
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Study of the Restoring Effect of Metformin, Gonadotropin, and Allosteric Agonist of Luteinizing Hormone Receptor on Spermatogenesis in Male Rats with Streptozotocin-Induced Type 2 Diabetes Mellitus. Bulletin of Experimental Biology and Medicine, 2022, 172, 435-440.	0.8	6
2	Allosteric Modulators of G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2022, 23, 2934.	4.1	3
3	The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. International Journal of Molecular Sciences, 2022, 23, 198.	4.1	16
4	Type 1 melanocortin receptors in proâ€opiomelanocortinâ€; vasopressinâ€; and oxytocinâ€immunopositive neurons in different areas of mouse brain. Anatomical Record, 2022, , .	1.4	1
5	Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals, 2021, 14, 42.	3.8	33
6	Effect of Low-Molecular-Weight Allosteric Agonists ofÂtheÂLuteinizing Hormone Receptor on Its Expression andÂDistribution in Rat Testes. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 208-220.	0.6	5
7	The Effect of Low-Molecular-Weight Allosteric Agonist of Luteinizing Hormone Receptor on Functional State of the Testes in Aging and Diabetic Rats. Bulletin of Experimental Biology and Medicine, 2021, 171, 81-86.	0.8	5
8	Expression and localization of apelin and its receptor in the testes of diabetic mice and its possible role in steroidogenesis. Cytokine, 2021, 144, 155554.	3.2	9
9	Effects of three types of bariatric interventions on myocardial infarct size and vascular function in rats with type 2 diabetes mellitus. Life Sciences, 2021, 279, 119676.	4.3	1
10	Insulin and α-Tocopherol Enhance the Protective Effect of Each Other on Brain Cortical Neurons under Oxidative Stress Conditions and in Rat Two-Vessel Forebrain Ischemia/Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 11768.	4.1	8
11	The follicular levels of adipokines and their ratio as the prognostic markers of <i>inÂvitro</i> fertilization outcomes. Gynecological Endocrinology, 2021, 37, 31-34.	1.7	0
12	Effect of sleeve gastrectomy, Roux-en-Y gastric bypass, and ileal transposition on myocardial ischaemia–reperfusion injury in non-obese non-diabetic rats. Scientific Reports, 2021, 11, 23888.	3.3	1
13	The Influence of Intranasally Administered Insulin and C-peptide on AMP-Activated Protein Kinase Activity, Mitochondrial Dynamics and Apoptosis Markers in the Hypothalamus of Rats with Streptozotocin-Induced Diabetes. Journal of Evolutionary Biochemistry and Physiology, 2020, 56, 207-217.	0.6	3
14	Molecular Mechanisms of Apoptosis of Glomerular Podocytes in Diabetic Nephropathy. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2020, 14, 205-222.	0.6	0
15	Differential Stimulation of Testicular Steroidogenesis by Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor. Journal of Evolutionary Biochemistry and Physiology, 2020, 56, 439-450.	0.6	1
16	Low-Molecular-Weight Ligands of Luteinizing Hormone Receptor with the Activity of Antagonists. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2020, 14, 223-231.	0.6	2
17	The effect of metformin treatment on the basal and gonadotropinâ€stimulated steroidogenesis in male rats with type 2 diabetes mellitus. Andrologia, 2020, 52, e13816.	2.1	20
18	Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. International Journal of Molecular Sciences, 2020, 21, 7493.	4.1	17

#	Article	IF	CITATIONS
19	Effect of High-Dose Metformin on the Metabolic Parameters and Functional State of the Liver of Agouti Mice with Melanocortin Obesity. Advances in Gerontology, 2020, 10, 13-19.	0.4	0
20	New Thieno-[2,3-d]pyrimidine-Based Functional Antagonist for the Receptor of Thyroid Stimulating Hormone. Doklady Biochemistry and Biophysics, 2020, 491, 77-80.	0.9	9
21	Effect of metformin on testicular expression and localization of leptin receptor and levels of leptin in the diabetic mice. Molecular Reproduction and Development, 2020, 87, 620-629.	2.0	14
