Damien J Batstone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451850/publications.pdf

Version: 2024-02-01

208 papers 16,551 citations

71 h-index

10986

122 g-index

214 all docs

214 docs citations

times ranked

214

11191 citing authors

#	Article	IF	CITATIONS
1	Kinetics of aerobic cellulose degradation in raw municipal wastewater. Science of the Total Environment, 2022, 802, 149852.	8.0	4
2	Naturally illuminated photobioreactors for resource recovery from piggery and chicken-processing wastewaters utilising purple phototrophic bacteria. Water Research, 2022, 214, 118194.	11.3	21
3	Producing microbial-based protein from reactive nitrogen recovered from wastewater. , 2022, , 223-244.		O
4	Established full-scale applications for energy recovery from water: anaerobic digestion. , 2022, , 99-139.		2
5	Outdoor demonstration-scale flat plate photobioreactor for resource recovery with purple phototrophic bacteria. Water Research, 2022, 216, 118327.	11.3	14
6	Characterising sedimentation velocity of primary waste water solids and effluents. Water Research, 2022, 219, 118555.	11.3	5
7	Light attenuation in enriched purple phototrophic bacteria cultures: Implications for modelling and reactor design. Water Research, 2022, 219, 118572.	11.3	10
8	Creating value from purple phototrophic bacteria via single-cell protein production. Current Opinion in Biotechnology, 2022, 76, 102726.	6.6	11
9	Prediction of mass and volumetric flows in a full-scale industrial waste treatment plant. Chemical Engineering Journal, 2022, 445, 136774.	12.7	3
10	Method development for PPB culture screening, pigment analysis with UPLC-UV-HRMS vs. spectrophotometric methods, and spectral decomposition-based analysis. Talanta, 2022, 246, 123490.	5 . 5	2
11	Predicting long-term solid accumulation in waste stabilisation lagoons through a combined CFD-process model approach. Chemical Engineering Research and Design, 2022, 184, 267-276.	5.6	5
12	Anaerobic digestion. , 2022, , 171-194.		0
13	Assessment of sludge management strategies in wastewater treatment systems using a plant-wide approach. Water Research, 2021, 190, 116714.	11.3	24
14	Purple phototrophic bacteria granules under high and low upflow velocities. Water Research, 2021, 190, 116760.	11.3	16
15	Substrate availability drives mixed culture fermentation of glucose to lactate at steady state. Biotechnology and Bioengineering, 2021, 118, 1617-1629.	3.3	8
16	Purple phototrophic bacteria are outcompeted by aerobic heterotrophs in the presence of oxygen. Water Research, 2021, 194, 116941.	11.3	26
17	Uncertainty analysis of rising sewer models with respect to input parameters and model structure using Monte Carlo simulations and computational fluid dynamics. Water Science and Technology, 2021, 83, 2486-2503.	2.5	2
18	Hydrodynamic analysis of full-scale in-situ biogas upgrading in manure digesters. Water Research, 2021, 203, 117528.	11.3	3

