochemistry, 2020, 121, 3642-3652.	2.6	41
527	Development and design of double-layer co-injection moulded soy protein based drug delivery devices. Polymer, 2003, 44, 5983-5992.	3.8	40
528	Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. Journal of Biomedical Materials Research Part B, 2004, 70A, 442-449.	3.1	40
529	Incorporation of proteins and enzymes at different stages of the preparation of calcium phosphate coatings on a degradable substrate by a biomimetic methodology. Materials Science and Engineering C, 2005, 25, 169-179.	7.3	40
530	In situ functionalization of wet-spun fibre meshes for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 104-111.	2.7	40
531	Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie, 2013, 95, 2297-2303.	2.6	40
532	Gelatin-based biodegradable ureteral stents with enhanced mechanical properties. Applied Materials Today, 2016, 5, 9-18.	4.3	40
533	Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives. International Journal of Biological Macromolecules, 2017, 98, 646-653.	7.5	40
534	By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulfated chondroitin sulfate. Carbohydrate Polymers, 2017, 157, 31-37.	10.2	40
535	A survey of the clinicopathological and molecular characteristics of patients with suspected Lynch syndrome in Latin America. BMC Cancer, 2017, 17, 623.	2.6	40
536	Isolation and Chemical Characterization of Chondroitin Sulfate from Cartilage By-Products of Blackmouth Catshark (Galeus melastomus). Marine Drugs, 2018, 16, 344.	4.6	40
537	Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47771-47784.	8.0	40
538	3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration. Chemistry of Materials, 2020, 32, 8733-8746.	6.7	40
539	Cytokine secretion from mononuclear cells culturedin vitro with starch-based polymers and poly-L-lactide. Journal of Biomedical Materials Research Part B, 2004, 71A, 419-429.	3.1	39
540	Role of Human Umbilical Cord Mesenchymal Progenitors Conditioned Media in Neuronal/Glial Cell Densities, Viability, and Proliferation. Stem Cells and Development, 2010, 19, 1067-1074.	2.1	39

#	Article	IF	Citations
541	Amniotic Fluid-Derived Stem Cells as a Cell Source for Bone Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 2518-2527.	3.1	39
542	Development of nanofiberâ€reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique. Journal of Applied Polymer Science, 2013, 128, 1158-1163.	2.6	39
543	In vivo biofunctional evaluation of hydrogels for disc regeneration. European Spine Journal, 2014, 23, 19-26.	2.2	39
544	Functionalized Microparticles Producing Scaffolds in Combination with Cells. Advanced Functional Materials, 2014, 24, 1391-1400.	14.9	39
545	Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches. Applied Surface Science, 2017, 403, 112-125.	6.1	39
546	Biomaterials and Bioactive Agents in Spinal Fusion. Tissue Engineering - Part B: Reviews, 2017, 23, 540-551.	4.8	39
547	Gellan Gum Hydrogels with Enzymeâ€6ensitive Biodegradation and Endothelial Cell Biorecognition Sites. Advanced Healthcare Materials, 2018, 7, 1700686.	7.6	39
548	Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Materials Science and Engineering C, 2019, 100, 949-958.	7. 3	39
549	Deep Eutectic Solvents for Enzymatic Esterification of Racemic Menthol. ACS Sustainable Chemistry and Engineering, 2019, 7, 19943-19950.	6.7	39
550	Electrochemical and optical detection and machine learning applied to images of genosensors for diagnosis of prostate cancer with the biomarker PCA3. Talanta, 2021, 222, 121444.	5. 5	39
551	Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer. Journal of Materials Science: Materials in Medicine, 2007, 18, 1923-1930.	3.6	38
552	The Effect of Insulin-Loaded Chitosan Particle–Aggregated Scaffolds in Chondrogenic Differentiation. Tissue Engineering - Part A, 2010, 16, 735-747.	3.1	38
553	Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 41-49.	2.7	38
554	Encapsulation and Survival of a Chondrocyte Cell Line within Xanthan Gum Derivative. Macromolecular Bioscience, 2012, 12, 350-359.	4.1	38
555	Revealing the potential of squid chitosan-based structures for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045002.	3.3	38
556	Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Applied Materials Today, 2018, 12, 309-321.	4.3	38
557	Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomaterials Science, 2020, 8, 2577-2589.	5.4	38
558	Stability of hydroxylapatite plasma-sprayed coated Ti?6Al?4V under cyclic bending in simulated physiological solutions. Journal of Materials Science: Materials in Medicine, 1994, 5, 457-462.	3.6	37

#	Article	IF	CITATIONS
559	Mechanical, dynamic-mechanical, and thermal properties of soy protein-based thermoplastics with potential biomedical applications. Journal of Macromolecular Science - Physics, 2002, 41, 33-46.	1.0	37
560	Starch-Based Microparticles as Vehicles for the Delivery of Active Platelet-Derived Growth Factor. Tissue Engineering, 2007, 13, 1259-1268.	4.6	37
561	Natural Stimulus Responsive Scaffolds/Cells for Bone Tissue Engineering: Influence of Lysozyme upon Scaffold Degradation and Osteogenic Differentiation of Cultured Marrow Stromal Cells Induced by CaP Coatings. Tissue Engineering - Part A, 2009, 15, 1953-1963.	3.1	37
562	Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Materials Science and Engineering C, 2009, 29, 2110-2115.	7.3	37
563	In vivo short-term and long-term host reaction to starch-based scaffolds. Acta Biomaterialia, 2010, 6, 4314-4326.	8.3	37
564	Using Stem Cells in Skin Regeneration: Possibilities and Reality. Stem Cells and Development, 2012, 21, 1201-1214.	2.1	37
565	Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1136-1142.	4.2	37
566	Porous Hydrogels From Shark Skin Collagen Crosslinked Under Dense Carbon Dioxide Atmosphere. Macromolecular Bioscience, 2013, 13, 1621-1631.	4.1	37
567	Microfluidic Production of Perfluorocarbon-Alginate Core–Shell Microparticles for Ultrasound Therapeutic Applications. Langmuir, 2014, 30, 12391-12399.	3.5	37
568	Regulation of Human Mesenchymal Stem Cell Osteogenesis by Specific Surface Density of Fibronectin: a Gradient Study. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2367-2375.	8.0	37
569	Liquid Marbles for Highâ€Throughput Biological Screening of Anchorageâ€Dependent Cells. Advanced Healthcare Materials, 2015, 4, 264-270.	7.6	37
570	Arthroscopic Repair of Ankle Instability With All-Soft Knotless Anchors. Arthroscopy Techniques, 2016, 5, e99-e107.	1.3	37
571	Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications. Tissue Engineering - Part B: Reviews, 2017, 23, 27-43.	4.8	37
572	<i>In vitro</i> and <i>in vivo</i> performance of methacrylated gellan gum hydrogel formulations for cartilage repair*. Journal of Biomedical Materials Research - Part A, 2018, 106, 1987-1996.	4.0	37
573	Synthesis and Physical and Thermodynamic Properties of Lactic Acid and Malic Acid-Based Natural Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2018, 63, 2548-2556.	1.9	37
574	Optimal isolation and characterisation of chondroitin sulfate from rabbit fish (Chimaera) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 59,142 Td (r
575	Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS Applied Bio Materials, 2021, 4, 2941-2956.	4.6	37
576	Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding. Cells Tissues Organs, 2017, 204, 150-163.	2.3	37

#	Article	IF	CITATIONS
577	An innovative auto-catalytic deposition route to produce calcium-phosphate coatings on polymeric biomaterials. Journal of Materials Science: Materials in Medicine, 2003, 14, 435-441.	3.6	36
578	Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene) Tj ETQq0 0 0 rgBT /Overl Colloids and Surfaces B: Biointerfaces, 2011, 84, 498-507.	ock 10 Tf 5.0	50 707 Td (36
579	Nanostructured Natural-Based Polyelectrolyte Multilayers to Agglomerate Chitosan Particles into Scaffolds for Tissue Engineering. Tissue Engineering - Part A, 2011, 17, 2663-2674.	3.1	36
580	Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction. Acta Biomaterialia, 2013, 9, 8158-8166.	8.3	36
581	Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. Laboratory Investigation, 2014, 94, 663-673.	3.7	36
582	Ketoprofen-eluting biodegradable ureteral stents by CO2 impregnation: In vitro study. International Journal of Pharmaceutics, 2015, 495, 651-659.	5.2	36
583	Micellization and gelatinization in aqueous media of pH- and thermo-responsive amphiphilic ABC (PMMA ₈₂ -b-PDMAEMA ₁₅₀ -b-PNIPAM ₆₅) triblock copolymer synthesized by consecutive RAFT polymerization. RSC Advances, 2017, 7, 28711-28722.	3.6	36
584	A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustainable Chemistry and Pharmacy, 2019, 14, 100192.	3.3	36
585	Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc. Materials Today Communications, 2019, 19, 506-512.	1.9	36
586	A Physiology-Inspired Multifactorial Toolbox in Soft-to-Hard Musculoskeletal Interface Tissue Engineering. Trends in Biotechnology, 2020, 38, 83-98.	9.3	36
587	Advanced Biomaterials and Processing Methods for Liver Regeneration: Stateâ€ofâ€theâ€Art and Future Trends. Advanced Healthcare Materials, 2020, 9, e1901435.	7.6	36
588	Breast tumor-on-chip models: From disease modeling to personalized drug screening. Journal of Controlled Release, 2021, 331, 103-120.	9.9	36
589	Coupling of HDPE/hydroxyapatite composites by silane-based methodologies. Journal of Materials Science: Materials in Medicine, 2003, 14, 475-487.	3.6	35
590	Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering. Journal of Materials Chemistry, 2009, 19, 4091.	6.7	35
591	Novel poly(<scp>L</scp> ″actic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	4.0	35
592	Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry and Engineering, 2015, 3, 2504-2509.	6.7	35
593	Prevalence of Articular Cartilage Lesions and Surgical Clinical Outcomes in Football (Soccer) Players' Knees: A Systematic Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2016, 32, 1466-1477.	2.7	35
594	Human adipose tissueâ€derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 762-774.	2.7	35

#	Article	IF	CITATIONS
595	Cell-Laden Biomimetically Mineralized Shark-Skin-Collagen-Based 3D Printed Hydrogels for the Engineering of Hard Tissues. ACS Biomaterials Science and Engineering, 2020, 6, 3664-3672.	5.2	35
596	3D-Printed Gelatin Methacrylate Scaffolds with Controlled Architecture and Stiffness Modulate the Fibroblast Phenotype towards Dermal Regeneration. Polymers, 2021, 13, 2510.	4.5	35
597	Starch-poly-Ñ"-caprolactone Microparticles Reduce the Needed Amount of BMP-2. Clinical Orthopaedics and Related Research, 2009, 467, 3138-3148.	1.5	34
598	Expression, purification and osteogenic bioactivity of recombinant human BMP-4, -9, -10, -11 and -14. Protein Expression and Purification, 2009, 63, 89-94.	1.3	34
599	The competitive adsorption of human proteins onto natural-based biomaterials. Journal of the Royal Society Interface, 2010, 7, 1367-1377.	3.4	34
600	In vivo study of dendronlike nanoparticles for stem cells "tune-up― from nano to tissues. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 914-924.	3.3	34
601	Boosting and Rescuing Epidermal Superior Population from Fresh Keratinocyte Cultures. Stem Cells and Development, 2014, 23, 34-43.	2.1	34
602	Conditioned medium as a strategy for human stem cells chondrogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 714-723.	2.7	34
603	Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Scientific Reports, 2016, 6, 39191.	3.3	34
604	Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomaterialia, 2017, 55, 131-143.	8.3	34
605	Platelet Lysate-Loaded Photocrosslinkable Hyaluronic Acid Hydrogels for Periodontal Endogenous Regenerative Technology. ACS Biomaterials Science and Engineering, 2017, 3, 1359-1369.	5.2	34
606	Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior. Advanced Biology, 2017, 1, e1700043.	3.0	34
607	Triggering the activation of Activin A type II receptor in human adipose stem cells towards tenogenic commitment using mechanomagnetic stimulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1149-1159.	3.3	34
608	Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon, 2018, 156, 13-22.	1.6	34
609	Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. Nanoscale, 2018, 10, 17388-17401.	5.6	34
610	Development of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1800124.	7.6	34
611	Degradation model of starch-EVOH+HA composites. Materials Research Innovations, 2001, 4, 375-380.	2.3	33
612	Entrapment ability and release profile of corticosteroids from starch-based microparticles. Journal of Biomedical Materials Research - Part A, 2005, 73A, 234-243.	4.0	33

#	Article	IF	Citations
613	Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells. Journal of Materials Science: Materials in Medicine, 2005, 16, 833-842.	3.6	33
614	AFM Study of Morphology and Mechanical Properties of a Chimeric Spider Silk and Bone Sialoprotein Protein for Bone Regeneration. Biomacromolecules, 2011, 12, 1675-1685.	5.4	33
615	Nanocoatings containing sulfated polysaccharides prepared by layer-by-layer assembly as models to study cellâ ϵ "material interactions. Journal of Materials Chemistry B, 2013, 1, 4406.	5.8	33
616	Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter, 2013, 9, 875-885.	2.7	33
617	Comparison of infrapatellar and subcutaneous adipose tissue stromal vascular fraction and stromal/stem cells in osteoarthritic subjects. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 757-762.	2.7	33
618	Biofunctional Nanofibrous Substrate Comprising Immobilized Antibodies and Selective Binding of Autologous Growth Factors. Biomacromolecules, 2014, 15, 2196-2205.	5.4	33
619	Bio-inspired Aloe vera sponges for biomedical applications. Carbohydrate Polymers, 2014, 112, 264-270.	10.2	33
620	On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1056-1066.	2.7	33
621	Green solvents for enhanced impregnation processes in biomedicine. Current Opinion in Green and Sustainable Chemistry, 2017, 5, 82-87.	5.9	33
622	Gellan Gum-based luminal fillers for peripheral nerve regeneration: an <i>in vivo</i> study in the rat sciatic nerve repair model. Biomaterials Science, 2018, 6, 1059-1075.	5.4	33
623	Tunable anisotropic networks for 3-D oriented neural tissue models. Biomaterials, 2018, 181, 402-414.	11.4	33
624	Tissue Engineering Strategies for Osteochondral Repair. Advances in Experimental Medicine and Biology, 2018, 1059, 353-371.	1.6	33
625	Peptideâ€Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics, 2019, 2, 1900132.	3.2	33
626	Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma. Leukemia, 2019, 33, 2324-2330.	7.2	33
627	Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomaterials Science, 2019, 7, 5451-5466.	5.4	33
628	Extraction and Characterization of Collagen from Elasmobranch Byproducts for Potential Biomaterial Use. Marine Drugs, 2020, 18, 617.	4.6	33
629	Oriented morphology and enhanced mechanical properties of poly(l-lactic acid) from shear controlled orientation in injection molding. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2008, 490, 81-89.	5.6	32
630	Encapsulation of \hat{l}_{\pm} -amylase into starch-based biomaterials: An enzymatic approach to tailor their degradation rate. Acta Biomaterialia, 2009, 5, 3021-3030.	8.3	32

#	Article	IF	Citations
631	Injectable biodegradable starch/chitosan delivery system for the sustained release of gentamicin to treat bone infections. Carbohydrate Polymers, 2012, 87, 32-39.	10.2	32
632	An <i>in vivo</i> study on the effect of scaffold geometry and growth factor release on the healing of bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 687-696.	2.7	32
633	Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomaterialia, 2013, 9, 5216-5225.	8.3	32
634	Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydrate Polymers, 2017, 174, 262-272.	10.2	32
635	Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Current Osteoporosis Reports, 2018, 16, 182-197.	3.6	32
636	Tunable Enzymatically Crossâ€Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration. Advanced Healthcare Materials, 2018, 7, e1800186.	7.6	32
637	A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomaterials Science, 2019, 7, 1161-1178.	5.4	32
638	Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opinion on Drug Delivery, 2019, 16, 795-813.	5.0	32
639	Engineering Silk Fibroinâ€Based Nerve Conduit with Neurotrophic Factors for Proximal Protection after Peripheral Nerve Injury. Advanced Healthcare Materials, 2021, 10, e2000753.	7.6	32
640	Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Materials Science and Engineering C, 2021, 122, 111928.	7.3	32
641	Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomedical Materials (Bristol), 2021, 16, 062002.	3.3	32
642	Chemistry and Applications of Phosphorylated Chitin and Chitosan. E-Polymers, 2006, 6, .	3.0	31
643	Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials Letters, 2007, 61, 3495-3499.	2.6	31
644	Novel Riceâ€shaped Bioactive Ceramic Nanoparticles. Advanced Engineering Materials, 2009, 11, B25.	3.5	31
645	Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy, 2011, 13, 594-597.	0.7	31
646	A novel bidirectional continuous perfusion bioreactor for the culture of largeâ€sized bone tissueâ€engineered constructs. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1377-1386.	3.4	31
647	Poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate) Bilayer Skin Tissue Engineering Constructs with Improved Epidermal Rearrangement. Macromolecular Bioscience, 2014, 14, 977-990.	4.1	31
648	Micro/nano replication and 3D assembling techniques for scaffold fabrication. Materials Science and Engineering C, 2014, 42, 615-621.	7.3	31