22	The Testicular Leptin System in Rats with Different Severity of Type 2 Diabetes Mellitus. Journal of Evolutionary Biochemistry and Physiology, 2020, 56, 22-30.	0.6	1
23	Decrease in the Basal and Luteinizing Hormone Receptor Agonist–Stimulated Testosterone Production in Aging Male Rats. Advances in Gerontology, 2019, 9, 179-185.	0.4	7
24	Intranasal Administration of Proinsulin C-Peptide Enhances the Stimulating Effect of Insulin on Insulin System Activity in the Hypothalamus of Diabetic Rats. Bulletin of Experimental Biology and Medicine, 2019, 167, 351-355.	0.8	9
25	The Protective Effect of Insulin on Rat Cortical Neurons in Oxidative Stress and Its Dependence on the Modulation of Akt, GSK-3beta, ERK1/2, and AMPK Activities. International Journal of Molecular Sciences, 2019, 20, 3702.	4.1	21
26	The Effect of Diet-Induced and Melanocortin Obesity on Expression of Tryptophan Hydroxylase 2 in the Dorsal Raphe Nucleus and Ventral Tegmental Area in Mice. Journal of Evolutionary Biochemistry and Physiology, 2019, 55, 293-301.	0.6	2
27	The Effect of Different Types of Bariatric Surgery on Metabolic and Hormonal Parameters in Rats with a Decompensated Form of Type II Diabetes Mellitus. Advances in Gerontology, 2019, 9, 336-342.	0.4	1
28	Thienopyrimidine Derivatives Specifically Activate Testicular Steroidogenesis but Do Not Affect Thyroid Functions. Journal of Evolutionary Biochemistry and Physiology, 2019, 55, 30-39.	0.6	4
29	Conservation of Steroidogenic Effect of the Low-Molecular-Weight Agonist of Luteinizing Hormone Receptor in the Course of Its Long-Term Administration to Male Rats. Doklady Biochemistry and Biophysics, 2019, 484, 78-81.	0.9	7
30	The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS ONE, 2019, 14, e0213779.	2.5	39
31	A Low Molecular Weight Agonist of the Luteinizing Hormone Receptor Stimulates Adenylyl Cyclase in the Testicular Membranes and Steroidogenesis in the Testes of Rats with Type 1 Diabetes. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2019, 13, 301-309.	0.6	9
32	Novel Thienopyrimidine Derivatives with an Activity of Full and Inverse Agonists of the Luteinizing Hormone Receptor. Journal of Evolutionary Biochemistry and Physiology, 2019, 55, 414-418.	0.6	2
33	Regulatory Effects of Intranasal C-peptide and Insulin on Thyroid and Androgenic Status of Male Rats with Moderate Type 1 Diabetes Mellitus. Journal of Evolutionary Biochemistry and Physiology, 2019, 55, 493-496.	0.6	4
34	Pretreatment of Rats with an Allosteric Luteinizing Hormone Receptor Agonist Enhances Chorionic Gonadotropin-Induced Stimulation of Testosterone Production. Journal of Evolutionary Biochemistry and Physiology, 2019, 55, 510-514.	0.6	1
35	Prospects of intranasal insulin for correction of cognitive impairments, in particular those associated with diabetes mellitus. Problemy Endokrinologii, 2019, 65, 57-65.	0.8	1
36	The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochemical Research, 2018, 43, 821-837.	3.3	53

#	Article	IF	CITATIONS
37	The Regulation of the Male Hypothalamic-Pituitary-Gonadal Axis and Testosterone Production by Adipokines. , 2018, , .		10
38	Effect of Metformin on Metabolic Parameters and Hypothalamic Signaling Systems in Rats with Obesity Induced by a High-Carbohydrate and High-Fat Diet. Advances in Gerontology, 2018, 8, 228-234.	0.4	4
39	Molecular Mechanisms of the Relationship between Thyroid Dysfunctions and Diabetes Mellitus. Journal of Evolutionary Biochemistry and Physiology, 2018, 54, 257-266.	0.6	Ο
40	Coadministration of Intranasally Delivered Insulin and Proinsulin C-Peptide to Rats with Types 1 and 2 Diabetes Mellitus Restores Their Metabolic Parameters. Advances in Gerontology, 2018, 8, 140-146.	0.4	4
41	The Effect of Intranasal Administration of Proinsulin C-peptide and Its C-terminal Fragment on Metabolic Parameters in Rats with Streptozotocin Diabetes. Journal of Evolutionary Biochemistry and Physiology, 2018, 54, 242-245.	0.6	3