#	Article	IF	CITATIONS
19	Post-treatment options for anaerobically digested sludge: Current status and future prospect. Water Research, 2021, 205, 117665.	11.3	28
20	Modelling hydrolysis: Simultaneous versus sequential biodegradation of the hydrolysable fractions. Waste Management, 2020, 101, 150-160.	7.4	13
21	Purple phototrophic bacteria as a platform to create the next generation of wastewater treatment plants: Energy and resource recovery., 2020,, 255-280.		4
22	Production of single-cell proteins from organic matter and residual nitrogen., 2020,, 355-389.		3
23	Application of purple phototrophic bacteria in a biofilm photobioreactor for single cell protein production: Biofilm vs suspended growth. Water Research, 2020, 181, 115909.	11.3	31
24	Autotrophic sulfide removal by mixed culture purple phototrophic bacteria. Water Research, 2020, 182, 115896.	11.3	13
25	Anaerobic digestion of purple phototrophic bacteria – The release step of the partition-release-recover concept. Bioresource Technology, 2020, 306, 123125.	9.6	5
26	Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnology Advances, 2020, 43, 107567.	11.7	103
27	Exploring the inhibition boundaries of mixed cultures of purple phototrophic bacteria for wastewater treatment in anaerobic conditions. Water Research, 2020, 183, 116057.	11.3	18
28	Municipal wastewater treatment by purple phototropic bacteria at low infrared irradiances using a photo-anaerobic membrane bioreactor. Water Research, 2020, 173, 115535.	11.3	15
29	Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. Environmental Science & Technology, 2019, 53, 11066-11079.	10.0	126
30	Saline wastewater treatment with purple phototrophic bacteria. Water Research, 2019, 160, 259-267.	11.3	63
31	Transport of pharmaceuticals during electrodialysis treatment of wastewater. Water Research, 2019, 161, 496-504.	11.3	43
32	Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water Research X, 2019, 4, 100031.	6.1	80
33	Metabolic modelling of mixed culture anaerobic microbial processes. Current Opinion in Biotechnology, 2019, 57, 137-144.	6.6	21
34	Evaluation of anaerobic digestion post-treatment options using an integrated model-based approach. Water Research, 2019, 156, 264-276.	11.3	16
35	Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems. Water Research, 2019, 155, 12-25.	11.3	78
36	Self-Sustained Nitrite Accumulation at Low pH Greatly Enhances Volatile Solids Destruction and Nitrogen Removal in Aerobic Sludge Digestion. Environmental Science & Environmental Science & 2019, 53, 1225-1234.	10.0	30

#	Article	IF	Citations
37	Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge. Water Research, 2019, 149, 406-413.	11.3	45
38	Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors - A review. Water Research, 2019, 149, 322-341.	11.3	90
39	Relationship between microbial community, operational factors and ammonia inhibition resilience in anaerobic digesters at low and moderate ammonia background concentrations. New Biotechnology, 2018, 44, 23-30.	4.4	31
40	The Value of Wastewater Derived Struvite as a Source of Phosphorus Fertilizer. Clean - Soil, Air, Water, 2018, 46, 1700027.	1.1	12
41	Nutrient recovery from wastewater through pilot scale electrodialysis. Water Research, 2018, 135, 57-65.	11.3	166
42	Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae – A comparison. Bioresource Technology, 2018, 254, 214-223.	9.6	144
43	Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation. Applied Energy, 2018, 222, 840-846.	10.1	45
44	Anaerobic Co-Digestion of Sludge and Organic Food Wasteâ€"Performance, Inhibition, and Impact on the Microbial Community. Energies, 2018, 11, 2325.	3.1	41
45	A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 2018, 270, 612-626.	9.6	106
46	Humic acid inhibition of hydrolysis and methanogenesis with different anaerobic inocula. Waste Management, 2018, 80, 130-136.	7.4	49
47	Enhancing soluble phosphate concentration in sludge liquor by pressurised anaerobic digestion. Water Research, 2018, 145, 660-666.	11.3	21
48	A modelling approach to assess the long-term stability of a novel microbial/electrochemical system for the treatment of acid mine drainage. RSC Advances, 2018, 8, 18682-18689.	3.6	6
49	On-farm trials of practical options for hydrogen sulphide removal from piggery biogas. Chemical Engineering Research and Design, 2018, 117, 675-683.	5.6	7
50	Modelâ€based analysis and optimization of a fullâ€scale industrial highâ€rate anaerobic bioreactor. Biotechnology and Bioengineering, 2018, 115, 2726-2739.	3.3	13
51	White and infrared light continuous photobioreactors for resource recovery from poultry processing wastewater – A comparison. Water Research, 2018, 144, 665-676.	11.3	64
52	Sorbents can tailor nitrogen release from organic wastes to match the uptake capacity of crops. Science of the Total Environment, 2018, 645, 1474-1483.	8.0	10
53	Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems. Water Research, 2018, 143, 127-135.	11.3	71
54	Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion. Water Research, 2018, 130, 13-19.	11.3	127