#	Article	IF	Citations
649	Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 265-275.	2.7	31
650	HER Family Receptors are Important Theranostic Biomarkers for Cervical Cancer: Blocking Glucose Metabolism Enhances the Therapeutic Effect of HER Inhibitors. Theranostics, 2017, 7, 717-732.	10.0	31
651	Chinese Oak Tasar Silkworm <i>Antheraea pernyi</i> Perspectives for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800252.	4.1	31
652	Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103516.	3.1	31
653	Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering. Biomedical Materials (Bristol), 2020, 15, 055030.	3.3	31
654	Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. Journal of Materials Chemistry B, 2020, 8, 3880-3885.	5.8	31
655	Influence of Â-radiation sterilisation in properties of new chitosan/soybean protein isolate membranes for guided bone regeneration. Journal of Materials Science: Materials in Medicine, 2004, 15, 523-528.	3.6	30
656	Surface potential change in bioactive polymer during the process of biomimetic apatite formation in a simulated body fluid. Journal of Materials Chemistry, 2007, 17, 4057.	6.7	30
657	Straightforward Determination of the Degree of <i>N</i> â€Acetylation of Chitosan by Means of Firstâ€Derivative UV Spectrophotometry. Macromolecular Chemistry and Physics, 2008, 209, 1463-1472.	2.2	30
658	Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: A novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation. Acta Biomaterialia, 2009, 5, 3328-3336.	8.3	30
659	Biomimetic Caâ€P coatings incorporating bisphosphonates produced on starchâ€based degradable biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 55-67.	3.4	30
660	Evaluation of a starchâ€based double layer scaffold for bone regeneration in a rat model. Journal of Orthopaedic Research, 2014, 32, 904-909.	2.3	30
661	Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 392-403.	2.7	30
662	Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly($<$ i> $>$ ε $>$ -caprolactone) scaffolds. Biofabrication, 2017, 9, 025015.	7.1	30
663	Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomaterialia, 2021, 119, 114-124.	8.3	30
664	Structural development of HDPE in injection molding. Journal of Applied Polymer Science, 2003, 89, 2079-2087.	2.6	29
665	The behavior of novel hydrophilic composite bone cements in simulated body fluids. Journal of Biomedical Materials Research Part B, 2004, 70B, 368-377.	3.1	29
666	Surface Structural Investigation of Starchâ∈Based Biomaterials. Macromolecular Bioscience, 2008, 8, 210-219.	4.1	29

#	Article	IF	Citations
667	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
668	Enzymatic degradation of 3D scaffolds of starch-poly-(É)-caprolactone) prepared by supercritical fluid technology. Polymer Degradation and Stability, 2010, 95, 2110-2117.	5.8	29
669	Novel Melt-Processable Chitosan–Polybutylene Succinate Fibre Scaffolds for Cartilage Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 773-788.	3.5	29
670	Multifunctionalized CMCht/PAMAM Dendrimer Nanoparticles Modulate the Cellular Uptake by Astrocytes and Oligodendrocytes in Primary Cultures of Glial Cells. Macromolecular Bioscience, 2012, 12, 591-597.	4.1	29
671	Development of micropatterned surfaces of poly(butylene succinate) by micromolding for guided tissue engineering. Acta Biomaterialia, 2012, 8, 1490-1497.	8.3	29
672	De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. Journal of Bioactive and Compatible Polymers, 2013, 28, 439-452.	2.1	29
673	Hyaluronan and self-assembling peptides as building blocks to reconstruct the extracellular environment in skin tissue. Biomaterials Science, 2013, 1, 952.	5.4	29
674	Human Serum is a Suitable Supplement for the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on Poly-3-Hydroxibutyrate-Co-3-Hydroxyvalerate Scaffolds. Tissue Engineering - Part A, 2013, 19, 277-289.	3.1	29
675	Optical projection tomography as a tool for 3D imaging of hydrogels. Biomedical Optics Express, 2014, 5, 3443.	2.9	29
676	Enhanced performance of supercritical fluid foaming of naturalâ€based polymers by deep eutectic solvents. AlCHE Journal, 2014, 60, 3701-3706.	3.6	29
677	Development of an injectable PHBV microparticles-GG hydrogel hybrid system for regenerative medicine. International Journal of Pharmaceutics, 2015, 478, 398-408.	5.2	29
678	Assembling Human Platelet Lysate into Multiscale 3D Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 2-6.	5.2	29
679	Isolation, characterization and screening of the inÂvitro cytotoxic activity of a novel L-amino acid oxidase (LAAOcdt) from Crotalus durissus terrificus venom on human cancer cell lines. Toxicon, 2016, 119, 203-217.	1.6	29
680	In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomaterialia, 2017, 53, 483-494.	8.3	29
681	Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica–Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer. Molecular Pharmaceutics, 2018, 15, 2698-2713.	4.6	29
682	Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. Journal of Materials Science: Materials in Medicine, 2019, 30, 63.	3.6	29
683	Comparison between calcium carbonate and βâ€tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 272-283.	2.7	29
684	Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Biomolecules, 2021, 11, 1184.	4.0	29

#	Article	IF	Citations
685	Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. Science Advances, 2021, 7, eabi9884.	10.3	29
686	Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. Lab on A Chip, 2022, 22, 1093-1125.	6.0	29
687	Cell adhesion and proliferation on biomimetic calcium-phosphate coatings produced by a sodium silicate gel methodology. Journal of Materials Science: Materials in Medicine, 2002, 13, 1181-1188.	3.6	28
688	Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based process. Journal of Materials Science: Materials in Medicine, 2004, 15, 533-540.	3.6	28
689	Effect of solvent-dependent viscoelastic properties of chitosan membranes on the permeation of 2-phenylethanol. Carbohydrate Polymers, 2009, 75, 651-659.	10.2	28
690	Sugars: burden or biomaterials of the future?. Journal of Materials Chemistry, 2010, 20, 8803.	6.7	28
691	The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion. Journal of Supercritical Fluids, 2012, 72, 326-332.	3.2	28
692	Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair. Journal of Biomedical Materials Research - Part A, 2012, 100A, 470-476.	4.0	28
693	Alternative methodology for chitin–hydroxyapatite composites using ionic liquids and supercritical fluid technology. Journal of Bioactive and Compatible Polymers, 2013, 28, 481-491.	2.1	28
694	Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 033-044.	3.7	28
695	A Closed Chondromimetic Environment within Magneticâ€Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGFâ€Î²3 Microparticles. Advanced Healthcare Materials, 2016, 5, 1346-1355.	7.6	28
696	Synthesis and Characterization of Electroactive Gellan Gum Spongy-Like Hydrogels for Skeletal Muscle Tissue Engineering Applications. Tissue Engineering - Part A, 2017, 23, 968-979.	3.1	28
697	Nanostructured interfacial self-assembled peptide–polymer membranes for enhanced mineralization and cell adhesion. Nanoscale, 2017, 9, 13670-13682.	5.6	28
698	A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9. Analyst, The, 2018, 143, 3302-3308.	3.5	28
699	Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. Journal of Experimental Orthopaedics, 2018, 5, 14.	1.8	28
700	Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier. Colloids and Surfaces B: Biointerfaces, 2019, 181, 879-889.	5.0	28
701	Marine invertebrates are a source of bioadhesives with biomimetic interest. Materials Science and Engineering C, 2020, 108, 110467.	7.3	28
702	Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. Applied Surface Science, 2011, 257, 4091-4095.	6.1	27

#	Article	IF	CITATION
703	Microfluidic Fabrication of Self-Assembled Peptide-Polysaccharide Microcapsules as 3D Environments for Cell Culture. Biomacromolecules, 2012, 13, 4039-4048.	5.4	27
704	GAGs-thiolated chitosan assemblies for chronic wounds treatment: control of enzyme activity and cell attachment. Journal of Materials Chemistry, 2012, 22, 19438.	6.7	27
705	Hierarchical Fibrillar Scaffolds Obtained by Nonâ€conventional Layerâ€Byâ€Layer Electrostatic Selfâ€Assembly. Advanced Healthcare Materials, 2013, 2, 422-427.	7.6	27
706	Photopatterned Antibodies for Selective Cell Attachment. Langmuir, 2014, 30, 10066-10071.	3.5	27
707	Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomaterialia, 2016, 32, 129-137.	8.3	27
708	Effect of sintering pressure on microstructure and mechanical properties of hot-pressed Ti6Al4V-ZrO2 materials. Materials and Design, 2017, 120, 394-403.	7.0	27
709	Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. Acta Biomaterialia, 2017, 47, 50-59.	8.3	27
710	Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 305-325.	1.6	27
711	Biological performance of a promising Kefiran-biopolymer with potential in regenerative medicine applications: a comparative study with hyaluronic acid. Journal of Materials Science: Materials in Medicine, 2018, 29, 124.	3.6	27
712	Kefiran cryogels as potential scaffolds for drug delivery and tissue engineering applications. Materials Today Communications, 2019, 20, 100554.	1.9	27
713	Development of label-free plasmonic Au-TiO2 thin film immunosensor devices. Materials Science and Engineering C, 2019, 100, 424-432.	7.3	27
714	An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules, 2021, 26, 1749.	3.8	27
715	Corrosion behavior of Mg wires for ureteral stent in artificial urine solution. Corrosion Science, 2021, 189, 109567.	6.6	27
716	Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomaterialia, 2022, 141, 123-131.	8.3	27
717	Structure development and interfacial interactions in high-density polyethylene/hydroxyapatite (HDPE/HA) composites molded with preferred orientation. Journal of Applied Polymer Science, 2002, 86, 2873-2886.	2.6	26
718	The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements. Acta Biomaterialia, 2007, 3, 175-182.	8.3	26
719	Palmitoylation of xanthan polysaccharide for self-assembly microcapsule formation and encapsulation of cells in physiological conditions. Soft Matter, 2011, 7, 9647.	2.7	26
720	In Vivo Biological Responses to Silk Proteins Functionalized with Bone Sialoprotein. Macromolecular Bioscience, 2013, 13, 444-454.	4.1	26

#	Article	IF	Citations
721	Interactions between Exogenous FGF-2 and Sulfonic Groups: in Situ Characterization and Impact on the Morphology of Human Adipose-Derived Stem Cells. Langmuir, 2013, 29, 7983-7992.	3.5	26
722	Molecular Profiling of a Rare Rosette-Forming Glioneuronal Tumor Arising in the Spinal Cord. PLoS ONE, 2015, 10, e0137690.	2.5	26
723	AXL as a modulator of sunitinib response in glioblastoma cell lines. Experimental Cell Research, 2015, 332, 1-10.	2.6	26
724	Intrinsic Antibacterial Borosilicate Glasses for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1143-1150.	5.2	26
725	Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step. Journal of Materials Science: Materials in Medicine, 2017, 28, 129.	3.6	26
726	Redox-Responsive Micellar Nanoparticles from Glycosaminoglycans for CD44 Targeted Drug Delivery. Biomacromolecules, 2018, 19, 2991-2999.	5.4	26
727	Kefiran biopolymer: Evaluation of its physicochemical and biological properties. Journal of Bioactive and Compatible Polymers, 2018, 33, 461-478.	2.1	26
728	Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomaterialia, 2019, 95, 60-72.	8.3	26
729	Curcumin ameliorates the targeted delivery of methotrexate intercalated montmorillonite clay to cancer cells. European Journal of Pharmaceutical Sciences, 2019, 135, 91-102.	4.0	26
730	Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment. Drug Delivery and Translational Research, 2021, 11, 1288-1300.	5.8	26
731	Precision biomaterials in cancer theranostics and modelling. Biomaterials, 2022, 280, 121299.	11.4	26
732	Relationship between processing and mechanical properties of injection molded high molecular mass polyethylene + hydroxyapatite composites. Materials Research Innovations, 2001, 4, 263-272.	2.3	25
733	Synthesis and Characterization ofNâ€methylenephenyl Phosphonic Chitosan. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 271-275.	2.2	25
734	Osteoinduction in human fat-derived stem cells by recombinant human bone morphogenetic protein-2 produced in Escherichia coli. Biotechnology Letters, 2008, 30, 15-21.	2.2	25
735	Chitosan Beads as Templates for Layer-by-Layer Assembly and their Application in the Sustained Release of Bioactive Agents. Journal of Bioactive and Compatible Polymers, 2008, 23, 367-380.	2.1	25
736	Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles in Central Nervous Systemsâ€Regenerative Medicine: Effects on Neuron/Glial Cell Viability and Internalization Efficiency. Macromolecular Bioscience, 2010, 10, 1130-1140.	4.1	25
737	Highly porous and interconnected starch-based scaffolds: Production, characterization and surface modification. Materials Science and Engineering C, 2010, 30, 981-989.	7.3	25
738	Hydrophobicâ^'Electrostatic Balance Driving the LCST Offset Aggregationâ^'Redissolution Behavior of <i>N</i> -Alkylacrylamide-Based Ionic Terpolymers. Langmuir, 2010, 26, 5934-5941.	3.5	25

#	Article	IF	CITATIONS
739	Sulfonic groups induce formation of filopodia in mesenchymal stem cells. Journal of Materials Chemistry, 2012, 22, 7172.	6.7	25
740	In vitroevaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds. , 2015, 103, 888-898.		25
741	Hydroalcoholic extracts from the bark of Quercus suber L. (Cork): optimization of extraction conditions, chemical composition and antioxidant potential. Wood Science and Technology, 2017, 51, 855-872.	3.2	25
742	Gellan Gum-Based Hydrogels for Osteochondral Repair. Advances in Experimental Medicine and Biology, 2018, 1058, 281-304.	1.6	25
743	Cellâ€laden composite suture threads for repairing damaged tendons. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1039-1048.	2.7	25
744	Intrinsically Bioactive Cryogels Based on Platelet Lysate Nanocomposites for Hemostasis Applications. Biomacromolecules, 2020, 21, 3678-3692.	5 . 4	25
745	Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Advances in Experimental Medicine and Biology, 2020, 1249, 173-201.	1.6	25
746	Bioactive and adhesive properties of multilayered coatings based on catechol-functionalized chitosan/hyaluronic acid and bioactive glass nanoparticles. International Journal of Biological Macromolecules, 2020, 157, 119-134.	7. 5	25
747	Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. Journal of Materials Chemistry B, 2021, 9, 5025-5038.	5. 8	25
748	Soluble starch and composite starch Bioactive Glass 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells. Materials Science and Engineering C, 2005, 25, 237-246.	7.3	24
749	Physicochemical Characterization of Novel Chitosan-Soy Protein/ TEOS Porous Hybrids for Tissue Engineering Applications. Materials Science Forum, 2006, 514-516, 1000-1004.	0.3	24
750	Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. Journal of Materials Science: Materials in Medicine, 2012, 23, 2821-2830.	3.6	24
751	Combining Adult Stem Cells and Olfactory Ensheathing Cells: The Secretome Effect. Stem Cells and Development, 2013, 22, 1232-1240.	2.1	24
752	Optical Projection Tomography Technique for Image Texture and Mass Transport Studies in Hydrogels Based on Gellan Gum. Langmuir, 2016, 32, 5173-5182.	3.5	24
753	Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration. Macromolecular Bioscience, 2016, 16, 1662-1677.	4.1	24
754	Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3168-3177.	2.7	24
755	Expression of tyrosine kinase receptor AXL is associated with worse outcome of metastatic renal cell carcinomas treated with sunitinib. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 11.e13-11.e21.	1.6	24
756	Silkâ€Based Antimicrobial Polymers as a New Platform to Design Drugâ€Free Materials to Impede Microbial Infections. Macromolecular Bioscience, 2018, 18, e1800262.	4.1	24