42	Protein phosphotyrosine phosphatase 1B: Structure, function, role in the development of metabolic disorders and their correction by the enzyme inhibitors. Journal of Evolutionary Biochemistry and Physiology, 2017, 53, 259-270.	0.6	5
43	Mechanisms of action and therapeutic potential of proinsulin C-peptide. Journal of Evolutionary Biochemistry and Physiology, 2017, 53, 180-190.	0.6	9
44	Antibodies to extracellular regions of G protein-coupled receptors and receptor tyrosine kinases as one of the causes of autoimmune diseases. Journal of Evolutionary Biochemistry and Physiology, 2017, 53, 93-110.	0.6	2
45	A comparative electron microscopic study of seminal plasma in oligozoospermic and normozoospermic men. Journal of Evolutionary Biochemistry and Physiology, 2017, 53, 511-514.	0.6	0
46	Pharmacological approaches for correction of thyroid dysfunctions in diabetes mellitus. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2017, 11, 349-362.	0.4	0
47	Metabolic parameters and functional state of hypothalamic signaling systems in AY/a mice with genetic predisposition to obesity and the effect of metformin. Doklady Biochemistry and Biophysics, 2017, 477, 377-381.	0.9	5
48	Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome. Bulletin of Experimental Biology and Medicine, 2017, 163, 184-189.	0.8	10
49	RELATIONSHIP BETWEEN THYROID DISEASES AND TYPE 2 DIABETES MELLITUS. Translational Medicine, 2017, 4, 29-39.	0.4	Ο
50	Changes in the hormonal status of cardiovascular and the thyroid systems in rats with 18-month type 2 diabetes mellitus. Advances in Gerontology, 2016, 6, 311-316.	0.4	0
51	In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 294-300.	0.6	19
52	The functional activity of hypothalamic signaling systems in rats with neonatal diabetes mellitus treated with metformin. Doklady Biochemistry and Biophysics, 2016, 467, 95-98.	0.9	1
53	The effect of prolonged intranasal administration of serotonin on the activity of hypothalamic signaling systems in male rats with neonatal diabetes. Cell and Tissue Biology, 2016, 10, 314-323.	0.4	3
54	The brain leptin signaling system and its functional state in metabolic syndrome and type 2 diabetes mellitus. Journal of Evolutionary Biochemistry and Physiology, 2016, 52, 177-195.	0.6	6

#	Article	lF	CITATIONS
55	Functional state of hypothalamic signaling systems in rats with type 2 diabetes mellitus treated with intranasal insulin. Journal of Evolutionary Biochemistry and Physiology, 2016, 52, 204-216.	0.6	10
56	Comparative study of functional activity of the D2-dopaminergic system in the hypothalamus of rats with different models of diabetes mellitus. Journal of Evolutionary Biochemistry and Physiology, 2016, 52, 267-269.	0.6	1
57	Effect of long-term L-thyroxine treatment on the activity of NO-synthases in tissues of rats with obesity induced by high-fat diet. Journal of Evolutionary Biochemistry and Physiology, 2015, 51, 485-494.	0.6	2
58	The immunization with peptide 189–205, a derivative of serotonin receptor subtypes 1B, changes the sensetivity of adenylyl cyclase to hormones in the rat brain. Doklady Biochemistry and Biophysics, 2015, 463, 225-228.	0.9	0
59	Proinsulin C-peptide and its C-terminal fragments stimulate Gi/o-proteins but do not influence adenylyl cyclase activity. Journal of Evolutionary Biochemistry and Physiology, 2015, 51, 435-437.	0.6	0
60	The effect of 2-month bromocriptine treatment on the activity of the adenylyl cyclase signaling system in the myocardium and testes of rats with type 2 diabetes. Cell and Tissue Biology, 2015, 9, 395-405.	0.4	5
61	Alterations in adenylyl cyclase sensitivity to hormones in the brain, myocardium, and testes of rats immunized with BSA-conjugated peptide 269–280 of type 3 melanocortin receptor. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 124-134.	0.6	2
62	The effect of four-week levothyroxine treatment on hormonal regulation of adenylyl cyclase in the brain and peripheral tissues of obese rats. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 236-245.	0.6	4