#	Article	IF	Citations
55	Application of Respirometric Techniques to Determine COD Fractionation and Biokinetic Parameters of Sieved Wastewater. Proceedings of the Water Environment Federation, 2018, 2018, 106-121.	0.0	3
56	WERF Project ENER5R12: Mainstream Anaerobic Treatment Process Using the UASB Process. Proceedings of the Water Environment Federation, 2018, 2018, 982-987.	0.0	0
57	Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Research, 2017, 113, 42-49.	11.3	102
58	A mechanistic model for anaerobic phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM). Water Research, 2017, 116, 241-253.	11.3	68
59	Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies. Water Research, 2017, 113, 97-110.	11.3	82
60	Predicting scale formation during electrodialytic nutrient recovery. Water Research, 2017, 110, 202-210.	11.3	28
61	Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters. Waste Management, 2017, 64, 79-87.	7.4	5
62	Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. Water Research, 2017, 113, 111-123.	11.3	96
63	Modelling an industrial anaerobic granular reactor using a multi-scale approach. Water Research, 2017, 126, 488-500.	11.3	29
64	Nutrient removal and energy recovery from high-rate activated sludge processes – Impact of sludge age. Bioresource Technology, 2017, 245, 1155-1161.	9.6	56
65	Modelling recovery of ammonium from urine by electro-concentration in a 3-chamber cell. Water Research, 2017, 124, 210-218.	11.3	28
66	Low-cost filter media for removal of hydrogen sulphide from piggery biogas. Chemical Engineering Research and Design, 2017, 105, 117-126.	5.6	33
67	Editorial: Resource Recovery from Wastewater by Biological Technologies. Frontiers in Microbiology, 2017, 8, 998.	3.5	6
68	The Good, the Bad, and the Ugly Carbon: Optimizing Heterotrophic BNR Processes by Engineered Solids Fractionation Using Rotating Belt Filters. Proceedings of the Water Environment Federation, 2017, 2017, 4276-4293.	0.0	0
69	High-rate, High Temperature Acetotrophic Methanogenesis Governed by a Three Population Consortium in Anaerobic Bioreactors. PLoS ONE, 2016, 11, e0159760.	2.5	14
70	Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability. Microorganisms, 2016, 4, 2.	3.6	36
71	Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor. Water Science and Technology, 2016, 73, 1052-1060.	2.5	5
72	Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction. Scientific Reports, 2016, 6, 39795.	3.3	5

#	Article	IF	Citations
73	Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Research, 2016, 95, 370-382.	11.3	113
74	Low temperature treatment of domestic wastewater by purple phototrophic bacteria: Performance, activity, and community Water Research, 2016, 100, 537-545.	11.3	84
75	Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Research, 2016, 100, 486-495.	11.3	159
76	Good modelling practice in applying computational fluid dynamics for WWTP modelling. Water Science and Technology, 2016, 73, 969-982.	2.5	56
77	A mechanistic model for electrochemical nutrient recovery systems. Water Research, 2016, 94, 176-186.	11.3	36
78	Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, substrate characterisation and plant-wide integration. Water Research, 2016, 98, 138-146.	11.3	60
79	Nutrients in Australian agro-industrial residues: production, characteristics and mapping. Australasian Journal of Environmental Management, 2016, 23, 206-222.	1.1	14
80	Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion. Waste Management, 2016, 51, 72-80.	7.4	35
81	Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP. Water Research, 2016, 100, 169-183.	11.3	63
82	Pilot-scale testing of a leachbed for anaerobic digestion of livestock residues on-farm. Waste Management, 2016, 50, 300-308.	7.4	21
83	Analysis of electron transfer dynamics in mixed community electroactive microbial biofilms. RSC Advances, 2016, 6, 3650-3660.	3.6	23
84	Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME Journal, 2016, 10, 621-631.	9.8	146
85	Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology, 2016, 7, 2106.	3.5	354
86	Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. PLoS ONE, 2016, 11, e0161979.	2.5	41
87	Development of a Mainstream Anaerobic Treatment Process Using a Hybrid UASB-Micro Sieve System. Proceedings of the Water Environment Federation, 2016, 2016, 2686-2695.	0.0	2
88	Evaluating the potential impact of proton carriers on syntrophic propionate oxidation. Scientific Reports, 2015, 5, 18364.	3.3	23
89	Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown. Scientific Reports, 2015, 5, 16631.	3.3	31
90	Evaluating DNA Extraction Methods for Community Profiling of Pig Hindgut Microbial Community. PLoS ONE, 2015, 10, e0142720.	2.5	8