#	Article	IF	Citations
757	Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomedical Materials (Bristol), 2018, 13, 054001.	3.3	24
758	Tuning Enzymatically Crosslinked Silk Fibroin Hydrogel Properties for the Development of a Colorectal Cancer Extravasation 3D Model on a Chip. Global Challenges, 2018, 2, 1700100.	3.6	24
759	Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration. Nanomaterials, 2018, 8, 290.	4.1	24
760	Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering. Materials, 2019, 12, 2074.	2.9	24
761	Silk fibroin promotes mineralization of gellan gum hydrogels. International Journal of Biological Macromolecules, 2020, 153, 1328-1334.	7.5	24
762	Magnetic responsive materials modulate the inflammatory profile of IL- $1\hat{l}^2$ conditioned tendon cells. Acta Biomaterialia, 2020, 117, 235-245.	8.3	24
763	Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication, 2021, 13, 045006.	7.1	24
764	Wearable Collector for Noninvasive Sampling of SARS-CoV-2 from Exhaled Breath for Rapid Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41445-41453.	8.0	24
765	Preliminary study on human protein adsorption and leukocyte adhesion to starch-based biomaterials. Journal of Materials Science: Materials in Medicine, 2003, 14, 157-165.	3. 6	23
766	Viscoelastic monitoring of starch-based biomaterials in simulated physiological conditions. Materials Science & Science & Properties, Microstructure and Processing, 2004, 370, 321-325.	5.6	23
767	Development of a bioactive glass fiber reinforced starch–polycaprolactone composite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 197-203.	3.4	23
768	î ² -PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions. Materials Science Forum, 0, 587-588, 72-76.	0.3	23
769	Dynamic Culture of Osteogenic Cells in Biomimetically Coated Poly(Caprolactone) Nanofibre Mesh Constructs. Tissue Engineering - Part A, 2010, 16, 557-563.	3.1	23
770	A novel method for the isolation of subpopulations of rat adipose stem cells with different proliferation and osteogenic differentiation potentials. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 655-664.	2.7	23
771	Fabrication of phospholipid–xanthan microcapsules by combining microfluidics with self-assembly. Acta Biomaterialia, 2013, 9, 6675-6685.	8.3	23
772	Human adipose-derived cells can serve as a single-cell source for the <i>in vitro </i> cultivation of vascularized bone grafts. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 629-639.	2.7	23
773	Tunable nano-carriers from clicked glycosaminoglycan block copolymers. Journal of Materials Chemistry B, 2014, 2, 4177-4184.	5.8	23
774	The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs). Journal of Magnetism and Magnetic Materials, 2015, 393, 526-536.	2.3	23

#	Article	IF	Citations
775	Mimicking the 3D biology of osteochondral tissue with microfluidic-based solutions: breakthroughs towards boosting drug testing and discovery. Drug Discovery Today, 2018, 23, 711-718.	6.4	23
776	Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Materials Science and Engineering C, 2018, 93, 1090-1103.	7.3	23
777	A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Acta Biomaterialia, 2019, 90, 146-156.	8.3	23
778	Phospholipidâ€induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 160-172.	2.7	23
779	Prionace glauca skin collagen bioengineered constructs as a promising approach to trigger cartilage regeneration. Materials Science and Engineering C, 2021, 120, 111587.	7.3	23
780	Dynamic Mechanical Analysis in Polymers for Medical Applications. , 2002, , 139-164.		22
781	In situstudy of partially crystallized Bioglass® and hydroxylapatitein vitrobioactivity using atomic force microscopy. Journal of Biomedical Materials Research Part B, 2002, 62, 82-88.	3.1	22
782	Multichannel mould processing of 3D structures from microporous coralline hydroxyapatite granules and chitosan support materials for guided tissue regeneration/engineering. Journal of Materials Science: Materials in Medicine, 2004, 15, 161-165.	3.6	22
783	Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics. Journal of Materials Science: Materials in Medicine, 2004, 15, 335-342.	3.6	22
784	The effect of water uptake on the behaviour of hydrophilic cements in confined environments. Biomaterials, 2006, 27, 5627-5633.	11.4	22
785	Synthesis and functionalization of superparamagnetic poly- $\acute{\rm E}_{\rm 2}$ -caprolactone microparticles for the selective isolation of subpopulations of human adipose-derived stem cells. Journal of the Royal Society Interface, 2011, 8, 896-908.	3.4	22
786	Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes. Materials Science and Engineering C, 2012, 32, 1314-1322.	7.3	22
787	Influence of the sulfation degree of glycosaminoglycans on their multilayer assembly with poly-l-lysine. Colloids and Surfaces B: Biointerfaces, 2016, 145, 567-575.	5.0	22
788	Bioinspiring Chondrosia reniformis (Nardo, 1847) Collagen-Based Hydrogel: A New Extraction Method to Obtain a Sticky and Self-Healing Collagenous Material. Marine Drugs, 2017, 15, 380.	4.6	22
789	The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018, 68, 29-40.	8.3	22
790	Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Bio-Design and Manufacturing, 2018, 1, 69-75.	7.7	22
791	Control of osmotic pressure to improve cell viability in cellâ€laden tissue engineering constructs. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1063-e1067.	2.7	22
792	An integral and sustainable valorisation strategy of squid pen by-products. Journal of Cleaner Production, 2018, 201, 207-218.	9.3	22

#	Article	IF	Citations
793	Development of innovative medical devices by dispersing fatty acid eutectic blend on gauzes using supercritical particle generation processes. Materials Science and Engineering C, 2019, 99, 599-610.	7.3	22
794	Effect of bio-functional MAO layers on the electrochemical behaviour of highly porous Ti. Surface and Coatings Technology, 2020, 386, 125487.	4.8	22
7 95	Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules, 2021, 22, 1815-1834.	5.4	22
796	Effects of moisture and degradation time over the mechanical dynamical performance of starch-based biomaterials. Journal of Applied Polymer Science, 2000, 78, 2345-2357.	2.6	21
797	Electrospun Starch-Polycaprolactone Nanofiber-Based Constructs for Tissue Engineering. AIP Conference Proceedings, 2008, , .	0.4	21
798	lonic liquids as foaming agents of semi-crystalline natural-based polymers. Green Chemistry, 2012, 14, 1949.	9.0	21
799	Silk Fibroin/Nano-CaP Bilayered Scaffolds for Osteochondral Tissue Engineering. Key Engineering Materials, 0, 587, 245-248.	0.4	21
800	Design of protein delivery systems by mimicking extracellular mechanisms for protection of growth factors. Acta Biomaterialia, 2017, 63, 283-293.	8.3	21
801	Electroactive Gellan Gum/Polyaniline Spongy-Like Hydrogels. ACS Biomaterials Science and Engineering, 2018, 4, 1779-1787.	5. 2	21
802	Tendon explant cultures to study the communication between adipose stem cells and native tendon niche. Journal of Cellular Biochemistry, 2018, 119, 3653-3662.	2.6	21
803	Crosstalk between adipose stem cells and tendon cells reveals a temporal regulation of tenogenesis by matrix deposition and remodeling. Journal of Cellular Physiology, 2018, 233, 5383-5395.	4.1	21
804	Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions. Journal of Materials Chemistry B, 2020, 8, 5928-5937.	5.8	21
805	Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chemical Science, 2020, 11, 3737-3744.	7.4	21
806	Epitopeâ€Imprinted Nanoparticles as Transforming Growth Factorâ€Î²3 Sequestering Ligands to Modulate Stem Cell Fate. Advanced Functional Materials, 2021, 31, 2003934.	14.9	21
807	Rescuing key native traits in cultured dermal papilla cells for human hair regeneration. Journal of Advanced Research, 2021, 30, 103-112.	9.5	21
808	Biofunctionalized Liposomes to Monitor Rheumatoid Arthritis Regression Stimulated by Interleukinâ€23 Neutralization. Advanced Healthcare Materials, 2021, 10, e2001570.	7.6	21
809	PAMAM dendrimers functionalised with an anti-TNF \hat{l}_{\pm} antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Materials Science and Engineering C, 2021, 121, 111845.	7.3	21
810	3D Bioprinting of Miniaturized Tissues Embedded in Selfâ€Assembled Nanoparticleâ€Based Fibrillar Platforms. Advanced Functional Materials, 2021, 31, .	14.9	21

#	Article	IF	Citations
811	Influence of the Molecular Orientation and Ionization of Self-Assembled Monolayers in Biosensors: Application to Genosensors of Prostate Cancer Antigen 3. Journal of Physical Chemistry C, 2021, 125, 498-506.	3.1	21
812	Silencing of WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget, 2015, 6, 1422-1434.	1.8	21
813	Engineering Polysaccharideâ€Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers. Advanced Materials, 2021, 33, e2105361.	21.0	21
814	Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. Advanced Materials, 2022, 34, e2105645.	21.0	21
815	Evaluation of the potential of starch-based biodegradable polymers in the activation of human inflammatory cells. Journal of Materials Science: Materials in Medicine, 2003, 14, 167-173.	3.6	20
816	Effects of protein incorporation on calcium phosphate coating. Materials Science and Engineering C, 2009, 29, 913-918.	7.3	20
817	Benefits of Spine Stabilization with Biodegradable Scaffolds in Spinal Cord Injured Rats. Tissue Engineering - Part C: Methods, 2013, 19, 101-108.	2.1	20
818	Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability. Materials Science and Engineering C, 2013, 33, 1361-1370.	7.3	20
819	Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs. Advanced Healthcare Materials, 2015, 4, 864-873.	7.6	20
820	Molecularly Engineered Selfâ€Assembling Membranes for Cellâ€Mediated Degradation. Advanced Healthcare Materials, 2015, 4, 602-612.	7.6	20
821	Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1844-1852.	2.7	20
822	Periodontal tissue engineering: current strategies and the role of platelet rich hemoderivatives. Journal of Materials Chemistry B, 2017, 5, 3617-3628.	5.8	20
823	Subcritical carbon dioxide foaming of polycaprolactone for bone tissue regeneration. Journal of Supercritical Fluids, 2018, 140, 1-10.	3.2	20
824	Structure, rheology, and copper-complexation of a hyaluronan-like exopolysaccharide from Vibrio. Carbohydrate Polymers, 2019, 222, 114999.	10.2	20
825	Cartilage Restoration of Patellofemoral Lesions: A Systematic Review. Cartilage, 2021, 13, 57S-73S.	2.7	20
826	Toward Spinning Greener Advanced Silk Fibers by Feeding Silkworms with Nanomaterials. ACS Sustainable Chemistry and Engineering, 2020, 8, 11872-11887.	6.7	20
827	High-throughput fabrication of cell-laden 3D biomaterial gradients. Materials Horizons, 2020, 7, 2414-2421.	12.2	20
828	Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Marine Drugs, 2020, 18, 346.	4.6	20

#	Article	IF	CITATIONS
829	<scp>3D</scp> â€printed cryomilled poly(εâ€caprolactone)/graphene composite scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 961-972.	3.4	20
830	Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112409.	5.0	20
831	Green Extraction of Cork Bioactive Compounds Using Natural Deep Eutectic Mixtures. ACS Sustainable Chemistry and Engineering, 2022, 10, 7974-7989.	6.7	20
832	Cork: properties, capabilities and applications. International Materials Reviews, 2008, 53, 256-256.	19.3	19
833	In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. Journal of Bioactive and Compatible Polymers, 2011, 26, 619-627.	2.1	19
834	Biological responses to spider silk-antibiotic fusion protein. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 356-368.	2.7	19
835	Vascular Endothelial Growth Factor and Fibroblast Growth Factor-2 Incorporation in Starch-Based Bone Tissue-Engineered Constructs Promote the <i>In Vivo </i> Expression of Neovascularization Mediators. Tissue Engineering - Part A, 2013, 19, 834-848.	3.1	19
836	Peptide-based microcapsules obtained by self-assembly and microfluidics as controlled environments for cell culture. Soft Matter, 2013, 9, 9237.	2.7	19
837	Natural Polymers in Tissue Engineering Applications. , 2013, , 385-425.		19
838	Following the enzymatic digestion of chondroitin sulfate by a simple GPC analysis. Analytica Chimica Acta, 2015, 885, 207-213.	5 . 4	19
839	Microfluidic production of hyaluronic acid derivative microfibers to control drug release. Materials Letters, 2016, 182, 309-313.	2.6	19
840	Influence of different surface modification treatments on silk biotextiles for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 496-507.	3.4	19
841	Multilayered Hollow Tubes as Blood Vessel Substitutes. ACS Biomaterials Science and Engineering, 2016, 2, 2304-2314.	5. 2	19
842	A semiautomated microfluidic platform for real-time investigation of nanoparticles' cellular uptake and cancer cells' tracking. Nanomedicine, 2017, 12, 581-596.	3.3	19
843	Extracellular matrix-inspired assembly of glycosaminoglycan–collagen fibers. Journal of Materials Chemistry B, 2017, 5, 3103-3106.	5.8	19
844	Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates. Polymers, 2017, 9, 440.	4.5	19
845	The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 247-263.	1.6	19
846	Antiâ€angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e669-e678.	2.7	19

#	Article	IF	CITATIONS
847	Peptide-biofunctionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: challenges and opportunities. Journal of Materials Chemistry B, 2019, 7, 1027-1044.	5.8	19
848	Brachyury as a potential modulator of androgen receptor activity and a key player in therapy resistance in prostate cancer. Oncotarget, 2016, 7, 28891-28902.	1.8	19
849	Plasma- and chemical-induced graft polymerization on the surface of starch-based biomaterials aimed at improving cell adhesion and proliferation. Journal of Materials Science: Materials in Medicine, 2003, 14, 187-194.	3.6	18
850	Innovative Approach for Producing Injectable, Biodegradable Materials Using Chitooligosaccharides and Green Chemistry. Biomacromolecules, 2009, 10, 465-470.	5.4	18
851	Melt Processing of Chitosanâ€Based Fibers and Fiberâ€Mesh Scaffolds for the Engineering of Connective Tissues. Macromolecular Bioscience, 2010, 10, 1495-1504.	4.1	18
852	Analysing protein competition on self-assembled mono-layers studied with quartz crystal microbalance. Acta Biomaterialia, 2010, 6, 3499-3505.	8.3	18
853	Thermosensitive polymeric matrices for three-dimensional cell culture strategies. Acta Biomaterialia, 2011, 7, 526-529.	8.3	18
854	Selective Cell Recruitment and Spatially Controlled Cell Attachment on Instructive Chitosan Surfaces Functionalized with Antibodies. Biointerphases, 2012, 7, 65.	1.6	18
855	A two-component pre-seeded dermal–epidermal scaffold. Acta Biomaterialia, 2014, 10, 4928-4938.	8.3	18
856	Cork extractives exhibit thermo-oxidative protection properties in polypropylene–cork composites and as direct additives for polypropylene. Polymer Degradation and Stability, 2015, 116, 45-52.	5.8	18
857	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	5.4	18
858	Design and Properties of Novel Substituted Borosilicate Bioactive Glasses and Their Glass-Ceramic Derivatives. Crystal Growth and Design, 2016, 16, 3731-3740.	3.0	18
859	Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. Soft Matter, 2016, 12, 1200-1209.	2.7	18
860	Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering. Biomedical Materials (Bristol), 2018, 13, 035012.	3.3	18
861	Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. Materials Science and Engineering C, 2019, 98, 1169-1178.	7.3	18
862	Optimal Design of THEDES Based on Perillyl Alcohol and Ibuprofen. Pharmaceutics, 2020, 12, 1121.	4.5	18
863	Innovative methodology for marine collagen–chitosan–fucoidan hydrogels production, tailoring rheological properties towards biomedical application. Green Chemistry, 2021, 23, 7016-7029.	9.0	18
864	Keratinocyte Growth Factor-Based Strategies for Wound Re-Epithelialization. Tissue Engineering - Part B: Reviews, 2022, 28, 665-676.	4.8	18