63	The thyroid status of rats immunized with peptides derived from the extracellular regions of the types 3 and 4 melanocortin receptors and the 1B-subtype 5-hydroxytryptamine receptor. Journal of Evolutionary Biochemistry and Physiology, 2015, 51, 279-287.	0.6	Ο
64	Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Science OA, 2015, 1, FSO25.	1.9	54
65	The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes. International Journal of Endocrinology, 2015, 2015, 1-17.	1.5	54
66	Regulation of the Melanocortin-Sensitive Adenylate Cyclase System by N-Acylated Peptide 71-82 of Type 4 Melanocortin Receptor. Bulletin of Experimental Biology and Medicine, 2015, 160, 40-44.	0.8	0
67	The effect of prolonged metformin treatment on the activity of the adenylyl cyclase system and NO-synthase in the brain and myocardium of obese rats. Cell and Tissue Biology, 2015, 9, 385-394.	0.4	3
68	Beta-adrenergic regulation of adenylyl cyclase signaling system in the myocardium and brain of rats with obesity and type 2 diabetes mellitus as affected by long-term intranasal insulin administration. Journal of Evolutionary Biochemistry and Physiology, 2015, 51, 198-209.	0.6	2
69	Intranasal and Intramuscular Administration of Lysine-Palmitoylated Peptide 612–627 of Thyroid-Stimulating Hormone Receptor Increases the Level of Thyroid Hormones in Rats. International Journal of Peptide Research and Therapeutics, 2015, 21, 249-260.	1.9	13
70	The functional activity of the adenylate cyclase system in the brains of rats with metabolic syndrome induced by immunization with peptide 11–25 of the type 4 melanocortin receptor. Neurochemical Journal, 2015, 9, 29-38.	0.5	3
71	The Influence of Intranasal Insulin on Hypothalamic-Pituitary-Thyroid Axis in Normal and Diabetic Rats. Hormone and Metabolic Research, 2015, 47, 916-924.	1.5	38
72	Intratesticular, intraperitoneal, and oral administration of thienopyrimidine derivatives increases the testosterone level in male rats. Doklady Biological Sciences, 2014, 459, 326-329.	0.6	15

#	Article	IF	CITATIONS
73	Functional role of membrane-bound adenylyl cyclases and coupled to them receptors and G-proteins in regulation of fertility of spermatozoa. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 286-302.	0.6	0
74	The influence of bromocryptine treatment on activity of the adenylyl cyclase system in the brain of rats with type 2 diabetes mellitus induced by high-fat diet. Doklady Biochemistry and Biophysics, 2014, 459, 186-189.	0.9	4
75	Activation of adenylyl cyclase by thienopyrimidine derivatives in rat testes and ovaries. Cell and Tissue Biology, 2014, 8, 400-406.	0.4	9
76	Palmitoylated Peptide 562-572 of Luteinizing Hormone Receptor Increases Testosterone Level in Male Rats. Bulletin of Experimental Biology and Medicine, 2014, 158, 209-212.	0.8	5
77	Peptide 612–627 of thyrotropin receptor and its modified analogs as regulators of adenylyl cyclase in rat thyroid gland. Cell and Tissue Biology, 2014, 8, 488-498.	0.4	6
78	Attenuation of inhibitory influence of hormones on adenylyl cyclase systems in the myocardium and brain of obese and type 2 diabetic rats as affected by the intranasal insulin treatment. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 399-408.	0.6	2
79	The role of disturbances in hormonal signaling systems in etiology and pathogenesis of diabetes mellitus. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 552-556.	0.6	2
80	The metabolic changes in rats immunized with BSA conjugate of peptides derived from the N-terminal region of type 4 melanocortin receptor. Doklady Biochemistry and Biophysics, 2014, 458, 163-166.	0.9	3
81	Functional activity of thyroid gland in male rats with acute and mild streptozotocin diabetes. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 310-320.	0.6	3