#	Article	IF	CITATIONS
91	Can Direct Conversion of Used Nitrogen to New Feed and Protein Help Feed the World?. Environmental Science & Environmental Sci	10.0	216
92	Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Research, 2015, 81, 288-293.	11.3	102
93	Carbon neutrality: An ultimate goal towards sustainable wastewater treatment plants. Water Research, 2015, 87, 413-415.	11.3	48
94	A systematic study of multiple minerals precipitation modelling in wastewater treatment. Water Research, 2015, 85, 359-370.	11.3	66
95	Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina. Colloids and Surfaces B: Biointerfaces, 2015, 126, 303-312.	5.0	7
96	Anaerobic membrane bioreactors enable high rate treatment of slaughterhouse wastewater. Biochemical Engineering Journal, 2015, 97, 132-141.	3.6	96
97	Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Research, 2015, 81, 208-215.	11.3	54
98	Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation. Environmental Science & Environ	10.0	19
99	A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models. Water Research, 2015, 85, 255-265.	11.3	59
100	Modelling Anaerobic Digestion Processes. , 2015, , 133-160.		1
101	Impact of dewatering technologies on specific methanogenic activity. Water Research, 2015, 82, 78-85.	11.3	19
102	Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Biotechnology, 2015, 14, 595-613.	8.1	154
103	Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion. Water Research, 2015, 70, 235-245.	11.3	59
104	Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated byÂnovel PAO clade Comamonadaceae. Water Research, 2015, 69, 173-182.	11.3	132
105	Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 2015, 140, 2-11.	8.2	295
106	A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria. Bioelectrochemistry, 2015, 102, 10-20.	4.6	10
107	Technologies to Recover Nutrients from Waste Streams: A Critical Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 385-427.	12.8	331
108	A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water Research, 2015, 68, 342-353.	11.3	96

#	Article	IF	CITATIONS
109	Engineered fractionation of primary solids – A comparison of primary treatments using rotating belt filters and primary clarifiers. Proceedings of the Water Environment Federation, 2015, 2015, 4950-4959.	0.0	8
110	Understanding Primary Treatment Performance and Carbon Diversion Potential of Rotating Belt Filters Using Computational Fluid Dynamics. Proceedings of the Water Environment Federation, 2015, 2015, 1249-1262.	0.0	4
111	Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Research, 2014, 67, 355-366.	11.3	92
112	Anaerobic model for high-solids or high-temperature digestion – additional pathway of acetate oxidation. Water Science and Technology, 2014, 69, 1634-1640.	2.5	25
113	The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology, 2014, 27, 142-149.	6.6	178
114	Variable Cell Morphology Approach for Individual-Based Modeling of Microbial Communities. Biophysical Journal, 2014, 106, 2037-2048.	0.5	31
115	Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Research, 2014, 50, 18-26.	11.3	139
116	Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Current Opinion in Biotechnology, 2014, 27, 55-64.	6.6	314
117	Regulation mechanisms in mixed and pure culture microbial fermentation. Biotechnology and Bioengineering, 2014, 111, 2139-2154.	3.3	87
118	Controlling mechanisms in directional growth of aggregated archaeal cells. Soft Matter, 2014, 10, 9615-9625.	2.7	4
119	Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Applied Energy, 2014, 136, 23-31.	10.1	52
120	Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided cell configurations. Journal of Hazardous Materials, 2014, 279, 111-116.	12.4	33
121	Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology, 2014, 169, 421-427.	9.6	171
122	Effects of Temperature and Hydraulic Retention Time on Acetotrophic Pathways and Performance in High-Rate Sludge Digestion. Environmental Science & En	10.0	92
123	Dynamic multidimensional modelling of submerged membrane bioreactor fouling. Journal of Membrane Science, 2014, 467, 153-161.	8.2	42
124	Real-Time Measurements of the Redox States of c-Type Cytochromes in Electroactive Biofilms: A Confocal Resonance Raman Microscopy Study. PLoS ONE, 2014, 9, e89918.	2.5	54
125	Electrochemical Treatment of Reverse Osmosis Concentrates. , 2014, , 644-651.		1
126	Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chemistry Central Journal, 2013, 7, 46.	2.6	100