#	Article	IF	Citations
865	Development and Characterization of Highly Stable Silver NanoParticles as Novel Potential Antimicrobial Agents for Wound Healing Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2161.	4.1	18
866	Organelleâ€Specific Anchored Delivery System Stretching a Reversal of Tumor Hypoxia Microenvironment to a Combinational Chemoâ€Photothermal Therapy. Advanced Functional Materials, 2022, 32, .	14.9	18
867	Microhardness of starch based biomaterials in simulated physiological conditions. Acta Biomaterialia, 2007, 3, 69-76.	8.3	17
868	Effects of Starch/ Polycaprolactone-based Blends for Spinal Cord Injury Regeneration in Neurons/Glial Cells Viability and Proliferation. Journal of Bioactive and Compatible Polymers, 2009, 24, 235-248.	2.1	17
869	Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e24-e30.	2.7	17
870	Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 599-612.	4.0	17
871	Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Biomedical Microdevices, 2014, 16, 69-78.	2.8	17
872	Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication, 2015, 7, 035009.	7.1	17
873	Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine, 2015, 10, 1707-1721.	3.3	17
874	Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 143-160.	1.6	17
875	Treatments of Meniscus Lesions of the Knee: Current Concepts and Future Perspectives. Regenerative Engineering and Translational Medicine, 2017, 3, 32-50.	2.9	17
876	Eumelanin-releasing spongy-like hydrogels for skin re-epithelialization purposes. Biomedical Materials (Bristol), 2017, 12, 025010.	3.3	17
877	Small Animal Models. Advances in Experimental Medicine and Biology, 2018, 1059, 423-439.	1.6	17
878	Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Advanced Healthcare Materials, 2018, 7, e1701444.	7.6	17
879	Biâ€directional modulation of cellular interactions in an in vitro coâ€culture model of tendonâ€toâ€bone interface. Cell Proliferation, 2018, 51, e12493.	5.3	17
880	Strategies for the hypothermic preservation of cell sheets of human adipose stem cells. PLoS ONE, 2019, 14, e0222597.	2.5	17
881	Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft. Biomacromolecules, 2020, 21, 3582-3595.	5.4	17
882	Surface biofunctionalization to improve the efficacy of biomaterial substrates to be used in regenerative medicine. Materials Horizons, 2020, 7, 2258-2275.	12.2	17

#	Article	IF	CITATIONS
883	Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication, 2020, 12, 025028.	7.1	17
884	A Graded, Porous Composite of Natural Biopolymers and Octacalcium Phosphate Guides Osteochondral Differentiation of Stem Cells. Advanced Healthcare Materials, 2021, 10, e2001692.	7.6	17
885	Modulation of inflammation by anti-TNF \hat{l}_{\pm} mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. Journal of Materials Chemistry B, 2021, 9, 4211-4218.	5.8	17
886	Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomaterials Science and Engineering, 2021, 7, 3229-3241.	5.2	17
887	3D flow-focusing microfluidic biofabrication: One-chip-fits-all hydrogel fiber architectures. Applied Materials Today, 2021, 23, 101013.	4.3	17
888	Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 103997.	3.1	17
889	Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials, 2021, 279, 121217.	11.4	17
890	Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102482.	3.3	17
891	3D Printed Scaffolds Incorporated with Plateletâ€Rich Plasma Show Enhanced Angiogenic Potential while not Inducing Fibrosis. Advanced Functional Materials, 2022, 32, 2109915.	14.9	17
892	Crystallinity and structural changes in HA plasma-sprayed coatings induced by cyclic loading in physiological media. Journal of Materials Science: Materials in Medicine, 1996, 7, 407-411.	3.6	16
893	Hydrophilic matrices to be used as bioactive and degradable bone cements. Journal of Materials Science: Materials in Medicine, 2004, 15, 503-506.	3.6	16
894	The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro. Journal of Materials Science: Materials in Medicine, 2005, 16, 1029-1043.	3.6	16
895	Transport of Small Anionic and Neutral Solutes through Chitosan Membranes: Dependence on Cross-Linking and Chelation of Divalent Cations. Biomacromolecules, 2008, 9, 2132-2138.	5.4	16
896	Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly. Journal of Materials Science: Materials in Medicine, 2010, 21, 1855-1865.	3.6	16
897	Development of a Novel Cell Encapsulation System Based on Natural Origin Polymers for Tissue Engineering Applications. Journal of Bioactive and Compatible Polymers, 2010, 25, 341-359.	2.1	16
898	Elastin-Based Nanoparticles for Delivery of Bone Morphogenetic Proteins. Methods in Molecular Biology, 2012, 906, 353-363.	0.9	16
899	Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: The effect of silanol groups. Acta Biomaterialia, 2014, 10, 4175-4185.	8.3	16
900	<i>In vitro</i> bioactivity studies of ceramic structures isolated from marine sponges. Biomedical Materials (Bristol), 2016, 11, 045004.	3.3	16

#	Article	IF	CITATIONS
901	Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 2017, 114, 38-48.	4.1	16
902	Electrospun Nanofibrous Meshes Cultured With Wharton's Jelly Stem Cell: An Alternative for Cartilage Regeneration, Without the Need of Growth Factors. Biotechnology Journal, 2017, 12, 1700073.	3.5	16
903	Global rotation has high sensitivity in ACL lesions within stress MRI. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 2993-3003.	4.2	16
904	Ultrasound-assisted biosynthesis of novel methotrexate-conjugates. Ultrasonics Sonochemistry, 2018, 48, 51-56.	8.2	16
905	Bioinspired baroplastic glycosaminoglycan sealants for soft tissues. Acta Biomaterialia, 2019, 87, 108-117.	8.3	16
906	Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration. Journal of Materials Science: Materials in Medicine, 2019, 30, 27.	3.6	16
907	Exploring the Use of Choline Acetate on the Sustainable Development of α-Chitin-Based Sponges. ACS Sustainable Chemistry and Engineering, 2020, 8, 13507-13516.	6.7	16
908	Spin-Coated Polysaccharide-Based Multilayered Freestanding Films with Adhesive and Bioactive Moieties. Molecules, 2020, 25, 840.	3.8	16
909	Micropatterned Silk-Fibroin/Eumelanin Composite Films for Bioelectronic Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2466-2474.	5. 2	16
910	Influence of natural deep eutectic systems in water thermal behavior and their applications in cryopreservation. Journal of Molecular Liquids, 2021, 329, 115533.	4.9	16
911	A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: Results from the IMMEnSE consortium and meta-analysis. Oncotarget, 2016, 7, 59029-59048.	1.8	16
912	Incorporation of α-Amylase Enzyme and a Bioactive Filler into Hydrophilic, Partially Degradable, and Bioactive Cements (HDBCs) as a New Approach To Tailor Simultaneously Their Degradation and Bioactive Behavior. Biomacromolecules, 2006, 7, 2600-2609.	5.4	15
913	Studies of P(L/D)LA 96/4 non-woven scaffolds and fibres; properties, wettability and cell spreading before and after intrusive treatment methods. Journal of Materials Science: Materials in Medicine, 2007, 18, 1253-1261.	3.6	15
914	Biomimetic apatite deposition on polymeric microspheres treated with a calcium silicate solution. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 239-247.	3.4	15
915	Preparation of Chitosan Scaffolds for Tissue Engineering Using Supercritical Fluid Technology. Materials Science Forum, 0, 636-637, 22-25.	0.3	15
916	High nonlinear optical anisotropy of urea nanofibers. Europhysics Letters, 2010, 91, 28007.	2.0	15
917	The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials. Soft Matter, 2010, 6, 4135.	2.7	15
918	Osteogenic properties of starch poly(εâ€caprolactone) (SPCL) fiber meshes loaded with osteoblastâ€like cells in a rat criticalâ€sized cranial defect. Journal of Biomedical Materials Research - Part A, 2013, 101, 3059-3065.	4.0	15

#	Article	IF	CITATIONS
919	The Meniscus: Basic Science. , 2013, , 7-14.		15
920	Chondrogenic Potential of Two hASCs Subpopulations Loaded onto Gellan Gum Hydrogel Evaluated in a Nude Mice Model. Current Stem Cell Research and Therapy, 2013, 8, 357-364.	1.3	15
921	Automating the Processing Steps for Obtaining Bone Tissue-Engineered Substitutes: From Imaging Tools to Bioreactors. Tissue Engineering - Part B: Reviews, 2014, 20, 567-577.	4.8	15
922	Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 930-942.	2.7	15
923	The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration. Tissue Engineering - Part A, 2016, 22, 1164-1175.	3.1	15
924	Production and characterization of hyaluronic acid microparticles for the controlled delivery of growth factors using a spray/dehydration method. Journal of Biomaterials Applications, 2016, 31, 693-707.	2.4	15
925	Hybrid Alginateâ€Based Cryogels for Life Science Applications. Chemie-Ingenieur-Technik, 2016, 88, 1770-1778.	0.8	15
926	InÂVitro and ExÂVivo Permeability Studies of Paclitaxel and Doxorubicin From Drug-Eluting Biodegradable Ureteral Stents. Journal of Pharmaceutical Sciences, 2017, 106, 1466-1474.	3.3	15
927	Substituted Borosilicate Glasses with Improved Osteogenic Capacity for Bone Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 1331-1342.	3.1	15
928	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	2.9	15
929	The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes – electrophysiological quantification. Biomaterials Science, 2018, 6, 388-397.	5.4	15
930	Coculture of Spheroids/2D Cell Layers Using a Miniaturized Patterned Platform as a Versatile Method to Produce Scaffoldâ€Free Tissue Engineering Building Blocks. Advanced Biology, 2018, 2, 1700069.	3.0	15
931	Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony threeâ€wall periodontal defect. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1277-e1288.	2.7	15
932	Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context. Marine Environmental Research, 2019, 150, 104757.	2.5	15
933	Facile preparation of mussel-inspired antibiotic-decorated titanium surfaces with enhanced antibacterial activity for implant applications. Applied Surface Science, 2019, 496, 143675.	6.1	15
934	Exploring platelet lysate hydrogel-coated suture threads as biofunctional composite living fibers for cell delivery in tissue repair. Biomedical Materials (Bristol), 2019, 14, 034104.	3.3	15
935	Layerâ€byâ€layer films based on catecholâ€modified polysaccharides produced by dipâ€and spinâ€coating onto different substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1412-1427.	3.4	15
936	Manufacturing and Characterization of Coatings from Polyamide Powders Functionalized with Nanosilica. Polymers, 2020, 12, 2298.	4.5	15

#	Article	IF	Citations
937	Platelet-Derived Products in Veterinary Medicine: A New Trend or an Effective Therapy?. Trends in Biotechnology, 2021, 39, 225-243.	9.3	15
938	Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. Chemosphere, 2021, 269, 128758.	8.2	15
939	Untangling the bioactive properties of therapeutic deep eutectic solvents based on natural terpenes. Current Research in Chemical Biology, 2021, 1, 100003.	2.9	15
940	Green Solvents Combined with Bioactive Compounds as Delivery Systems: Present Status and Future Trends. ACS Applied Bio Materials, 2021, 4, 4000-4013.	4.6	15
941	Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600, 120548.	5.2	15
942	Reproduction of the Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG) Gastric Cancer Molecular Classifications and Their Association with Clinicopathological Characteristics and Overall Survival in Moroccan Patients. Disease Markers, 2021, 2021, 1-12.	1.3	15
943	Polymer Based Scaffolds and Carriers for Bioactive Agents from Different Natural Origin Materials. Advances in Experimental Medicine and Biology, 2003, 534, 201-233.	1.6	15
944	An Efficient Carbonâ€Based Drug Delivery System for Cancer Therapy through the Nucleus Targeting and Mitochondria Mediated Apoptotic Pathway. Small Methods, 2021, 5, e2100539.	8.6	15
945	Challenges and opportunities on vegetable oils derived systems for biomedical applications. Materials Science and Engineering C, 2022, 134, 112720.	7.3	15
946	Development of alginate-based hydrogels for blood vessel engineering. Materials Science and Engineering C, 2022, 134, 112588.	7.3	15
947	Electrochemical behavior of different preparations of plasma-sprayed hydroxyapatite coatings on Ti6Al4V substrate. Journal of Biomedical Materials Research Part B, 2004, 70A, 59-65.	3.1	14
948	Supercritical fluid processing of natural based polymers doped with ionic liquids. Chemical Engineering Journal, 2014, 241, 122-130.	12.7	14
949	Redox activity of melanin from the ink sac of <i>Sepia officinalis </i> by means of colorimetric oxidative assay. Natural Product Research, 2016, 30, 982-986.	1.8	14
950	Osteogenesis evaluation of duck's feet-derived collagen/hydroxyapatite sponges immersed in dexamethasone. Biomaterials Research, 2017, 21, 2.	6.9	14
951	Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant. Journal of Feline Medicine and Surgery, 2018, 20, 835-843.	1.6	14
952	Stem Cells for Osteochondral Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 219-240.	1.6	14
953	Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability. Macromolecular Research, 2019, 27, 558-564.	2.4	14
954	Comparison of a New-generation Fecal Immunochemical Test (FIT) With Guaiac Fecal Occult Blood Test (gFOBT) in Detecting Colorectal Neoplasia Among Colonoscopy-referral Patients. Anticancer Research, 2019, 39, 261-269.	1.1	14

#	Article	IF	CITATIONS
955	Green Pathway for Processing Non-mulberry Antheraea pernyi Silk Fibroin/Chitin-Based Sponges: Biophysical and Biochemical Characterization. Frontiers in Materials, 2020, 7, .	2.4	14
956	Expanding the Conformational Landscape of Minimalistic Tripeptides by Their $\langle i \rangle O \langle i \rangle$ -Glycosylation. Journal of the American Chemical Society, 2021, 143, 19703-19710.	13.7	14
957	Study of the influence of \hat{l}^2 -radiation on the properties and mineralization of different starch-based biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74B, 560-569.	3.4	13
958	Bone Tissue Engineering Constructs Based on Starch Scaffolds and Bone Marrow Cells Cultured in a Flow Perfusion Bioreactor. Materials Science Forum, 2006, 514-516, 980-984.	0.3	13
959	Influence of Molecular Weight and Crystallinity of Poly(L-Lactic Acid) on the Adhesion and Proliferation of Human Osteoblast Like Cells. Materials Science Forum, 2006, 514-516, 1020-1024.	0.3	13
960	Alkaline treatments to render starch-based biodegradable polymers self-mineralizable. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 425-435.	2.7	13
961	Hydrogels from polysaccharide-based materials: Fundamentals and applications in regenerative medicine., 2008,, 485-514.		13
962	Chitosan Improves the Biological Performance of Soy-Based Biomaterials. Tissue Engineering - Part A, 2010, 16, 2883-2890.	3.1	13
963	Microchannel-patterned and heparin micro-contact-printed biodegradable composite membranes for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e108-e114.	2.7	13
964	Fibroblasts regulate osteoblasts through gap junctional communication. Cytotherapy, 2012, 14, 1276-1287.	0.7	13
965	Dextrin―and Conductingâ€Polymerâ€Containing Biocomposites: Properties and Behavior as Cellular Matrix. Macromolecular Materials and Engineering, 2012, 297, 359-368.	3.6	13
966	Sequential Application of Steady and Pulsatile Medium Perfusion Enhanced the Formation of Engineered Bone. Tissue Engineering - Part A, 2013, 19, 1244-1254.	3.1	13
967	Adhesion of Adipose-Derived Mesenchymal Stem Cells to Glycosaminoglycan Surfaces with Different Protein Patterns. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10034-10043.	8.0	13
968	Combinatorial Effect of Silicon and Calcium Release from Starch-Based Scaffolds on Osteogenic Differentiation of Human Adipose Stem Cells. ACS Biomaterials Science and Engineering, 2015, 1, 760-770.	5.2	13
969	Cork extracts reduce UV-mediated DNA fragmentation and cell death. RSC Advances, 2015, 5, 96151-96157.	3.6	13
970	Functionality of surface-coupled oxidised glycosaminoglycans towards fibroblast adhesion. Journal of Bioactive and Compatible Polymers, 2016, 31, 191-207.	2.1	13
971	SPINT2 Deregulation in Prostate Carcinoma. Journal of Histochemistry and Cytochemistry, 2016, 64, 32-41.	2.5	13
972	Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2853-2863.	2.7	13