82	Interconnection between parameters of motor activity and blood glucose concentration in newborn rats at starvation and under glucose load conditions. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 321-333.	0.6	1
83	The stimulating influence of thienopyrimidine compounds on the adenylyl cyclase signaling systems in the rat testes. Doklady Biochemistry and Biophysics, 2014, 456, 104-107.	0.9	19
84	Effect of Peptides Corresponding to Extracellular Domains of Serotonin 1B/1D Receptors and Melanocortin 3 and 4 Receptors on Hormonal Regulation of Adenylate Cyclase in Rat Brain. Bulletin of Experimental Biology and Medicine, 2014, 156, 658-662.	0.8	1
85	A change of hormonal regulation of adenylyl cyclase in epididymal adipose tissue of rats with experimental models of diabetes mellitus. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 95-102.	0.6	1
86	Effect of insulin on characteristics of contractile responses of fast and slow skeletal muscles of rats with acute streptozotocin-induced diabetes. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 136-145.	0.6	0
87	The effect of long-term diabetes mellitus induced by treatment with streptozotocin in 6-week-old rats on functional activity of the adenylyl cyclase system. Cell and Tissue Biology, 2014, 8, 68-79.	0.4	2
88	Regulation of adenylyl cyclase activity in rat testes by acylated derivatives of peptide 562–572 of a luteinizing hormone receptor. Cell and Tissue Biology, 2014, 8, 152-159.	0.4	3
89	Regulation of adenylyl cyclase signaling system by insulin, biogenic amines and glucagon at their separate and combined action in muscle membranes of mollusc Anodonta cygnea. Journal of Evolutionary Biochemistry and Physiology, 2013, 49, 145-152.	0.6	1
90	Effect of intranasal insulin and serotonin on functional activity of the adenylyl cyclase system in myocardium, ovary, and uterus of rats with prolonged neonatal model of diabetes mellitus. Journal of Evolutionary Biochemistry and Physiology, 2013, 49, 153-164.	0.6	9

#	Article	IF	CITATIONS
91	Functional activity of adenylyl and guanylyl cyclases in human spermatozoa with different motility. Cell and Tissue Biology, 2013, 7, 280-288.	0.4	2
92	Regulatory properties of adenylyl and guanylyl cyclase in human spermatozoa. Journal of Evolutionary Biochemistry and Physiology, 2013, 49, 43-52.	0.6	0
93	Androgen Deficiency in Male Rats with Prolonged Neonatal Streptozotocin Diabetes. Bulletin of Experimental Biology and Medicine, 2013, 155, 339-342.	0.8	9
94	Peptidergic signaling brain systems in diabetes mellitus. Cell and Tissue Biology, 2013, 7, 212-220.	0.4	4
95	The influence of prolonged streptozotocin diabetes on the thyroid gland function in rats. Doklady Biochemistry and Biophysics, 2013, 451, 217-220.	0.9	2
96	Biological activity of lipophilic derivatives of peptide 562–572 of rat luteinizing hormone receptor. Doklady Biochemistry and Biophysics, 2013, 452, 248-250.	0.9	6
97	New conceptual approach for search for molecular causes of diabetus mellitus, based on study of functioning of hormonal signaling systems. Journal of Evolutionary Biochemistry and Physiology, 2013, 49, 457-468.	0.6	2
98	Advances in the study of structure and function of G protein-coupled receptors (about awarding the) Tj ETQq0 C Biochemistry and Physiology, 2013, 49, 469-480.	0 rgBT / 0.6	Overlock 10 Tf 1
99	The functional activity of adenylyl cyclase signaling system in the brain, myocardium, and testes of rats with 8- and 18-month neonatal diabetes. Doklady Biochemistry and Biophysics, 2013, 448, 43-45.	0.9	4
100	Peptides Derived from the Extracellular Loops of Receptors: Structure, Mechanism of Action, Use in Physiology and Medicine. Neuroscience and Behavioral Physiology, 2013, 43, 111-121.	0.4	1
101	The Functional State of Hormone-Sensitive Adenylyl Cyclase Signaling System in Diabetes Mellitus. Journal of Signal Transduction, 2013, 2013, 1-16.	2.0	21
102	Alterations of Hormone-Sensitive Adenylyl Cyclase System in the Tissues of Rats with Long-Term Streptozotocin Diabetes and the Influence of Intranasal Insulin. Dataset Papers in Pharmacology, 2013, 2013, 1-14.	1.3	15