#	Article	IF	CITATIONS
127	Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge. Systematic and Applied Microbiology, 2013, 36, 281-290.	2.8	22
128	Anaerobic digestion of swine effluent: Impact of production stages. Biomass and Bioenergy, 2013, 48, 121-129.	5.7	21
129	Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Research, 2013, 47, 7098-7108.	11.3	111
130	Methanosarcinaceae and Acetate-Oxidizing Pathways Dominate in High-Rate Thermophilic Anaerobic Digestion of Waste-Activated Sludge. Applied and Environmental Microbiology, 2013, 79, 6491-6500.	3.1	121
131	Free Nitrous Acid (FNA)-Based Pretreatment Enhances Methane Production from Waste Activated Sludge. Environmental Science & Eamp; Technology, 2013, 47, 11897-11904.	10.0	234
132	Nucleation and growth kinetics of struvite crystallization. Water Research, 2013, 47, 2890-2900.	11.3	125
133	Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt–IrO2, Ti/SnO2–Sb and boron-doped diamond electrodes. Water Research, 2013, 47, 242-250.	11.3	132
134	Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. Water Research, 2013, 47, 6546-6557.	11.3	108
135	Teaching uncertainty propagation as a core component in process engineering statistics. Education for Chemical Engineers, 2013, 8, e132-e139.	4.8	28
136	Fate of pathogen indicators in a domestic blend of food waste and wastewater through a two-stage anaerobic digestion system. Water Science and Technology, 2013, 67, 366-373.	2.5	11
137	Benchmark simulation models, quo vadis?. Water Science and Technology, 2013, 68, 1-15.	2.5	49
138	Nutrient solubilization and its availability following anaerobic digestion. Water Science and Technology, 2013, 67, 756-763.	2. 5	29
139	Impact of Iron Salt Dosage to Sewers on Downstream Anaerobic Sludge Digesters: Sulfide Control and Methane Production. Journal of Environmental Engineering, ASCE, 2013, 139, 594-601.	1.4	93
140	The critical flux method for reduced filter membrane fouling when monitoring highâ€solids digesters. Biotechnology Progress, 2013, 29, 1059-1063.	2.6	2
141	Shearing of biofilms enables selective layer based microbial sampling and analysis. Biotechnology and Bioengineering, 2013, 110, 2600-2605.	3.3	30
142	Biochemical Methane Potential of Beef Feedlot Manure: Impact of Manure Age and Storage. Journal of Environmental Quality, 2013, 42, 1205-1212.	2.0	20
143	Towards a generalized physicochemical framework. Water Science and Technology, 2012, 66, 1147-1161.	2.5	65
144	Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge. Water Science and Technology, 2012, 65, 7-14.	2.5	9