#	Article	IF	Citations
973	Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 1066-1075.	5.8	13
974	Commercial Products for Osteochondral Tissue Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 415-428.	1.6	13
975	Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 984-996.	3.5	13
976	Biomaterials Developments for Brain Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 323-346.	1.6	13
977	PRP Therapy. Advances in Experimental Medicine and Biology, 2018, 1059, 241-253.	1.6	13
978	Evaluation of Saponin Loaded Gellan Gum Hydrogel Scaffold for Cartilage Regeneration. Macromolecular Research, 2018, 26, 724-729.	2.4	13
979	In vitro and in vivo assessments of an optimal polyblend composition of polycaprolactone/gelatin nanofibrous scaffolds for Achilles tendon tissue engineering. Journal of Industrial and Engineering Chemistry, 2019, 76, 173-180.	5.8	13
980	Pulsed Electromagnetic Field Modulates Tendon Cells Response in ILâ€1βâ€Conditioned Environment. Journal of Orthopaedic Research, 2020, 38, 160-172.	2.3	13
981	The combination of coffee compounds attenuates early fibrosis-associated hepatocarcinogenesis in mice: involvement of miRNA profile modulation. Journal of Nutritional Biochemistry, 2020, 85, 108479.	4.2	13
982	Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells, But Not over Noncancer Skin Cells. Biomacromolecules, 2020, 21, 2745-2754.	5.4	13
983	Bactericidal nanopatterns generated by block copolymer self-assembly. Acta Biomaterialia, 2020, 112, 174-181.	8.3	13
984	3D hydrogel mimics of the tumor microenvironment: the interplay among hyaluronic acid, stem cells and cancer cells. Biomaterials Science, 2021, 9, 252-260.	5.4	13
985	Interfollicular epidermal stem-like cells for the recreation of the hair follicle epithelial compartment. Stem Cell Research and Therapy, 2021, 12, 62.	5.5	13
986	Vescalagin and Castalagin Present Bactericidal Activity toward Methicillin-Resistant Bacteria. ACS Biomaterials Science and Engineering, 2021, 7, 1022-1030.	5.2	13
987	An Outlook on Implantable Biosensors for Personalized Medicine. Engineering, 2021, 7, 1696-1699.	6.7	13
988	Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomaterials Science, 2021, 9, 6718-6736.	5.4	13
989	Carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds for bone tissue engineering applications. Journal of Materials Chemistry B, 2021, 9, 9561-9574.	5.8	13
990	Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Acta Biomaterialia, 2022, 143, 282-294.	8.3	13

#	Article	IF	CITATIONS
991	A Multifunctional Photoacoustic/Fluorescence Dualâ€Modeâ€Imaging Goldâ€Based Theranostic Nanoformulation without External Laser Limitations. Advanced Materials, 2022, 34, e2110690.	21.0	13
992	Osteogenic lithium-doped brushite cements for bone regeneration. Bioactive Materials, 2022, 16, 403-417.	15.6	13
993	Bioengineered 3D Living Fibers as In Vitro Human Tissue Models of Tendon Physiology and Pathology. Advanced Healthcare Materials, 2022, 11, .	7.6	13
994	pH-Sensitive Soy Protein Films For The Controlled Release Of An Ant-Inflammatory Drug. Materials Research Innovations, 2004, 8, 149-150.	2.3	12
995	Impact of Biological Agents and Tissue Engineering Approaches on the Treatment of Rheumatic Diseases. Tissue Engineering - Part B: Reviews, 2010, 16, 331-339.	4.8	12
996	Synthesis and characterization of sensitive hydrogels based on semiâ€interpenetrated networks of poly[2â€ethylâ€(2â€pyrrolidone) methacrylate] and hyaluronic acid. Journal of Biomedical Materials Research - Part A, 2013, 101A, 157-166.	4.0	12
997	Adipose stem cell-derived osteoblasts sustain the functionality of endothelial progenitors from the mononuclear fraction of umbilical cord blood. Acta Biomaterialia, 2013, 9, 5234-5242.	8.3	12
998	Human mesenchymal stem cells response to multi-doped silicon-strontium calcium phosphate coatings. Journal of Biomaterials Applications, 2014, 28, 1397-1407.	2.4	12
999	Surface Modification of Silica-Based Marine Sponge Bioceramics Induce Hydroxyapatite Formation. Crystal Growth and Design, 2014, 14, 4545-4552.	3.0	12
1000	Copy Number Profiling of Brazilian Astrocytomas. G3: Genes, Genomes, Genetics, 2016, 6, 1867-1878.	1.8	12
1001	Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects. Journal of Biomaterials Applications, 2016, 31, 637-649.	2.4	12
1002	Inflammatory response study of gellan gum impregnated duck's feet derived collagen sponges. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1495-1506.	3.5	12
1003	Bone turnover markers in sheep and goat: A review of the scientific literature. Anais Da Academia Brasileira De Ciencias, 2017, 89, 231-245.	0.8	12
1004	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.	5.0	12
1005	Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852.	2.4	12
1006	Eumelanin Nanoparticle-Incorporated Polyvinyl Alcohol Nanofibrous Composite as an Electroconductive Scaffold for Skeletal Muscle Tissue Engineering. ACS Applied Bio Materials, 2018, 1, 1893-1905.	4.6	12
1007	Bioreactors and Microfluidics for Osteochondral Interface Maturation. Advances in Experimental Medicine and Biology, 2018, 1059, 395-420.	1.6	12
1008	Emerging Concepts in Treating Cartilage, Osteochondral Defects, and Osteoarthritis of theÂKnee and Ankle. Advances in Experimental Medicine and Biology, 2018, 1059, 25-62.	1.6	12

#	Article	IF	Citations
1009	Natural Origin Materials for Bone Tissue Engineering. , 2019, , 535-558.		12
1010	The Clinical Use of Biologics in the Knee Lesions: Does the Patient Benefit?. Current Reviews in Musculoskeletal Medicine, 2019, 12, 406-414.	3.5	12
1011	Remote triggering of TGF- \hat{l}^2 /Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomaterialia, 2020, 113, 488-500.	8.3	12
1012	lonic Liquid-Mediated Processing of SAIB-Chitin Scaffolds. ACS Sustainable Chemistry and Engineering, 2020, 8, 3986-3994.	6.7	12
1013	Hierarchical HRP-Crosslinked Silk Fibroin/ZnSr-TCP Scaffolds for Osteochondral Tissue Regeneration: Assessment of the Mechanical and Antibacterial Properties. Frontiers in Materials, 2020, 7, .	2.4	12
1014	Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate. Acta Biomaterialia, 2021, 121, 303-315.	8.3	12
1015	Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine. Advances in Experimental Medicine and Biology, 2020, 1230, 43-64.	1.6	12
1016	Chondrogenic differentiation induced by extracellular vesicles bound to a nanofibrous substrate. Npj Regenerative Medicine, 2021, 6, 79.	5.2	12
1017	Towards the Development of a Female Animal Model of T1DM Using Hyaluronic Acid Nanocoated Cell Transplantation: Refinements and Considerations for Future Protocols. Pharmaceutics, 2021, 13, 1925.	4.5	12
1018	Marine origin biomaterials using a compressive and absorption methodology as cell-laden hydrogel envisaging cartilage tissue engineering., 2022, 137, 212843.		12
1019	Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. International Journal of Biological Macromolecules, 2022, 213, 352-368.	7.5	12
1020	Bi-composite sandwich moldings: processing, mechanical performance and bioactive behavior. Journal of Materials Science: Materials in Medicine, 2003, 14, 385-397.	3.6	11
1021	Methodologies for Processing Biodegradable and Natural Origin Scaffolds for Bone and Cartilage Tissue-Engineering Applications. , 2004, 238, 65-76.		11
1022	Shear controlled orientation in injection moulding of starch based blends intended for medical applications. Plastics, Rubber and Composites, 2003, 32, 173-181.	2.0	11
1023	Controlled Delivery Achieved with Bi-Layer Matrix Devices Produced by Co-Injection Moulding. Macromolecular Bioscience, 2004, 4, 795-801.	4.1	11
1024	Supercritical phase inversion of starch-poly($\hat{l}\mu$ -caprolactone) for tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 533-540.	3.6	11
1025	The effect of processing conditions on the characteristics of electrically conductive thermoplastic composites. Journal of Thermoplastic Composite Materials, 2012, 25, 607-629.	4.2	11
1026	An automated two-phase system for hydrogel microbead production. Biofabrication, 2012, 4, 035003.	7.1	11

#	Article	IF	Citations
1027	Starch-based polymer–IL composites formed by compression moulding and supercritical fluid foaming for self-supported conductive materials. RSC Advances, 2014, 4, 17161.	3.6	11
1028	<i>In vitro</i> chondrogenic commitment of human Wharton's jelly stem cells by co-culture with human articular chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1876-1887.	2.7	11
1029	Calcium phosphates and silicon: exploring methods of incorporation. Biomaterials Research, 2017, 21, 6.	6.9	11
1030	Evaluation of bone turnover markers and serum minerals variations for predicting fracture healing versus non-union processes in adult sheep as a model for orthopedic research. Injury, 2017, 48, 1768-1775.	1.7	11
1031	Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration. Materials Science and Engineering C, 2017, 71, 252-259.	7.3	11
1032	Micro/Nano Scaffolds for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 125-139.	1.6	11
1033	Scavenging Nanoreactors that Modulate Inflammation. Advanced Biology, 2018, 2, 1800086.	3.0	11
1034	Promising Biomolecules. Advances in Experimental Medicine and Biology, 2018, 1059, 189-205.	1.6	11
1035	Genetic polymorphisms in genes of class switch recombination and multiple myeloma risk and survival: an IMMEnSE study. Leukemia and Lymphoma, 2019, 60, 1803-1811.	1.3	11
1036	Altered bone microarchitecture in a type 1 diabetes mouse model <i>Ins2</i> ^{<i>Akita</i>} . Journal of Cellular Physiology, 2019, 234, 9338-9350.	4.1	11
1037	Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102139.	3.3	11
1038	Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. Biomacromolecules, 2020, 21, 4771-4780.	5.4	11
1039	Electro-responsive controlled drug delivery from melanin nanoparticles. International Journal of Pharmaceutics, 2020, 588, 119773.	5.2	11
1040	Tailoring Gellan Gum Spongy-Like Hydrogels' Microstructure by Controlling Freezing Parameters. Polymers, 2020, 12, 329.	4.5	11
1041	Advances in 3D neural, vascular and neurovascular models for drug testing and regenerative medicine. Drug Discovery Today, 2021, 26, 754-768.	6.4	11
1042	Current nanotechnology advances in diagnostic biosensors. Medical Devices & Sensors, 2021, 4, e10156.	2.7	11
1043	Macro and Microstructural Characteristics of North Atlantic Deep-Sea Sponges as Bioinspired Models for Tissue Engineering Scaffolding. Frontiers in Marine Science, 2021, 7, .	2.5	11
1044	Long-term preservation effects on biological properties of acellular placental sponge patches. Materials Science and Engineering C, 2021, 121, 111814.	7.3	11

#	Article	IF	Citations
1045	Multifunctional Surfaces for Improving Soft Tissue Integration. Advanced Healthcare Materials, 2021, 10, e2001985.	7.6	11
1046	Tumorâ€Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Advanced Biology, 2021, 5, e2101019.	2.5	11
1047	Bone Tissue Engineering Using Starch Based Scaffolds Obtained by Different Methods. , 2002, , 221-249.		11
1048	Therapeutic deep eutectic solvents assisted the encapsulation of curcumin in alginate-chitosan hydrogel beads. Sustainable Chemistry and Pharmacy, 2021, 24, 100553.	3.3	11
1049	In Vitro Cancer Models: A Closer Look at Limitations on Translation. Bioengineering, 2022, 9, 166.	3.5	11
1050	Silk fibroin/cholinium gallate-based architectures as therapeutic tools. Acta Biomaterialia, 2022, 147, 168-184.	8.3	11
1051	Hydrogels And Hydrophilic Partially Degradable Bone Cements Based On Biodegradable Blends Incorporating Starch., 2003,, 243-260.		10
1052	Chitosan-based scaffolds in orthopedic applications. , 2008, , 357-373.		10
1053	Serum total and bone alkaline phosphatase and tartrate-resistant acid phosphatase activities for the assessment of bone fracture healing in dogs. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2011, 63, 1007-1011.	0.4	10
1054	Elastic biodegradable starch/ethyleneâ€∢i>coâ€vinyl alcohol fibreâ€mesh scaffolds for tissue engineering applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	10
1055	Cork processing with supercritical carbon dioxide: Impregnation and sorption studies. Journal of Supercritical Fluids, 2015, 104, 251-258.	3.2	10
1056	Open Fluidics: A Cell Culture Flow System Developed Over Wettability Contrastâ€Based Chips. Advanced Healthcare Materials, 2017, 6, 1700638.	7.6	10
1057	Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes. Journal of Materials Science: Materials in Medicine, 2018, 29, 21.	3.6	10
1058	Clinical Trials and Management of Osteochondral Lesions. Advances in Experimental Medicine and Biology, 2018, 1058, 391-413.	1.6	10
1059	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115.	5.8	10
1060	In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 373-394.	1.6	10
1061	Acemannan-based films: an improved approach envisioning biomedical applications. Materials Research Express, 2019, 6, 095406.	1.6	10
1062	Evaluation of tenogenic differentiation potential of selected subpopulations of human adiposeâ€derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2204-2217.	2.7	10

#	Article	IF	Citations
1063	A SERS-based 3D nanobiosensor: towards cell metabolite monitoring. Materials Advances, 2020, 1, 1613-1621.	5.4	10
1064	Use of hemostatic agents for surgical bleeding in laparoscopic partial nephrectomy: Biomaterials perspective. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3099-3123.	3.4	10
1065	Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules, 2020, 21, 1368-1378.	5.4	10
1066	Genetically determined telomere length and multiple myeloma risk and outcome. Blood Cancer Journal, 2021, 11, 74.	6.2	10
1067	Future Trends in the Treatment of Meniscus Lesions: From Repair to Regeneration. , 2013, , 103-112.		10
1068	Future Directions for Ureteral Stent Technology: From Bench to the Market. Advanced Therapeutics, 2022, 5, .	3.2	10
1069	Preparation of Bioactive Coatings on the Surface of Bioinert Polymers through an Innovative Auto-Catalytic Electroless Route. Key Engineering Materials, 2005, 284-286, 203-206.	0.4	9
1070	Surface Charge of Bioactive Polyethylene Modified with –SO ₃ H Groups and Its Apatite Inducing Capability in Simulated Body Fluid. Key Engineering Materials, 2005, 284-286, 453-456.	0.4	9
1071	Synthesis of N-Carboxymethyl Chitosan Beads for Controlled Drug Delivery Applications. Materials Science Forum, 2006, 514-516, 1015-1019.	0.3	9
1072	Hybrid biodegradable membranes of silane-treated chitosan/soy protein for biomedical applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 385-397.	2.1	9
1073	Detection of Foodborne Pathogens Using Nanoparticles. Advantages and Trends. , 2016, , 183-201.		9
1074	Continuous-flow precipitation as a route to prepare highly controlled nanohydroxyapatite: <i>in vitro</i> mineralization and biological evaluation. Materials Research Express, 2016, 3, 075404.	1.6	9
1075	Light responsive multilayer surfaces with controlled spatial extinction capability. Journal of Materials Chemistry B, 2016, 4, 1398-1404.	5.8	9
1076	Interactive endothelial phenotype maintenance and osteogenic differentiation of adipose tissue stromal vascular fraction SSEA-4 ⁺ -derived cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1998-2013.	2.7	9
1077	Layered Scaffolds for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 193-218.	1.6	9
1078	Genetic variants of vascular endothelial growth factor predict risk and survival of gliomas. Tumor Biology, 2018, 40, 101042831876627.	1.8	9
1079	Biofunctional Nanofibrous Substrate for Local TNF-Capturing as a Strategy to Control Inflammation in Arthritic Joints. Nanomaterials, 2019, 9, 567.	4.1	9
1080	Replication of GWAS identifies RTEL1, CDKN2A/B, and PHLDB1 SNPs as risk factors in Portuguese gliomas patients. Molecular Biology Reports, 2020, 47, 877-886.	2.3	9

