Graciela B Raga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flood or Drought: How Do Aerosols Affect Precipitation?. Science, 2008, 321, 1309-1313.	12.6	1,682
2	The Epic 2001 Stratocumulus Study. Bulletin of the American Meteorological Society, 2004, 85, 967-978.	3.3	310
3	Warming of the Arctic lower stratosphere by light absorbing particles. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	110
4	Convective Forcing in the Intertropical Convergence Zone of the Eastern Pacific. Journals of the Atmospheric Sciences, 2003, 60, 2064-2082.	1.7	93
5	Characteristics of Cumulus Band Clouds off the Coast of Hawaii. Journals of the Atmospheric Sciences, 1990, 47, 338-356.	1.7	86
6	Mexico City air quality: a qualitative review of gas and aerosol measurements (1960–2000). Atmospheric Environment, 2001, 35, 4041-4058.	4.1	86
7	Relations between PM10 composition and cell toxicity: A multivariate and graphical approach. Chemosphere, 2007, 67, 1218-1228.	8.2	77
8	Clouds and aerosols in Puerto Rico – a new evaluation. Atmospheric Chemistry and Physics, 2008, 8, 1293-1309.	4.9	72
9	Diagnosing black carbon trends in large urban areas using carbon monoxide measurements. Journal of Geophysical Research, 2002, 107, ICC 4-1-ICC 4-9.	3.3	70
10	On the diurnal variability of particle properties related to light absorbing carbon in Mexico City. Atmospheric Chemistry and Physics, 2007, 7, 2517-2526.	4.9	68
11	World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antennas and Propagation Magazine, 2008, 50, 40-60.	1.4	65
12	Changes in Characteristics of Rapidly Intensifying Western North Pacific Tropical Cyclones Related to Climate Regime Shifts. Journal of Climate, 2018, 31, 8163-8179.	3.2	65
13	On the nature of air pollution dynamics in Mexico City—I. Nonlinear analysis. Atmospheric Environment, 1996, 30, 3987-3993.	4.1	59
14	Midsummer Gap Winds and Low-Level Circulation over the Eastern Tropical Pacific. Journal of Climate, 2007, 20, 3768-3784.	3.2	57
15	On the evolution of aerosol properties at a mountain site above Mexico City. Journal of Geophysical Research, 2000, 105, 22243-22253.	3.3	56
16	Impact of the Madden–Julian Oscillation on Western North Pacific Tropical Cyclogenesis Associated with Large-Scale Patterns. Journal of Applied Meteorology and Climatology, 2015, 54, 1413-1429.	1.5	55
17	Evidence for volcanic influence on Mexico City aerosols. Geophysical Research Letters, 1999, 26, 1149-1152.	4.0	49
18	The impact of megacity pollution on local climate and implications for the regional environment: Mexico City. Atmospheric Environment, 2001, 35, 1805-1811.	4.1	47

#	Article	IF	CITATIONS
19	Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City. Atmospheric Chemistry and Physics, 2015, 15, 9693-9709.	4.9	45
20	On the link between cloud-top radiative properties and sub-cloud aerosol concentrations. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 1419-1425.	2.7	43
21	Pollution and its Impacts on the South American Cryosphere. Earth's Future, 2015, 3, 345-369.	6.3	42
22	Some aspects of boundary layer evolution in Mexico City. Atmospheric Environment, 1999, 33, 5013-5021.	4.1	41
23	Evidence for the formation of CCN by photochemical processes in Mexico City. Atmospheric Environment, 2004, 38, 357-367.	4.1	33
24	Deaths by Lightning in Mexico (1979–2011): Threat or Vulnerability?. Weather, Climate, and Society, 2014, 6, 434-444.	1.1	32
25	On the formation of an elevated ozone peak in Mexico City. Atmospheric Environment, 2000, 34, 4097-4102.	4.1	31
26	The shapes of very small cirrus particles derived from in situ measurements. Geophysical Research Letters, 2005, 32, .	4.0	29