#	Article	IF	Citations
145	Computational Fluid Dynamics (CFD): What is Good CFD-Modeling Practice and What Can Be the Added Value of CFD Models to WWTP Modeling?. Proceedings of the Water Environment Federation, 2012, 2012, 7400-7405.	0.0	5
146	Uncertainty analysis of WWTP control strategies made feasible. Water Quality Research Journal of Canada, 2012, 47, 14-29.	2.7	17
147	Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. Journal of Biotechnology, 2012, 159, 38-43.	3.8	49
148	Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Water Research, 2012, 46, 6104-6112.	11.3	106
149	Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 2012, 23, 878-883.	6.6	360
150	Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. Energy and Environmental Science, 2012, 5, 7017.	30.8	101
151	Gas controlled hydrogen fermentation. Bioresource Technology, 2012, 110, 503-509.	9.6	50
152	Comment on "Parameter Identification and Modeling of the Biochemical Methane Potential of Waste Activated Sludgeâ€(1). Environmental Science & Eamp; Technology, 2011, 45, 7596-7597.	10.0	2
153	Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Science and Technology, 2011, 64, 880-886.	2.5	120
154	Impact of operating history on mixed culture fermentation microbial ecology and product mixture. Water Science and Technology, 2011, 64, 760-765.	2.5	31
155	Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Research, 2011, 45, 1597-1606.	11.3	154
156	Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants. Water Research, 2011, 45, 2415-2427.	11.3	96
157	Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes. Water Research, 2011, 45, 4951-4959.	11.3	152
158	Anaerobic Processes., 2011,, 615-639.		30
159	Biomethanation and Its Potential. Methods in Enzymology, 2011, 494, 327-351.	1.0	277
160	Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. Journal of Hazardous Materials, 2011, 187, 355-361.	12.4	77
161	Relative kinetics of anaerobic digestion under thermophilic and mesophilic conditions. Water Science and Technology, 2011, 64, 848-853.	2.5	37
162	Size fractionation characterisation of removed organics in reverse osmosis concentrates by ferric chloride. Water Science and Technology, 2011, 63, 1795-1800.	2.5	7

#	Article	IF	Citations
163	Towards a Generalized Physicochemical Framework: WWTmod Workshop Position Paper. Proceedings of the Water Environment Federation, 2010, 2010, 1054-1071.	0.0	0
164	Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 2010, 183, 1-15.	12.4	950
165	Model assisted startup of anaerobic digesters fed with thermally hydrolysed activated sludge. Water Science and Technology, 2010, 62, 1661-1666.	2.5	20
166	Development of membrane inlet mass spectrometry for examination of fermentation processes. Talanta, 2010, 83, 482-492.	5.5	30
167	Pre-treatment mechanisms during thermophilic–mesophilic temperature phased anaerobic digestion of primary sludge. Water Research, 2010, 44, 123-130.	11.3	147
168	State indicators for monitoring the anaerobic digestion process. Water Research, 2010, 44, 5973-5980.	11.3	222
169	Estimation of hydrolysis parameters in fullâ€scale anerobic digesters. Biotechnology and Bioengineering, 2009, 102, 1513-1520.	3.3	225
170	Towards a generalised physicochemical modelling framework. Reviews in Environmental Science and Biotechnology, 2009, 8, 113-114.	8.1	10
171	Anaerobic digestion of spent bedding from deep litter piggery housing. Bioresource Technology, 2009, 100, 2210-2218.	9.6	62
172	Removal of sulfate from high-strength wastewater by crystallisation. Water Research, 2009, 43, 762-772.	11.3	92
173	An ASM/ADM model interface for dynamic plant-wide simulation. Water Research, 2009, 43, 1913-1923.	11.3	86
174	Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester. FEMS Microbiology Ecology, 2008, 66, 472-483.	2.7	5
175	Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Research, 2008, 42, 4699-4709.	11.3	242
176	Use of modelling to evaluate best control practice for winery-type wastewaters. Water Science and Technology, 2007, 56, 147-152.	2.5	16
177	An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnology and Bioengineering, 2007, 96, 712-721.	3.3	80
178	Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME Journal, 2007, 1, 9-18.	9.8	433
179	A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Science and Technology, 2006, 54, 1-10.	2.5	109
180	Acetate Oxidation Is the Dominant Methanogenic Pathway from Acetate in the Absence of Methanosaetaceae. Applied and Environmental Microbiology, 2006, 72, 5138-5141.	3.1	357