#	Article	IF	CITATIONS
1081	Sardine Roe as a Source of Lipids To Produce Liposomes. ACS Biomaterials Science and Engineering, 2020, 6, 1017-1029.	5.2	9
1082	Decellularized hASCs-derived matrices as biomaterials for 3D in vitro approaches. Methods in Cell Biology, 2020, 156, 45-58.	1.1	9
1083	Feasibility of methylated <scp>ctDNA</scp> detection in plasma samples of oropharyngeal squamous cell carcinoma patients. Head and Neck, 2020, 42, 3307-3315.	2.0	9
1084	Approach on chitosan/virgin coconut oil-based emulsion matrices as a platform to design superabsorbent materials. Carbohydrate Polymers, 2020, 249, 116839.	10.2	9
1085	Cellulose nanocrystals of variable sulfation degrees can sequester specific platelet lysate-derived biomolecules to modulate stem cell response. Chemical Communications, 2020, 56, 6882-6885.	4.1	9
1086	Fundamentals on biopolymers and global demand. , 2020, , 3-34.		9
1087	<i>In vitro</i> vascularization of tissue engineered constructs by non-viral delivery of pro-angiogenic genes. Biomaterials Science, 2021, 9, 2067-2081.	5.4	9
1088	Horseradish Peroxidaseâ€Crosslinked Calciumâ€Containing Silk Fibroin Hydrogels as Artificial Matrices for Bone Cancer Research. Macromolecular Bioscience, 2021, 21, e2000425.	4.1	9
1089	Modulating inflammation through the neutralization of Interleukin-6 and tumor necrosis factor-α by biofunctionalized nanoparticles. Journal of Controlled Release, 2021, 331, 491-502.	9.9	9
1090	Conotoxin loaded dextran microgel particles alleviate effects of spinal cord injury by inhibiting neuronal excitotoxicity. Applied Materials Today, 2021, 23, 101064.	4.3	9
1091	Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium. Materials Science and Engineering C, 2021, 126, 112124.	7.3	9
1092	Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Molecular Pharmaceutics, 2021, 18, 3235-3246.	4.6	9
1093	Cell-Based Approaches for Tendon Regeneration. , 2015, , 187-203.		9
1094	The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions. Current Pharmaceutical Biotechnology, 2015, 16, 1012-1023.	1.6	9
1095	Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics, 2022, 14, 697.	4.5	9
1096	Functional Gallic Acid-Based Dendrimers as Synthetic Nanotools to Remodel Amyloid-Î ² -42 into Noncytotoxic Forms. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59673-59682.	8.0	9
1097	Isolation and Osteogenic Differentiation of Bone-Marrow Progenitor Cells for Application in Tissue Engineering., 2004, 238, 123-130.		8
1098	Effecs of the Incorporation of Proteins and Active Enzymes on Biomimetic Calcium-Phosphate Coatings. Key Engineering Materials, 2003, 240-242, 97-100.	0.4	8

#	Article	IF	CITATIONS
1099	Innovative Technique for the Preparation of Porous Bilayer Hydroxyapatite/Chitosan Scaffolds for Osteochondral Applications. Key Engineering Materials, 2006, 309-311, 927-930.	0.4	8
1100	Mineralization of Chitosan Membrane Using a Double Diffusion System for Bone Related Applications. Materials Science Forum, 0, 587-588, 77-81.	0.3	8
1101	Surface properties of extracts from cork black condensate. Holzforschung, 2010, 64, .	1.9	8
1102	In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	8
1103	Membranes for periodontal tissues regeneration. Ciência & Tecnologia Dos Materiais, 2014, 26, 108-117.	0.5	8
1104	Influence of scaffold composition over inÂvitro osteogenic differentiation of hBMSCs and inÂvivo inflammatory response. Journal of Biomaterials Applications, 2014, 28, 1430-1442.	2.4	8
1105	Preparation of barley and yeast \hat{l}^2 -glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release. Journal of Supercritical Fluids, 2017, 127, 158-165.	3.2	8
1106	Identification of miRSNPs associated with the risk of multiple myeloma. International Journal of Cancer, 2017, 140, 526-534.	5.1	8
1107	From Honeycomb- to Microsphere-Patterned Surfaces of Poly(Lactic Acid) and a Starch-Poly(Lactic) Tj ETQq1 1 0.7 2017, 15, 31-42.	784314 rg 1.6	BT /Overloc 8
1108	Indirect printing of hierarchical patient-specific scaffolds for meniscus tissue engineering. Bio-Design and Manufacturing, 2019, 2, 225-241.	7.7	8
1109	Metabolic Disease Epidemics: Emerging Challenges in Regenerative Medicine. Trends in Endocrinology and Metabolism, 2019, 30, 147-149.	7.1	8
1110	Loss of SPINT2 expression frequently occurs in glioma, leading to increased growth and invasion via MMP2. Cellular Oncology (Dordrecht), 2020, 43, 107-121.	4.4	8
1111	Hyaluronic Acid of Low Molecular Weight Triggers the Invasive "Hummingbird―Phenotype on Gastric Cancer Cells. Advanced Biology, 2020, 4, e2000122.	3.0	8
1112	Microfluidic systems in cancer research. , 2020, , 331-377.		8
1113	Aromatic carbohydrate amphiphile disrupts cancer spheroids and prevents relapse. Nanoscale, 2020, 12, 19088-19092.	5.6	8
1114	Exploring the Gelation Mechanisms and Cytocompatibility of Gold (III)-Mediated Regenerated and Thiolated Silk Fibroin Hydrogels. Biomolecules, 2020, 10, 466.	4.0	8
1115	In vitro temporal HIFâ€mediated deposition of osteochondrogenic matrix governed by hypoxia and osteogenic factors synergy. Journal of Cellular Physiology, 2021, 236, 3991-4007.	4.1	8
1116	Advances on gradient scaffolds for osteochondral tissue engineering. Progress in Biomedical Engineering, 2021, 3, 033001.	4.9	8

#	Article	IF	Citations
1117	Dermal papilla cells and melanocytes response to physiological oxygen levels depends on their interactions. Cell Proliferation, 2021, 54, e13013.	5.3	8
1118	Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells. Advanced Functional Materials, 2021, 31, 2011205.	14.9	8
1119	Porous aligned ZnSr-doped \hat{l}^2 -TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1966-1982.	3.5	8
1120	Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomedicine and Pharmacotherapy, 2021, 140, 111680.	5.6	8
1121	Methacrylated Gellan Gum/Poly- <scp>l</scp> -lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomaterials Science and Engineering, 2021, 7, 4898-4913.	5.2	8
1122	A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sciences, 2021, 287, 120108.	4.3	8
1123	Cytocompatible manganese dioxide-based hydrogel nanoreactors for MRI imaging. Materials Science and Engineering C, 2022, 134, 112575.	7.3	8
1124	Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine, 2022, 17, 477-494.	3.3	8
1125	Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging. In Vitro Models, 2022, 1, 129-150.	2.0	8
1126	Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydrate Polymers, 2022, 292, 119638.	10.2	8
1127	Small-scale production of co-extruded biaxially oriented blown film. Polymer Testing, 2008, 27, 527-537.	4.8	7
1128	Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(εâ€caprolactone) fiber meshes. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1061-1069.	4.0	7
1129	Natural Origin Materials for Bone Tissue Engineering – Properties, Processing, and Performance. , 2011, , 557-586.		7
1130	Micro- and Nanotechnology in Tissue Engineering. , 2011, , 3-29.		7
1131	Periodontal Tissue Engineering Strategies Based on Nonoral Stem Cells. Anatomical Record, 2014, 297, 6-15.	1.4	7
1132	Effect of Melanomal Proteins on Sepia Melanin Assembly. Journal of Macromolecular Science - Physics, 2015, 54, 1532-1540.	1.0	7
1133	Surfaces Mimicking Glycosaminoglycans Trigger Different Response of Stem Cells via Distinct Fibronectin Adsorption and Reorganization. ACS Applied Materials & Interfaces, 2016, 8, 28428-28436.	8.0	7
1134	Mosaicplasty Using Grafts From the Upper Tibiofibular Joint. Arthroscopy Techniques, 2017, 6, e1979-e1987.	1.3	7

#	Article	IF	CITATIONS
1135	Sponge-derived silica for tissue regeneration. Materials Today, 2018, 21, 577-578.	14.2	7
1136	Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 236-256.	3.5	7
1137	Generation of Gellan Gum-Based Adipose-Like Microtissues. Bioengineering, 2018, 5, 52.	3.5	7
1138	Starâ€Like Glycosaminoglycans with Superior Bioactivity Assemble with Proteins into Microfibers. Chemistry - A European Journal, 2018, 24, 14341-14345.	3.3	7
1139	Remarkable Body Architecture of Marine Sponges as Biomimetic Structure for Application in Tissue Engineering. Springer Series in Biomaterials Science and Engineering, 2019, , 27-50.	1.0	7
1140	An alternative approach to prepare alginate/acemannan 3D architectures. SN Applied Sciences, 2019, 1, 1.	2.9	7
1141	Smart Instructive Polymer Substrates for Tissue Engineering. , 2019, , 411-438.		7
1142	Brachyury Is Associated with Glioma Differentiation and Response to Temozolomide. Neurotherapeutics, 2020, 17, 2015-2027.	4.4	7
1143	Vescalagin and castalagin reduce the toxicity of amyloid-beta42 oligomers through the remodelling of its secondary structure. Chemical Communications, 2020, 56, 3187-3190.	4.1	7
1144	Multilayer platform to model the bioactivity of hyaluronic acid in gastric cancer. Materials Science and Engineering C, 2021, 119, 111616.	7. 3	7
1145	Liposomes embedded in layer by layer constructs as simplistic extracellular vesicles transfer model. Materials Science and Engineering C, 2021, 121, 111813.	7.3	7
1146	Synthesis and Characterization of Biocompatible Methacrylated Kefiran Hydrogels: Towards Tissue Engineering Applications. Polymers, 2021, 13, 1342.	4.5	7
1147	Potential strategies to prevent encrustations on urinary stents and catheters – thinking outside the box: a European network of multidisciplinary research to improve urinary stents (ENIUS) initiative. Expert Review of Medical Devices, 2021, 18, 1-9.	2.8	7
1148	Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering. Biofabrication, 2021, 13, 044102.	7.1	7
1149	Tendon Stem Cell Niche. Pancreatic Islet Biology, 2015, , 221-244.	0.3	7
1150	Influence of Hyaluronan Density on the Behavior of Breast Cancer Cells with Different CD44 Expression. Advanced Healthcare Materials, 2022, 11, e2101309.	7.6	7
1151	Engineering of Extracellular Matrixâ€Like Biomaterials at Nano―and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research, 2022, 2, 2100116.	3.6	7
1152	Chitosan/ \hat{l}^2 -TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	3.3	7

#	Article	IF	CITATIONS
1153	Evaluation of Injectable Hyaluronic Acid-Based Hydrogels for Endodontic Tissue Regeneration. Materials, 2021, 14, 7325.	2.9	7
1154	A Fibrin Coating Method of Polypropylene Meshes Enables the Adhesion of Menstrual Blood-Derived Mesenchymal Stromal Cells: A New Delivery Strategy for Stem Cell-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 13385.	4.1	7
1155	Surface Functionalization of Ureteral Stents-Based Polyurethane: Engineering Antibacterial Coatings. Materials, 2022, 15, 1676.	2.9	7
1156	Structure and Properties of Hydroxylapatite Reinforced Starch Bone-Analogue Composites. Key Engineering Materials, 2001, 192-195, 669-672.	0.4	6
1157	Porous Bioactive Composites from Marine Origin Based on Chitosan and Hydroxyapatite Particles. Key Engineering Materials, 2003, 240-242, 39-42.	0.4	6
1158	Microparticulate Release Systems Based on Natural Origin Materials. Advances in Experimental Medicine and Biology, 2004, 553, 283-300.	1.6	6
1159	Tissue engineering using natural polymers. , 2007, , 197-217.		6
1160	The effects of Anodonta cygnea biological fluids on biomineralization of chitosan membranes. Journal of Membrane Science, 2010, 364, 82-89.	8.2	6
1161	Isolation of Friedelin from Black Condensate of Cork. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	6
1162	Degradation studies of hydrophilic, partially degradable and bioactive cements (HDBCs) incorporating chemically modified starch. Journal of Materials Science: Materials in Medicine, 2012, 23, 667-676.	3.6	6
1163	Assessing the repair of critical size bone defects performed in a goat tibia model using tissue-engineered constructs cultured in a bidirectional flow perfusion bioreactor. Journal of Biomaterials Applications, 2014, 29, 172-185.	2.4	6
1164	Serum total and bone alkaline phosphatase levels and their correlation with serum minerals over the lifespan of sheep. Acta Veterinaria Hungarica, 2014, 62, 205-214.	0.5	6
1165	Tissue Engineering: New Tools for Old Problems. Stem Cell Reviews and Reports, 2015, 11, 373-375.	5. 6	6
1166	Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Advances, 2016, 6, 114599-114612.	3.6	6
1167	Growth Factor-Free Pre-vascularization of Cell Sheets for Tissue Engineering. Methods in Molecular Biology, 2016, 1516, 219-226.	0.9	6
1168	Posterior talar process as a suitable cell source for treatment of cartilage and osteochondral defects of the talus. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1949-1962.	2.7	6
1169	Reactivation of latent HIV-1 in vitro using an ethanolic extract from Euphorbia umbellata (Euphorbiaceae) latex. PLoS ONE, 2018, 13, e0207664.	2.5	6
1170	Tuning the Stiffness of Surfaces by Assembling Genetically Engineered Polypeptides with Tailored Amino Acid Sequence. Biomacromolecules, 2018, 19, 3401-3411.	5.4	6

#	Article	IF	Citations
1171	Nanoparticles-Based Systems for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1059, 209-217.	1.6	6
1172	Recent advances on 3D printing of patient-specific implants for fibrocartilage tissue regeneration. Journal of 3D Printing in Medicine, 2018, 2, 129-140.	2.0	6
1173	Mineralization of Layer-by-Layer Ultrathin Films Containing Microfluidic-Produced Hydroxyapatite Nanorods. Crystal Growth and Design, 2019, 19, 6351-6359.	3.0	6
1174	Tissue engineering scaffolds. , 2019, , 165-185.		6
1175	Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions. Materials Science and Engineering C, 2020, 107, 110301.	7.3	6
1176	Platelet-rich Blood Derivatives for Tendon Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2020, 28, e202-e205.	2.5	6
1177	Seaweed polysaccharides as sustainable building blocks for biomaterials in tissue engineering. , 2020, , 543-587.		6
1178	Fabrication of biocompatible porous SAIB/silk fibroin scaffolds using ionic liquids. Materials Chemistry Frontiers, 2021, 5, 6582-6591.	5.9	6
1179	Clinicopathological and molecular characterization of Brazilian families at risk for Lynch syndrome. Cancer Genetics, 2021, 254-255, 82-91.	0.4	6
1180	Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes. International Journal of Biological Macromolecules, 2021, 183, 695-706.	7. 5	6
1181	Soy Protein-Based Systems for Different Tissue Regeneration Applications. , 2002, , 93-110.		6
1182	Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release system to treat inflammatory arthritic diseases. Materials Science and Engineering C, 2022, 134, 112585.	7.3	6
1183	Controlling the fate of regenerative cells with engineered platelet-derived extracellular vesicles. Nanoscale, 2022, 14, 6543-6556.	5.6	6
1184	Microfluidic-driven mixing of high molecular weight polymeric complexes for precise nanoparticle downsizing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102560.	3.3	6
1185	RHAMM expression tunes the response of breast cancer cell lines to hyaluronan. Acta Biomaterialia, 2022, 146, 187-196.	8.3	6
1186	<scp>3D</scp> bioprinting of gellan gumâ€based hydrogels tethered with lamininâ€derived peptides for improved cellular behavior. Journal of Biomedical Materials Research - Part A, 2022, 110, 1655-1668.	4.0	6
1187	Tailoring Natural-Based Oleogels Combining Ethylcellulose and Virgin Coconut Oil. Polymers, 2022, 14, 2473.	4.5	6
1188	Short-term variability in biomarkers of bone metabolism in sheep. Lab Animal, 2014, 43, 21-26.	0.4	5