103	Regulatory properties of cytosolic and membrane-bound adenylyl cyclases in the fraction of spermatozoa with different mobility. Doklady Biochemistry and Biophysics, 2012, 445, 200-202.	0.9	Ο
104	Alteration of hormonal sensitivity of adenylyl cyclase in the brain of rats with prolonged streptozotocin diabetes. Doklady Biochemistry and Biophysics, 2012, 446, 217-219.	0.9	3
105	Molecular mechanisms of action of natural amino acids and serotonin on infusorian adenylyl cyclase and guanylyl cyclase. Cell and Tissue Biology, 2012, 6, 353-360.	0.4	Ο
106	Somatostatin receptors and signaling cascades coupled to them. Journal of Evolutionary Biochemistry and Physiology, 2012, 48, 385-400.	0.6	1
107	Receptor and tissue specificity of the effects of peptides corresponding to intracellular regions of the serpentine type receptors. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2012, 6, 16-25.	0.6	6
108	Intranasal insulin affects adenyl cyclase system in rat tissues in neonatal diabetes. Open Life Sciences, 2012, 7, 33-47.	1.4	26

#	Article	IF	CITATIONS
109	Peptides Derived from the Third Cytoplasmic Loop of the Serotonin Subtype 1B Receptor Selectively Inhibit Transmission of Serotoninergic Signals via Their Homologous Receptors. Neuroscience and Behavioral Physiology, 2012, 42, 285-292.	0.4	0
110	Glucose and Cyclic Adenosine Monophosphate Stimulate Activities of Adenylate Cyclase and Guanylate Cyclase of Tetrahymena Pyriformis Infusoria. Bulletin of Experimental Biology and Medicine, 2012, 152, 427-430.	0.8	4
111	Initial Stages of the Insulin Signaling System in the Brain of Rats with Experimental Diabetes Mellitus. Bulletin of Experimental Biology and Medicine, 2012, 153, 25-28.	0.8	1
112	Biological activity in vitro and in vivo of peptides corresponding to the third intracellular loop of thyrotropin receptor. Doklady Biochemistry and Biophysics, 2012, 443, 64-67.	0.9	11
113	The secondary structure of peptides derived from the third intracellular loop of the serpentine-type receptors and its interrelation with their biological activity. Cell and Tissue Biology, 2012, 6, 197-210.	0.4	1
114	Alterations in Hormonal Signaling Systems in Diabetes Melitus: Origin, Causality and Specificity. Endocrinology & Metabolic Syndrome: Current Research, 2012, 01, .	0.7	11
115	Signal Protein-Derived Peptides as Functional Probes and Regulators of Intracellular Signaling. Journal of Amino Acids, 2011, 2011, 1-25.	5.8	15
116	Functional state of adenylyl cyclase signaling system in rat testis and ovary under conditions of fasting. Journal of Evolutionary Biochemistry and Physiology, 2011, 47, 43-52.	0.6	0
117	Effects of natural amino acids and sugars on activity of infusiorian cyclases. Journal of Evolutionary Biochemistry and Physiology, 2011, 47, 151-159.	0.6	1
118	Peptides corresponding to intracellular regions of somatostatin receptors with agonist and antagonist activity. Doklady Biochemistry and Biophysics, 2011, 437, 68-71.	0.9	3
119	Intranasal administration of insulin eliminates the deficit of long-term spatial memory in rats with neonatal diabetes mellitus. Doklady Biochemistry and Biophysics, 2011, 440, 216-218.	0.9	9
120	Activity of receptor guanylyl cyclases in rats with neonatal streptozotocin diabetes and effect of intranasal administration of insulin and serotonin. Cell and Tissue Biology, 2011, 5, 453-462.	0.4	2
121	Development of non-hormonal regulators of the adenylyl cyclase signaling system based on the peptides, derivatives of the third intracellular loop of somatostatin receptors. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2011, 5, 246-252.	0.4	1
122	Peptides derived from the third cytoplasmic loop of type 6 serotonin receptor as regulators of serotonin-sensitive adenylyl cyclase signaling system. Doklady Biochemistry and Biophysics, 2010, 431, 94-97.	0.9	2