#	Article	IF	CITATIONS
181	Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Research, 2006, 40, 3099-3108.	11.3	92
182	Lessons learnt from 15 years of ICA in anaerobic digesters. Water Science and Technology, 2006, 53, 25-33.	2.5	76
183	Efficient modelling necessitates standards for model documentation and exchange. Water Science and Technology, 2006, 53, 277-285.	2.5	10
184	Safe Recycling of Sewage Sludge on Agricultural Landâ€"Biowaste. Chemical Engineering Research and Design, 2006, 84, 253-257.	5.6	12
185	Mathematical Modelling of Anaerobic Reactors Treating Domestic Wastewater: Rational Criteria for Model Use. Reviews in Environmental Science and Biotechnology, 2006, 5, 57-71.	8.1	107
186	Impact of reactive settler models on simulated WWTP performance. Water Science and Technology, 2006, 53, 159-167.	2.5	88
187	Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge. Water Science and Technology, 2006, 54, 119-128.	2.5	77
188	Methanosarcina spp. Drive Vinyl Chloride Dechlorination via Interspecies Hydrogen Transfer. Applied and Environmental Microbiology, 2006, 72, 2942-2949.	3.1	63
189	Effects of process stability on anaerobic biodegradation of LAS in UASB reactors. Biotechnology and Bioengineering, 2005, 89, 759-765.	3.3	36
190	Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 2005, 91, 387-391.	3.3	43
191	Anaerobic digestion: impact of future greenhouse gases mitigation policies on methane generation and usage. Water Science and Technology, 2005, 52, 39-47.	2.5	37
192	Multidimensional modelling of anaerobic granules. Water Science and Technology, 2005, 52, 501-507.	2.5	31
193	Online headspace chromatographic method for measuring VFA in biogas reactor. Water Science and Technology, 2005, 52, 473-478.	2.5	18
194	Influence of Environmental Conditions on Methanogenic Compositions in Anaerobic Biogas Reactors. Applied and Environmental Microbiology, 2005, 71, 331-338.	3.1	428
195	Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. Water Science and Technology, 2004, 50, 237-244.	2.5	54
196	Improved nitrogen removal in upflow anaerobic sludge blanket (UASB) reactors by incorporation of Anammox bacteria into the granular sludge. Water Science and Technology, 2004, 49, 69-76.	2.5	38
197	Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion. Water Science and Technology, 2004, 50, 295-303.	2.5	49
198	The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Research, 2004, 38, 1390-1404.	11.3	155

#	Article	IF	CITATIONS
199	Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnology and Bioengineering, 2003, 84, 195-204.	3.3	174
200	Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1). Water Science and Technology, 2003, 47, 199-206.	2.5	114
201	The influence of calcium on granular sludge in a full-scale UASB treating paper mill wastewater. Water Science and Technology, 2002, 45, 187-193.	2.5	50
202	The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 2002, 45, 65-73.	2.5	1,582
203	Variation of bulk properties of anaerobic granules with wastewater type. Water Research, 2001, 35, 1723-1729.	11.3	133
204	Modelling anaerobic degradation of complex wastewater. I: model development. Bioresource Technology, 2000, 75, 67-74.	9.6	82
205	Modelling anaerobic degradation of complex wastewater. II: parameter estimation and validation using slaughterhouse effluent. Bioresource Technology, 2000, 75, 75-85.	9.6	34
206	Model development and full scale validation for anaerobic treatment of protein and fat based wastewater. Water Science and Technology, 1997, 36, 423.	2.5	15
207	Model development and full scale validation for anaerobic treatment of protein and fat based wastewater. Water Science and Technology, 1997, 36, 423-431.	2.5	12
208	Anaerobic Digestion: Process. , 0, , 583-600.		20