#	Article	IF	CITATIONS
1189	Presence of starch enhances <i>in vitro</i> biodegradation and biocompatibility of a gentamicin delivery formulation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1610-1620.	3.4	5
1190	Fabrication of Hierarchical and Biomimetic Fibrous Structures to Support the Regeneration of Tendon Tissues., 2015,, 259-280.		5
1191	Epidermis recreation in spongy-like hydrogels. Materials Today, 2015, 18, 468-469.	14.2	5
1192	Nanostructured Capsules for Cartilage Tissue Engineering. Methods in Molecular Biology, 2015, 1340, 181-189.	0.9	5
1193	A Radially Organized Multipatterned Device as a Diagnostic Tool for the Screening of Topographies in Tissue Engineering Biomaterials. Tissue Engineering - Part C: Methods, 2016, 22, 914-922.	2.1	5
1194	Unveiling the effect of threeâ€dimensional bioactive fibre mesh scaffolds functionalized with silanol groups on bacteria growth. Journal of Biomedical Materials Research - Part A, 2016, 104, 2189-2199.	4.0	5
1195	Cartilage and Bone Regeneration—How Close Are We to Bedside?. , 2016, , 89-106.		5
1196	Supporting shared hypothesis testing in the biomedical domain. Journal of Biomedical Semantics, 2018, 9, 9.	1.6	5
1197	Dendrimers: Breaking the paradigm of current musculoskeletal autoimmune therapies. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1796-e1812.	2.7	5
1198	Current advances in solid free-form techniques for osteochondral tissue engineering. Bio-Design and Manufacturing, 2018, 1, 171-181.	7.7	5
1199	Gene expression changes are associated with severe bone loss and deficient fracture callus formation in rats with complete spinal cord injury. Spinal Cord, 2020, 58, 365-376.	1.9	5
1200	Marine-derived biomaterials for cancer treatment. , 2020, , 551-576.		5
1201	2nd Consensus conference on definitions on biomaterials science. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 561-562.	2.7	5
1202	Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Letters, 2021, 504, 116-124.	7.2	5
1203	Recapitulation of Thymic Function by Tissue Engineering Strategies. Advanced Healthcare Materials, 2021, 10, 2100773.	7.6	5
1204	PARP1 Inhibitor Combined With Oxaliplatin Efficiently Suppresses Oxaliplatin Resistance in Gastric Cancer-Derived Organoids via Homologous Recombination and the Base Excision Repair Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 719192.	3.7	5
1205	Encapsulation of Human Articular Chondrocytes into 3D Hydrogel: Phenotype and Genotype Characterization. Methods in Molecular Biology, 2011, 695, 167-181.	0.9	5
1206	Antithrombotic and hemocompatible properties of nanostructured coatings assembled from block copolymers. Journal of Colloid and Interface Science, 2022, 608, 1608-1618.	9.4	5

#	Article	IF	CITATIONS
1207	A polygenic risk score for multiple myeloma risk prediction. European Journal of Human Genetics, 2022, 30, 474-479.	2.8	5
1208	Glycosaminoglycans as polyelectrolytes: implications in bioactivity and assembly of biomedical devices. International Materials Reviews, 2022, 67, 765-795.	19.3	5
1209	Manganese-Labeled Alginate Hydrogels for Image-Guided Cell Transplantation. International Journal of Molecular Sciences, 2022, 23, 2465.	4.1	5
1210	Bioinks Enriched with ECM Components Obtained by Supercritical Extraction. Biomolecules, 2022, 12, 394.	4.0	5
1211	Mineralized collagen as a bioactive ink to support encapsulation of human adipose stem cells: A step towards the future of bone regeneration. Materials Science and Engineering C, 2022, 133, 112600.	7.3	5
1212	Biomimetic Antibacterial Pro-Osteogenic Cu-Sericin MOFs for Osteomyelitis Treatment. Biomimetics, 2022, 7, 64.	3.3	5
1213	Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1939-1954.	3.5	5
1214	Emulsion Crosslinking as a New Manufacturing Route to Produce Hydroxylapatite Particulates in a Network of Starch. Key Engineering Materials, 2000, 192-195, 243-246.	0.4	4
1215	Tailoring the Bioactivity of Natural Origin Inorganic – Polymeric Based Systems. Key Engineering Materials, 2003, 240-242, 111-142.	0.4	4
1216	Starch-Based Microparticles as a Novel Strategy for Tissue Engineering Applications. Key Engineering Materials, 2006, 309-311, 907-910.	0.4	4
1217	Bioâ€Inspired Mineral Growth on Porous Spherulitic Textured Poly(Lâ€lactic acid)/Bioactive Glass Composite Scaffolds. Advanced Engineering Materials, 2008, 10, B18.	3.5	4
1218	Surface modification of a biodegradable composite by UV laser ablation: <i>in vitro</i> biological performance. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, n/a-n/a.	2.7	4
1219	Smart instructive polymer substrates for tissue engineering. , 2014, , 301-326.		4
1220	The potential of DBP gels containing intervertebral disc cells for annulus fibrosus supplementation:in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E98-E107.	2.7	4
1221	Template mediated protein self-assembly as a valuable tool in regenerative therapy. Biomedical Materials (Bristol), 2018, 13, 044101.	3.3	4
1222	Supercritical Fluid Technology as a Tool to Prepare Gradient Multifunctional Architectures Towards Regeneration of Osteochondral Injuries. Advances in Experimental Medicine and Biology, 2018, 1058, 265-278.	1.6	4
1223	Interfollicular Epidermal Stem Cells: Boosting and Rescuing from Adult Skin. Methods in Molecular Biology, 2018, 1879, 101-110.	0.9	4
1224	Photocrosslinked acemannan-based 3D matrices for <i>in vitro</i> cell culture. Journal of Materials Chemistry B, 2019, 7, 4184-4190.	5.8	4

#	Article	IF	CITATIONS
1225	Electroactive polyamide/cotton fabrics for biomedical applications. Organic Electronics, 2020, 77, 105401.	2.6	4
1226	A 30-Year Long-Term Experience in Appendix Neuroendocrine Neoplasmsâ€"Granting a Positive Outcome. Cancers, 2020, 12, 1357.	3.7	4
1227	Microscopyâ€guided laser ablation for the creation of complex skin models with folliculoid appendages. Bioengineering and Translational Medicine, 2021, 6, e10195.	7.1	4
1228	Bovine Colostrum Supplementation Improves Bone Metabolism in an Osteoporosis-Induced Animal Model. Nutrients, 2021, 13, 2981.	4.1	4
1229	Modulation of stem cell response using biodegradable polyester films with different stiffness. Biomedical Engineering Advances, 2021, 2, 100007.	3.8	4
1230	Nanoparticles and Microfluidic Devices in Cancer Research. Advances in Experimental Medicine and Biology, 2020, 1230, 161-171.	1.6	4
1231	Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing. Advances in Experimental Medicine and Biology, 2020, 1230, 137-159.	1.6	4
1232	Surface Treatments and Pre-Calcification Routes to Enhance Cell Adhesion and Proliferation. , 2002, , $183-217$.		4
1233	Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide. Advances in Experimental Medicine and Biology, 2020, 1250, 159-176.	1.6	4
1234	Bioreactors for Tendon Tissue Engineering. , 2018, , 269-300.		4
1235	Natural-based polymers for biomedical applications. , 2008, , .		4
1236	Biomat _dBase: A Database on Biomaterials. The Open Tissue Engineering and Regenerative Medicine Journal, 2012, 5, 59-67.	2.6	4
1237	Texturing Hierarchical Tissues by Gradient Assembling of Microengineered Platelet‣ysates Activated Fibers. Advanced Healthcare Materials, 2021, , 2102076.	7.6	4
1238	Stimulation of Neurite Outgrowth Using Autologous NGF Bound at the Surface of a Fibrous Substrate. Biomolecules, 2022, 12, 25.	4.0	4
1239	A Design of Experiments (DoE) Approach to Optimize Cryogel Manufacturing for Tissue Engineering Applications. Polymers, 2022, 14, 2026.	4.5	4
1240	Biomimetic Surface Topography from the <i>Rubus fruticosus</i> Leaf as a Guidance of Angiogenesis in Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2943-2953.	5.2	4
1241	Hard Cellular Materials in the Human Body: Properties and Production of Foamed Polymers for Bone Replacement., 1999,, 193-206.		3
1242	Development of Highly Bioactive and Mechanically Strong Starch Thermoplastic/Bioglass [®] Composite Biomaterials. Key Engineering Materials, 2000, 192-195, 705-708.	0.4	3

#	Article	IF	CITATIONS
1243	Starch Based Copolymers as Biomaterials in Vivo Biocompatibility Study. Key Engineering Materials, 2001, 192-195, 433-436.	0.4	3
1244	Integrated compounding and injection moulding of short fibre reinforced composites. Plastics, Rubber and Composites, 2004, 33, 249-259.	2.0	3
1245	Biomimetic Apatite Formation on Different Polymeric Microspheres Modified with Calcium Silicate Solutions. Key Engineering Materials, 2006, 309-311, 279-282.	0.4	3
1246	Incorporation of Proteins with Different Isoelectric Points into Biomimetic Ca-P Coatings: A New Approach to Produce Hybrid Coatings with Tailored Properties. Key Engineering Materials, 2006, 309-311, 755-758.	0.4	3
1247	Enzymatic Degradation Behaviour of Starch Conjugated Phosphorylated Chitosan. Materials Science Forum, 2006, 514-516, 995-999.	0.3	3
1248	Formation of Bone-Like Apatite on Polymeric Surfaces Modified with -SO ₃ H Groups. Materials Science Forum, 2006, 514-516, 966-969.	0.3	3
1249	Osteochondral Tissue Engineering Constructs with a Cartilage Part Made of Poly(L-lactic Acid) / Starch Blend and a Bioactive Poly(L-Lactic Acid) Composite Layer for Subchondral Bone. Key Engineering Materials, 2006, 309-311, 1109-1112.	0.4	3
1250	Biocompatibility of starch-based polymers. , 2008, , 738-760.		3
1251	Hydrogels for spinal cord injury regeneration. , 2008, , 570-594.		3
1252	Controlling the degradation of natural polymers for biomedical applications. , 2008, , 106-128.		3
1253	Synthesis of polymer-based triglycine sulfate nanofibres by electrospinning. Journal Physics D: Applied Physics, 2009, 42, 205403.	2.8	3
1254	Temperature as a Single Onâ€Off Parameter Controlling Nanoparticles Growing, Stabilization and Fast Disentanglement. Advanced Materials, 2010, 22, 4288-4292.	21.0	3
1255	Surface microstructuring and protein patterning using hyaluronan derivatives. Microelectronic Engineering, 2013, 106, 21-26.	2.4	3
1256	ACL Injuries Identifiable for Pre-participation Imagiological Analysis: Risk Factors., 2013,, 1-15.		3
1257	Biomaterials in Preclinical Approaches for Engineering Skeletal Tissues. , 2015, , 127-139.		3
1258	Engineered hydrogel-based matrices for skin wound healing. , 2016, , 227-250.		3
1259	Biomimetic Strategies to Engineer Mineralized Human Tissues. , 2016, , 503-519.		3
1260	MRI Laxity Assessment., 2017,, 49-61.		3

#	Article	IF	Citations
1261	Advances for Treatment of Knee OC Defects. Advances in Experimental Medicine and Biology, 2018, 1059, 3-24.	1.6	3
1262	Decellularized matrices for tumor cell modeling. Methods in Cell Biology, 2020, 157, 169-183.	1.1	3
1263	Trends in biomaterials for three-dimensional cancer modeling. , 2020, , 3-41.		3
1264	Biomaterials as ECM-like matrices for 3D in vitro tumor models. , 2020, , 157-173.		3
1265	Biodetection and sensing for cancer diagnostics. , 2020, , 643-660.		3
1266	Convection patterns gradients of non-living and living micro-entities in hydrogels. Applied Materials Today, 2020, 21, 100859.	4.3	3
1267	Bioorthogonal Labeling Reveals Different Expression of Glycans in Mouse Hippocampal Neuron Cultures during Their Development. Molecules, 2020, 25, 795.	3.8	3
1268	Biofunctional nanostructured systems for regenerative medicine. Nanomedicine, 2020, 15, 1545-1549.	3.3	3
1269	Biomaterials and Microfluidics for Liver Models. Advances in Experimental Medicine and Biology, 2020, 1230, 65-86.	1.6	3
1270	Common gene variants within 3′â€untranslated regions as modulators of multiple myeloma risk and survival. International Journal of Cancer, 2021, 148, 1887-1894.	5.1	3
1271	Intracellular Autofluorescence as a New Biomarker for Cancer Stem Cells in Glioblastoma. Cancers, 2021, 13, 828.	3.7	3
1272	Microsatellite Instability Analysis in Gastric Carcinomas of Moroccan Patients. Genetic Testing and Molecular Biomarkers, 2021, 25, 116-123.	0.7	3
1273	Impact of dietary phosphorus on turbot bone mineral density and content. Aquaculture Nutrition, 2021, 27, 1128-1134.	2.7	3
1274	Expression quantitative trait loci of genes predicting outcome are associated with survival of multiple myeloma patients. International Journal of Cancer, 2021, 149, 327-336.	5.1	3
1275	Glucosamine and Its Analogues as Modulators of Amyloid-Î ² Toxicity. ACS Medicinal Chemistry Letters, 2021, 12, 548-554.	2.8	3
1276	Physicochemical features assessment of acemannan-based ternary blended films for biomedical purposes. Carbohydrate Polymers, 2021, 257, 117601.	10.2	3
1277	adipoSIGHT in Therapeutic Response: Consequences in Osteosarcoma Treatment. Bioengineering, 2021, 8, 83.	3.5	3
1278	An efficient and userâ€friendly method for cytohistological analysis of organoids. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 1012-1022.	2.7	3

#	Article	IF	Citations
1279	Structure development and control of injectionâ€molded hydroxylapatiteâ€reinforced starch/EVOH composites. Advances in Polymer Technology, 1997, 16, 263-277.	1.7	3
1280	Hydrogel Nanomaterials for Cancer Diagnosis and Therapy. , 2018, , 170-183.		3
1281	Time Resolved Emission Spectra And Electron Paramagnetic Resonance Studies Of Gd3+ Doped Calcium Phosphate Glasses. Advanced Materials Letters, 2016, 7, 277-281.	0.6	3
1282	Combining experiments and in silico modeling to infer the role of adhesion and proliferation on the collective dynamics of cells. Scientific Reports, 2021, 11, 19894.	3.3	3
1283	Analysis of a synchronous gliosarcoma and meningioma with long survival: A case report and review of the literature., 2013, 4, 151.		3
1284	Application of Gellan Gum-Based Scaffold for Regenerative Medicine. Advances in Experimental Medicine and Biology, 2020, 1249, 15-37.	1.6	3
1285	Biocomposites and Bioceramics in Tissue Engineering: Beyond the Next Decade. Springer Series in Biomaterials Science and Engineering, 2022, , 319-350.	1.0	3
1286	Isolation and Characterization of Polysaccharides from the Ascidian Styela clava. Polymers, 2022, 14, 16.	4.5	3
1287	Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface. Materials Science and Engineering C, 2021, , 112611.	7.3	3
1288	Metronidazole Delivery Nanosystem Able To Reduce the Pathogenicity of Bacteria in Colorectal Infection. Biomacromolecules, 2022, 23, 2415-2427.	5.4	3
1289	A Novel Method for the Preparation of Poly (Acrylamide-co-Acrylonitrile) Upper Critical Solution Temperature Thermosensitive Hydrogel by the Partial Dehydration of Acrylamide Grafted Polypropylene Sheets. Gels, 2022, 8, 345.	4.5	3
1290	A Novel Auto-Catalytic Deposition Methodology to Produce Calcium-Phosphate Coatings on Polymeric Biomaterials. Key Engineering Materials, 2000, 192-195, 83-86.	0.4	2
1291	Sodium Silicate Gel Induced Self-Mineralization of Different Compact and Porous Polymeric Structures. Key Engineering Materials, 2000, 192-195, 75-78.	0.4	2
1292	Biomimetic Coating of Starch Based Polymeric Foams Produced by a Calcium Silicate Based Methodology. Key Engineering Materials, 2003, 240-242, 101-104.	0.4	2
1293	Biocompatibility Study of Biodegradable Starch-Hydroxylapatite Particulates for Bone / Dentistry Fillers. Key Engineering Materials, 2003, 240-242, 725-728.	0.4	2
1294	Bioactive Composite Chitosan Membranes to Be Used in Bone Regeneration Applications. Key Engineering Materials, 2003, 240-242, 423-426.	0.4	2
1295	Natural Fibres as Reinforcement Strategy on Cork-Polymer Composites. Materials Science Forum, 2012, 730-732, 373-378.	0.3	2
1296	Correction to "Multilayered Hierarchical Capsules Providing Cell Adhesion Sites― Biomacromolecules, 2013, 14, 1250-1250.	5.4	2