27	Regional climate of the subtropical central Andes using high-resolution CMIP5 models—partÂI: past performance (1980–2005). Climate Dynamics, 2017, 49, 3937-3957.	3.8	28
28	Changes in Intense Precipitation Events in Mexico City. Journal of Hydrometeorology, 2015, 16, 1804-1820.	1.9	27
29	Regional winter climate of the southern central Andes: Assessing the performance of ERAâ€Interim for climate studies. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8568-8582.	3.3	26
30	Intensification of tropical cyclones in the GFS model. Atmospheric Chemistry and Physics, 2009, 9, 1407-1417.	4.9	25
31	lce-nucleating particles in a coastal tropical site. Atmospheric Chemistry and Physics, 2019, 19, 6147-6165.	4.9	25
32	Evolution of anthropogenic aerosols in the coastal town of Salina Cruz, Mexico: Part I particle dynamics and land–sea interactions. Science of the Total Environment, 2006, 367, 288-301.	8.0	23
33	Science-Policy Dialogues for Water Security: Addressing Vulnerability and Adaptation to Global Change in the Arid Americas. Environment, 2012, 54, 30-42.	1.4	22
34	Landfalling tropical cyclones on the Pacific coast of Mexico: 1850-2010. Atmosfera, 2013, 26, 209-220.	0.8	22
35	Global association of aerosol with flash density of intense lightning. Environmental Research Letters, 2017, 12, 114037.	5.2	22
36	Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. PartÂll: future projections for the twenty-first century. Climate Dynamics, 2018, 51, 2913-2925.	3.8	22

#	Article	IF	CITATIONS
37	Microphysical and radiative properties of small cumulus clouds over the sea. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 1399-1417.	2.7	20
38	Vertical distribution of aerosol particles and CCN in clear air around the British Isles. Atmospheric Environment, 1995, 29, 673-684.	4.1	19
39	On the Composition of Airborne Particles Influenced by Emissions of the Volcano Popocatépetl in Mexico. Natural Hazards, 2004, 31, 21-37.	3.4	19
40	The environmental impact of the Puyehue–Cordon Caulle 2011 volcanic eruption on Buenos Aires. Natural Hazards and Earth System Sciences, 2013, 13, 2319-2330.	3.6	18
41	Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale. Atmospheric Chemistry and Physics, 2016, 16, 15359-15370.	4.9	18
42	The validity of the kinetic collection equation revisited. Atmospheric Chemistry and Physics, 2008, 8, 969-982.	4.9	17
43	On the distinct interannual variability of tropical cyclone activity over the easter North Pacific. Atmosfera, 2015, 28, 161-178.	0.8	17
44	On the Transport of Urban Pollution in an Andean Mountain Valley. Aerosol and Air Quality Research, 2016, 16, 593-605.	2.1	17
45	A Multiscale Analysis of the Tropospheric and Stratospheric Mechanisms Leading to the March 2016 Extreme Surface Ozone Event in Mexico City. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4782-4799.	3.3	16
46	Spatio-temporal distribution of burned areas by ecoregions in Mexico and Central America. International Journal of Remote Sensing, 2018, 39, 949-970.	2.9	15
47	African dust particles over the western Caribbean – Part I: Impact on air quality over the Yucatán Peninsula. Atmospheric Chemistry and Physics, 2021, 21, 239-253.	4.9	15
48	Possible Influence of Tropical Indian Ocean Sea Surface Temperature on the Proportion of Rapidly Intensifying Western North Pacific Tropical Cyclones during the Extended Boreal Summer. Journal of Climate, 2020, 33, 9129-9143.	3.2	15
49	History of Aerosol-Cloud Interactions Derived from Observations in Mountaintop Clouds in Puerto Rico. Aerosol and Air Quality Research, 2016, 16, 674-688.	2.1	15
50	Cloud-to-ground lightning over Mexico and adjacent oceanic regions: a preliminary climatology using the WWLLN dataset. Annales Geophysicae, 2010, 28, 2047-2057.	1.6	14
51	High lightning activity in maritime clouds near Mexico. Atmospheric Chemistry and Physics, 2012, 12, 8055-8072.	4.9	14
52	Properties of particulate pollution in the port city of Valparaiso, Chile. Atmospheric Environment, 2017, 171, 301-316.	4.1	14
53	Weather regimes associated with summer rainfall variability over southern Mexico. International Journal of Climatology, 2018, 38, 169-186.	3.5	14
54	Enhanced Predictability of Rapidly Intensifying Tropical Cyclones over the Western North Pacific Associated with Snow Depth Changes over the Tibetan Plateau. Journal of Climate, 2022, 35, 2093-2110.	3.2	14

#	Article	IF	CITATIONS
55	Microphysical Characteristics through the Melting Region of a Midlatitude Winter Storm. Journals of the Atmospheric Sciences, 1991, 48, 843-855.	1.7	13
56	The validity of the kinetic collection equation revisited – Part 3: Sol–gel transition under turbulent conditions. Atmospheric Chemistry and Physics, 2013, 13, 521-529.	4.9	13
57	Recent decrease in genesis productivity of tropical cloud clusters over the Western North Pacific. Climate Dynamics, 2019, 52, 5819-5831.	3.8	13
58	Characterization of culturable airborne microorganisms in the Yucatan Peninsula. Atmospheric Environment, 2020, 223, 117183.	4.1	13
59	Climatology of precipitation and lightning over the Pacific coast of southern Mexico retrieved from Tropical Rainfall Measuring Mission satellite products and World Wide Lightning Location Network data. International Journal of Remote Sensing, 2012, 33, 2831-2850.	2.9	12
60	Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus, Series B: Chemical and Physical Meteorology, 2015, 67, 27876.	1.6	12
61	Potential Large-Scale Forcing Mechanisms Driving Enhanced North Atlantic Tropical Cyclone Activity since the Mid-1990s. Journal of Climate, 2018, 31, 1377-1397.	3.2	12
62	Impact of the Extended Boreal Summer Intraseasonal Oscillation on Western North Pacific Tropical Cloud Cluster Genesis Productivity. Journal of Climate, 2018, 31, 9175-9191.	3.2	12
63	Aerosol particles in the Mexican East Pacific Part I: processing and vertical redistribution by clouds. Atmospheric Chemistry and Physics, 2005, 5, 3081-3091.	4.9	11
64	Smoke emissions from agricultural fires in Mexico and Central America. Journal of Applied Remote Sensing, 2019, 13, 1.	1.3	11
65	Characterization of aerosol particles during a high pollution episode over Mexico City. Scientific Reports, 2021, 11, 22533.	3.3	11
66	Particle habit in tropical ice clouds during CRYSTAL-FACE: Comparison of two remote sensing techniques with in situ observations. Journal of Geophysical Research, 2005, 110, .	3.3	10
67	Spectrothermography of carbonaceous particles. Journal of Atmospheric Chemistry, 2007, 57, 153-169.	3.2	10
68	On particle-bound polycyclic aromatic hydrocarbons (PPAH) and links to gaseous emissions in Mexico city. Atmospheric Environment, 2018, 194, 31-40.	4.1	10
69	Synoptic and local circulations associated with events of high particulate pollution in Valparaiso, Chile. Atmospheric Environment, 2019, 196, 164-178.	4.1	10
70	Estimating the impact of natural and anthropogenic emissions on cloud chemistry. Atmospheric Research, 2002, 62, 33-55.	4.1	9
71	Evolution of anthropogenic aerosols in the coastal town of Salina Cruz, Mexico: Part II particulate phase chemistry. Science of the Total Environment, 2006, 372, 287-298.	8.0	9
72	Characteristics of mesoscale convection over northwestern Mexico, the Gulf of California, and Baja California Peninsula. International Journal of Climatology, 2021, 41, E1062.	3.5	9

#	Article	IF	CITATIONS
73	The influence of organic compounds on the development of precipitation acidity in maritime clouds. Atmospheric Chemistry and Physics, 2004, 4, 1097-1111.	4.9	8