#	Article	IF	CITATIONS
1297	Depth (Z-axis) control of cell morphologies on micropatterned surfaces. Journal of Bioactive and Compatible Polymers, 2015, 30, 555-567.	2.1	2
1298	Can host reaction animal models be used to predict and modulate skin regeneration?. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2295-2303.	2.7	2
1299	Return to Play Following Cartilage Injuries. , 2018, , 593-610.		2
1300	Sweet building blocks for self-assembling biomaterials with molecular recognition., 2018,, 79-94.		2
1301	3D Functional scaffolds for dental tissue engineering. , 2018, , 423-450.		2
1302	Tuneable cellulose nanocrystal and tropoelastin-laden hyaluronic acid hydrogels. Journal of Biomaterials Applications, 2019, 34, 560-572.	2.4	2
1303	An Advanced Device for Multiplanar Instability Assessment in MRI. , 2019, , 27-33.		2
1304	Biomatrices that mimic the cancer extracellular environment. , 2020, , 91-106.		2
1305	Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1465-1475.	2.7	2
1306	Gelatin micro―and nanocapsules obtained via sonochemical method. Journal of Applied Polymer Science, 2020, 137, 49584.	2.6	2
1307	Biopolymer membranes in tissue engineering. , 2020, , 141-163.		2
1308	Bioactivity of Biosilica Obtained From North Atlantic Deep-Sea Sponges. Frontiers in Marine Science, 2021, 8, .	2.5	2
1309	Hyaluronic Acid Oligomer Immobilization as an Angiogenic Trigger for the Neovascularization of TE Constructs. ACS Applied Bio Materials, 2021, 4, 6023-6035.	4.6	2
1310	Marine-derived polymeric nanostructures for cancer treatment. Nanomedicine, 2021, 16, 1931-1935.	3.3	2
1311	3DICE coding matrix multidirectional macro-architecture modulates cell organization, shape, and co-cultures endothelization network. Biomaterials, 2021, 277, 121112.	11.4	2
1312	The enhancement of the mechanical properties of a high-density polyethylene. Journal of Applied Polymer Science, 1999, 73, 2473.	2.6	2
1313	Toward Osteogenic Differentiation of Marrow Stromal Cells and In Vitro Production of Mineralized Extracellular Matrix onto Natural Scaffolds., 2009,, 263-281.		2
1314	Peroneal and Posterior Tibial Tendon Pathology. Sports Et Traumatologie, 2014, , 235-251.	0.0	2

#	Article	IF	CITATIONS
1315	Microfluidics for Processing of Biomaterials. Advances in Experimental Medicine and Biology, 2020, 1230, 15-25.	1.6	2
1316	Microfluidic Devices and Three Dimensional-Printing Strategies for in vitro Models of Bone. Advances in Experimental Medicine and Biology, 2020, 1230, 1-14.	1.6	2
1317	Evaluation of hematology, general serum biochemistry, bone turnover markers and bone marrow cytology in a glucocorticoid treated ovariectomized sheep model for osteoporosis research. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200435.	0.8	2
1318	Numerical and experimental simulation of a dynamic-rotational 3D cell culture for stratified living tissue models. Biofabrication, 2022, 14, 025022.	7.1	2
1319	Integration of polyurethane meniscus scaffold during ACL revision is not reliable at 5Âyears despite favourable clinical outcome. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 3422-3427.	4.2	2
1320	Histological Biomarkers and Protein Expression in Hyphessobrycon eques Fish Exposed to Atrazine. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	2
1321	Forecast cancer: the importance of biomimetic 3D in vitro models in cancer drug testing/discovery and therapy. In Vitro Models, 2022, 1, 119-123.	2.0	2
1322	Erythrocyte-derived liposomes for the treatment of inflammatory diseases. Journal of Drug Targeting, 2022, 30, 873-883.	4.4	2
1323	Carboxymethylchitosan/Calcium Phosphate Hybrid Materials Prepared by an Innovative Auto-Catalytic Co-Precipitation Method. Key Engineering Materials, 2005, 284-286, 701-704.	0.4	1
1324	Learning from Nature How to Design Biomimetic Calcium-Phosphate Coatings., 2004, , 123-150.		1
1325	Welcome to the Journal of Tissue Engineering and Regenerative Medicine. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1 , 1 -3.	2.7	1
1326	Surface modification for natural-based biomedical polymers., 2008,, 165-192.		1
1327	Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications. AIP Conference Proceedings, 2008, , .	0.4	1
1328	Processing of starch-based blends for biomedical applications. , 2008, , 85-105.		1
1329	Particles for controlled drug delivery. , 2008, , 597-623.		1
1330	Nanomaterials for engineering vascularized tissues. , 2013, , 229-246.		1
1331	FUNCTOR CALCULUS AND THE DISCRIMINANT METHOD. Quarterly Journal of Mathematics, 2014, 65, 1069-1110.	0.8	1
1332	Size Also Matters in Biodegradable Composite Microfiber Reinforced by Chitosan Nanofibers. Materials Research Society Symposia Proceedings, 2014, 1621, 59-69.	0.1	1

#	Article	IF	CITATIONS
1333	A Semantically Adaptable Integrated Visualization and Natural Exploration of Multi-scale Biomedical Data. , $2015, \dots$		1
1334	Bioengineered Strategies for Tendon Regeneration. , 2016, , 275-293.		1
1335	Hydrogels in Bone Tissue Engineering: A Multi-Parametric Approach. , 2016, , 165-197.		1
1336	Gene Therapy, Growth Factors, Mesenchymal Cells, New Trends and Future Perspectives. , 2016 , , $559-575$.		1
1337	Designing Microenvironments for Optimal Outcomes in Tissue Engineering and Regenerative Medicine: From Biopolymers to Culturing Conditions. , 2019, , 119-119.		1
1338	Effect of two different RAFT reactions on grafting MMA from pre-irradiated PP film. Radiation Physics and Chemistry, 2019, 159, 222-230.	2.8	1
1339	New endoscopic procedure for bladder wall closure: results from the porcine model. Scientific Reports, 2019, 9, 18747.	3.3	1
1340	Bioinspired materials and tissue engineering approaches applied to the regeneration of musculoskeletal tissues. , 2020, , 73-105.		1
1341	Metastasis in three-dimensional biomaterials. , 2020, , 191-216.		1
1342	Synthesis of mussel-inspired polydopamine-gallium nanoparticles for biomedical applications. Nanomedicine, 2021, 16, 5-17.	3.3	1
1343	Bioactive Composites Reinforced with Inorganic Glasses and Glass–Ceramics for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2014, , 331-353.	1.0	1
1344	The Influence of Processing Conditions on the Mechanical Behaviour of Uhmwpe/Ha and Pmma/Ha Composites., 1995,, 163-176.		1
1345	Enhancing Osteochondral Tissue Regeneration of Gellan Gum by Incorporating Gallus gallus var Domesticus-Derived Demineralized Bone Particle. Advances in Experimental Medicine and Biology, 2020, 1250, 79-93.	1.6	1
1346	Smooth maps to the plane and Pontryagin classes. Part I: Local aspects. Portugaliae Mathematica, 2012, 69, 41-67.	0.4	1
1347	Injectable Biodegradable Systems. , 2004, , .		1
1348	Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 0, , 110308075242061.	2.1	1
1349	Enhanced Silk Fibroin-Based Film Scaffold Using Curcumin for Corneal Endothelial Cell Regeneration. Macromolecular Research, 2021, 29, 713-719.	2.4	1
1350	Deep learning in bioengineering and biofabrication: a powerful technology boosting translation from research to clinics. Journal of 3D Printing in Medicine, 0, , .	2.0	1

#	Article	IF	Citations
1351	Tissue engineering and regenerative medicine research - how can it contribute to fight future pandemics?., 2020,, 389-416.		1
1352	A Microfludic Platform as An In Vitro Model for Biomedical Experimentation - A Cell Migration Study. , 2021, , .		1
1353	Sulfated Seaweed Polysaccharides. , 2022, , 307-340.		1
1354	Engineering of Viscosupplement Biomaterials for Treatment of Osteoarthritis: A Comprehensive Review. Advanced Engineering Materials, 0, , 2101541.	3.5	1
1355	Comparing deep eutectic solvents and cyclodextrin complexes as curcumin vehicles for blue-light antimicrobial photodynamic therapy approaches. Photochemical and Photobiological Sciences, 2022, , 1.	2.9	1
1356	Biosensors Advances: Contributions to Cancer Diagnostics and Treatment. Advances in Experimental Medicine and Biology, 2022, , 259-273.	1.6	1
1357	The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. Advances in Experimental Medicine and Biology, 2022, , 115-138.	1.6	1
1358	Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both., 2022,, 251-295.		1
1359	In Brief Materials Technology, 2001, 16, 206-209.	3.0	0
1360	Bi-Composite Sandwich Injection Moulding: A New Method of Producing Stiff and Strongly Bioactive Bone-Analogues. Key Engineering Materials, 2002, 218-220, 441-444.	0.4	0
1361	Atomic Force Microscopy as a Tool to Study In-Situ the In-Vitro Bioactivity of Starch Thermoplastic/Hydroxylapatite Biomaterials. Key Engineering Materials, 2002, 218-220, 55-60.	0.4	0
1362	Mechanical Behaviour of Polyethylene/Hydroxyapatite Bone-Analogue Composites Moulded with an Induced Anisotropy. Key Engineering Materials, 2001, 218-220, 469-474.	0.4	0
1363	Starch-Bioactive Glass Composite Microparticles: Bioactivity and Cellular Activity. Key Engineering Materials, 2005, 284-286, 761-764.	0.4	0
1364	Bisphosphonates Incorporated on a Ca-P Biomimetic Coating Produced by a Sodium Silicate Based Methodology Stimulate Osteoblastic Activity. Key Engineering Materials, 2005, 284-286, 615-618.	0.4	0
1365	Tissue Engineering of Mineralized Tissues: The Essential Elements. , 2004, , 205-222.		0
1366	Study of the Fosfosal Controlled Permeation through Glutaraldehyde Crosslinked Chitosan Membranes. Materials Science Forum, 2006, 514-516, 990-994.	0.3	0
1367	Biomimetic Synthesis of a Strontium-Substituted Apatite Coating Grown on Ti ₆ Al ₄ V Substrate. Key Engineering Materials, 2007, 330-332, 585-588.	0.4	0
1368	New biomineralization strategies for the use of natural-based polymeric materials in bone-tissue engineering., 2008,, 193-230.		0

#	Article	IF	Citations
1369	Starch-polycaprolactone based scaffolds in bone and cartilage tissue engineering approaches. , 2008, , 337-356.		0
1370	Vascularization strategies in tissue engineering. , 2008, , 761-780.		0
1371	In vivo tissue responses to natural-origin biomaterials. , 2008, , 683-698.		0
1372	In vitro evaluation of osteoconductive starch based scaffolds under dynamic conditions. , $2011, \ldots$		0
1373	Welcome to the European Society for Artificial Organs-International Federation for Artificial Organs Joint Congress in Porto, Portugal. Artificial Organs, 2011, 35, 838-839.	1.9	0
1374	Biomimetic Strategies Incorporating Enzymes into CaP Coatings Mimicking the In Vivo Environment. Methods in Molecular Biology, 2013, 1202, 111-119.	0.9	0
1375	Meeting Highlights. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 1-1.	2.7	0
1376	Research Highlights: Highlights from the latest articles in nanomedicine. Nanomedicine, 2014, 9, 573-576.	3.3	0
1377	Biomimetic Strategies to Engineer Mineralised Human Tissues. , 2015, , 1-14.		0
1378	MP23-07 BIODEGRADABLE DRUG-ELUTING STENTS: TARGETING UROTHELIAL TUMORS OF UPPER URINARY TRACT. Journal of Urology, 2016, 195, .	0.4	0
1379	350 Natural melanin promotes the differentiation of an early epidermal cell fraction and the scavenging of ROS. Journal of Investigative Dermatology, 2016, 136, S61.	0.7	0
1380	Cell Culture Methods., 2017,, 619-635.		0
1381	Biomimetics: Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior (Adv. Biosys. 7/2017). Advanced Biology, 2017, 1, .	3.0	0
1382	Skin in vitro models to study dermal white adipose tissue role in skin healing., 2018,, 327-352.		0
1383	Future Directions: What the Future Holds for TERM. , 2019, , 1-1.		0
1384	Natural Materials. , 2020, , 361-375.		0
1385	Biomedical exploitation of chitin and chitosan-based matrices via ionic liquid processing. , 2020, , 471-497.		0
1386	3D cancer spheroids and microtissues. , 2020, , 217-234.		0

#	Article	IF	CITATIONS
1387	Preface. Methods in Cell Biology, 2020, 157, xv.	1.1	O
1388	Injectable Polymeric System Based on Polysaccharides for Therapy. , 2021, , 1-18.		0
1389	Kefiran in Tissue Engineering and Regenerative Medicine. , 2021, , 1-21.		0
1390	Dendrimers in tissue engineering., 2021, , 327-336.		0
1391	Nonbiological Adjuncts for Ankle Stabilization. , 2021, , 357-363.		0
1392	Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells (Adv. Funct. Mater. 35/2021). Advanced Functional Materials, 2021, 31, 2170255.	14.9	0
1393	Glycosaminoglycans., 2021,, 1-18.		0
1394	Protein and Cell Interactions with Biodegradable Systems. , 2004, , .		0
1395	Biodegradable Composites for Biomedical Applications. , 2004, , .		0
1396	Biomimetic Approach to Drug Delivery and Optimization of Nanocarrier Systems. , 2006, , 75-86.		0
1397	Adipose Tissue-Derived MSCs: Moving to the Clinic. , 2013, , 663-681.		0
1398	Allografts in PCL Reconstructions. , 2013, , 1-13.		0
1399	Behaviour of HA Coated Ti-6A1-4V under Cyclic Bending in Hank's and Isotonic Saline Solutions: An Electrochemical and Structural Study. , 1995, , 177-194.		0
1400	Type 2 Diabetes-Related Variants Influence on the Risk of Developing Multiple Myeloma: Results from the Immense Consortium. Blood, 2014, 124, 2044-2044.	1.4	0
1401	Biomimetic Coatings: Biodegradable Polymer Application. , 0, , 888-907.		0
1402	Coatings: Bonelike Apatite via Biodegradable Polymer-Nucleated. , 0, , 1834-1846.		0
1403	Bone Tissue Engineering: Injectable Polymeric Scaffolds. , 0, , 1164-1170.		0
1404	Bone and Articular Cartilage: Tissue Engineering. , 0, , 1009-1024.		0

#	Article	IF	CITATIONS
1405	Degradable Polymeric Fibers: Processing and Applications. , 0, , 2317-2326.		0
1406	Mechanical Characterization. , 0, , 4399-4410.		0
1407	Tissue Engineering: Fiber Bonding and Particle Aggregation. , 0, , 7986-7995.		0
1408	Structural, UV-VIS-NIR Luminescence And Decay Associated Spectral Profiles Of Sm3+ Doped Calcium Phosphate Glass. Advanced Materials Letters, 2016, 7, 702-707.	0.6	0
1409	Hyaluronic Acid, PRP/Growth Factors, and Stem Cells in the Treatment of Osteochondral Lesions. , 2017, , 659-677.		O
1410	Ionic Liquids as Tools in the Production of Smart Polymeric Hydrogels. RSC Smart Materials, 2017, , 304-318.	0.1	0
1411	Characterisation of eumelanin-chitosan films. Acta Horticulturae, 2018, , 219-224.	0.2	O
1412	Abstract 1752: Inhibition of histone demethylase KDM6B as a promising target for non-small cell lung cancer., 2020,,.		0
1413	Diagnosis of Cartilage and Osteochondral Defect. , 2022, , 95-106.		O
1414	Natural polymeric biomaterials for tissue engineering. , 2022, , 75-110.		0
1415	Kefiran in Tissue Engineering and Regenerative Medicine. , 2022, , 975-995.		O
1416	Chitin and Its Derivatives., 2022,, 205-228.		0
1417	Injectable Polymeric System Based on Polysaccharides for Therapy. , 2022, , 1045-1062.		O
1418	Polysaccharides in Cancer Therapy. , 2022, , 723-743.		0
1419	Glycosaminoglycans., 2022,, 167-184.		O
1420	Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. In Vitro Models, 0, , .	2.0	0