74	The influence of large-scale circulations on the extremely inactive tropical cyclone activity in 2010 over the western North Pacific. Atmosfera, 2014, 27, 353-365.	0.8	8
75	Impact of the boreal summer quasiâ€biweekly oscillation on Eastern North Pacific tropical cyclone activity. International Journal of Climatology, 2018, 38, 1353-1365.	3.5	8
76	Changes in extended boreal summer tropical cyclogenesis associated with large-scale flow patterns over the western North Pacific in response to the global warming hiatus. Climate Dynamics, 2021, 56, 515-535.	3.8	8
77	The validity of the kinetic collection equation revisited – Part 2: Simulations for the hydrodynamic kernel. Atmospheric Chemistry and Physics, 2010, 10, 7189-7195.	4.9	7
78	Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption. Natural Hazards and Earth System Sciences, 2016, 16, 2159-2175.	3.6	7
79	The Unusual Early Morning Tornado in Ciudad Acuña, Coahuila, Mexico, on 25 May 2015. Monthly Weather Review, 2017, 145, 2049-2069.	1.4	7
80	Modulation of boreal extended summer tropical cyclogenesis over the northwest Pacific by the quasiâ€biweekly oscillation under different El Niñoâ€southern oscillation phases. International Journal of Climatology, 2020, 40, 858-873.	3.5	7
81	Call for comments: climate and clean air responses to covid-19. International Journal of Public Health, 2020, 65, 525-528.	2.3	7
82	Impact of tibetan plateau snow cover on tropical cyclogenesis via the Madden–Julian oscillation during the following boreal summer. Climate Dynamics, 2021, 56, 3025-3043.	3.8	7
83	Modulation of North Pacific and North Atlantic Tropical Cyclones by Tropical Transbasin Variability and ENSO during May–October. Journal of Climate, 2021, 34, 2127-2144.	3.2	7
84	Measurement report: Ice nucleating abilities of biomass burning, African dust, and sea spray aerosol particles over the Yucatán Peninsula. Atmospheric Chemistry and Physics, 2021, 21, 4453-4470.	4.9	7
85	ADABBOY: African Dust And Biomass Burning Over Yucatan. Bulletin of the American Meteorological Society, 2021, 102, E1543-E1556.	3.3	7
86	On the parameterization of turbulent fluxes over the tropical Eastern Pacific. Atmospheric Chemistry and Physics, 2007, 7, 635-643.	4.9	6
87	Monte Carlo simulations of two-component drop growth by stochastic coalescence. Atmospheric Chemistry and Physics, 2009, 9, 1241-1251.	4.9	6
88	The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution. Atmospheric Chemistry and Physics, 2017, 17, 6895-6905.	4.9	6
89	Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific. Theoretical and Applied Climatology, 2018, 134, 707-720.	2.8	6
90	Ultrafine aerosol particles in the western Caribbean: A first case study in Merida. Atmospheric Pollution Research, 2020, 11, 1767-1775.	3.8	6

#	Article	IF	CITATIONS
91	Characterization of ice nucleating particles in rainwater, cloud water, and aerosol samples at two different tropical latitudes. Atmospheric Research, 2021, 250, 105356.	4.1	6
92	Particle-bound Polycyclic Aromatic Hydrocarbons (pPAHs) in Merida, Mexico. Aerosol and Air Quality Research, 2021, 21, 200245.	2.1	6
93	The properties of convective storms in central Mexico: A radar and lightning approach. Atmosfera, 2013, 26, 461-472.	0.8	5
94	A Weather-Pattern-Based Evaluation of the Performance of CMIP5 Models over Mexico. Climate, 2020, 8, 5.	2.8	5
95	The impact of biomass burning emissions on protected natural areas in central and southern Mexico. Environmental Science and Pollution Research, 2021, 28, 17275-17289.	5.3	5
96	A numerical study of cell merger over Cuba – Part I: implementation of the ARPS/MM5 models. Annales Geophysicae, 2006, 24, 2781-2792.	1.6	5
97	Circulation patterns influencing the concentration of pollutants in central Mexico. Atmospheric Environment, 2022, 274, 118976.	4.1	5
98	Atmospheric expansion wave simulations of Popocatepetl explosions. Journal of Geophysical Research, 2002, 107, ACL 9-1.	3.3	4
99	A numerical study of cell merger over Cuba – Part II: sensitivity to environmental conditions. Annales Geophysicae, 2006, 24, 2793-2808.	1.6	4
100	Observations and Forecasts from the Landfall of Tropical Cyclones John, Lane, and Paul (2006) over Northwestern Mexico. Weather and Forecasting, 2012, 27, 1373-1393.	1.4	4
101	Rapid deepening of tropical cyclones in the northeastern Tropical Pacific: The relationship with oceanic eddies. Atmosfera, 2015, 28, 27-42.	0.8	4
102	The UNAM-Droplet Freezing Assay: An Evaluation of the Ice Nucleating Capacity of the Sea-Surface Microlayer and Surface Mixed Layer in Tropical and Subpolar Waters. , 0, , .		4
103	HAWC response to atmospheric electricity activity. , 2017, , .		3
104	The Combined QBO and ENSO Influence on Tropical Cyclone Activity over the North Atlantic Ocean. Atmosphere, 2021, 12, 1588.	2.3	3
105	Mesoscale Structure of Precipitation Bands in a North Atlantic Winter Storm. Monthly Weather Review, 1994, 122, 2039-2051.	1.4	2
106	Observational Evidence of the Transition from Shallow to Deep Convection in the Western Caribbean Trade Winds. Atmosphere, 2019, 10, 700.	2.3	2
107	Meridional Migration of Eastern North Pacific Tropical Cyclogenesis: Joint Contribution of Interhemispheric Temperature Differential and ENSO. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034504.	3.3	2
108	High concentrations of ice crystals in upper-tropospheric tropical clouds: is there a link to biomass and fossil fuel combustion?. Atmospheric Chemistry and Physics, 2022, 22, 2269-2292.	4.9	2

#	Article	IF	CITATIONS
109	Assessment of global numerical models in the East Pacific as evidenced from EPIC2001 project. Dynamics of Atmospheres and Oceans, 2009, 46, 2-18.	1.8	1
110	Aerosol particles in the Mexican East Pacific. Part II: Numerical simulations of the impact of enhanced CCN on precipitation development. Atmosfera, 2013, 26, 221-241.	0.8	1
111	Reply to "Comment on †Deaths by Lightning in Mexico (1979†"2011): Threat or Vulnerability?'― Wea Climate, and Society, 2015, 7, 275-278.	ither, 1.1	1
112	Spatio-temporal mapping of glacier fluctuations in the subtropical Central Andes: Case studies of Alto Del Plomo and Volcan Maipo. Remote Sensing Applications: Society and Environment, 2017, 8, 140-147.	1.5	1
113	The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 2: Observational evidence of gel formation in warm clouds. Atmospheric Chemistry and Physics, 2019, 19, 14917-14932.	4.9	1
114	Study of Some Aerosol Features in Buenos Aires. American Journal of Environmental Engineering, 2013, 3, 71-76.	0.5	1
115	Calibration of a Lyman-α Sensor to Measure In-Cloud Temperature and Clear-Air Dewpoint Temperature. Journal of Atmospheric and Oceanic Technology, 1993, 10, 15.	1.3	0
116	New Directions: Are we prepared for a wet MIRAGE?. Atmospheric Environment, 2005, 39, 7447-7448.	4.1	0
117	ON THE MODELING OF DEEP CONVECTIVE CLOUDS OVER MEXICO CITY. , 2001, , .		0
118	The influence of large-scale circulations on the extremely inactive tropical cyclone activity in 2010 over the western North Pacific. Atmosfera, 2015, 27, 353-365.	0.8	0
119	Future Thermal Assessment for the Phenological Development of Potato [Solanum tuberosum (L.)] in Cuba. Environmental Sciences Proceedings, 2020, 4, .	0.3	0
120	Inter-annual variability of ice nucleating particles in Mexico city. Atmospheric Environment, 2022, 273, 118964.	4.1	0
121	Mexican agricultural soil dust as a source of ice nucleating particles. Atmospheric Chemistry and Physics, 2022, 22, 6435-6447.	4.9	0