123	Changes in the functional activity of membrane-bound guanylate cyclase forms in tissues of diabetic rats. Doklady Biochemistry and Biophysics, 2010, 433, 219-222.	0.9	0
124	Inhibition of functional activity of the adenylyl cyclase signaling system of the ciliate Dileptus anser by colchicine and vinblastine. Cell and Tissue Biology, 2010, 4, 70-76.	0.4	0
125	Functional state of adenylyl cyclase signaling system in reproductive tissues of rats with experimental type-1 diabetes. Cell and Tissue Biology, 2010, 4, 208-214.	0.4	6
126	Functional characteristics of calcium-sensitive adenylyl cyclase of the infusorian Tetrahymena pyriformis. Cell and Tissue Biology, 2010, 4, 587-593.	0.4	2

#	Article	IF	CITATIONS
127	A decrease in the sensitivity of adenylyl cyclase and heterotrimeric g proteins to chorionic gonadotrophin and peptide hormones action in the tissues of reproductive system of rats with experimental type 2 diabetes. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, 4, 258-263.	0.4	6
128	The Peptides Mimicking the Third Intracellular Loop of 5-Hydroxytryptamine Receptors of the Types 1B and 6 Selectively Activate G Proteins and Receptor-Specifically Inhibit Serotonin Signaling via the Adenylyl Cyclase System. International Journal of Peptide Research and Therapeutics, 2010, 16, 95-105.	1.9	58
129	Regulation by cyclic adenosine monophosphate of functional activity of the adenylyl cyclase system in the infusorian Dileptus anser. Journal of Evolutionary Biochemistry and Physiology, 2010, 46, 145-152.	0.6	1
130	Hypothesis of evolutionary origin of several human and animal diseases. Journal of Evolutionary Biochemistry and Physiology, 2010, 46, 312-320.	0.6	0
131	Changes in Hormone Sensitivity of the Adenylate Cyclase Signaling System in the Testicular Tissue of Rats with Neonatal Streptozotocin-Induced Diabetes. Bulletin of Experimental Biology and Medicine, 2009, 148, 394-398.	0.8	6
132	Polycationic peptides as nonhormonal regulators of chemosignal systems. Journal of Evolutionary Biochemistry and Physiology, 2009, 45, 431-446.	0.6	3
133	Chemocommunication between bacteria and the higher vertebrate animals. Journal of Evolutionary Biochemistry and Physiology, 2009, 45, 549-561.	0.6	1
134	QS-type bacterial signal molecules of nonpeptide origin. Microbiology, 2009, 78, 133-143.	1.2	11
135	Peptide autoinducers in bacteria. Microbiology, 2009, 78, 255-266.	1.2	9
136	Adenylyl cyclase stimulation by cyclic adenosine monophosphate in the infusorian Dileptus anser cell culture. Doklady Biochemistry and Biophysics, 2009, 424, 24-26.	0.9	0
137	Structural functional characteristic of neuronal serotonin receptors and molecular mechanisms of their coupling with G-proteins. Neurochemical Journal, 2009, 3, 1-13.	0.5	1
138	Effects of polycationic peptides of different natures on the functional state of the serotonin-regulated adenylate cyclase system in the rat brain. Neurochemical Journal, 2009, 3, 272-281.	0.5	2
139	Receptor of the serpentine-type and heterotrimeric G protein as targets of action of polylysine dendrimers. Cell and Tissue Biology, 2009, 3, 14-22.	0.4	3
140	Low-molecular regulators of polypeptide hormone receptors containing LGR-repeats. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2009, 3, 351-360.	0.4	4
141	Variations in Functional Activity of the Hormone-Sensitive Adenylate Cyclase System in Tissues of Gastropod Mollusks with Streptozotocin-Induced Diabetes. Bulletin of Experimental Biology and Medicine, 2008, 146, 424-428.	0.8	3
142	Signal transduction systems in prokaryotes. Journal of Evolutionary Biochemistry and Physiology, 2008, 44, 129-150.	0.6	2
143	Study of structural-functional arrangement of the adenylyl cyclase signaling mechanism of action of insulin-like growth factor 1 revealed in muscle tissue of representatives of vertebrates and invertebrates. Journal of Evolutionary Biochemistry and Physiology, 2008, 44, 542-551.	0.6	1
144	Structural-functional characteristics of the adenylyl cyclase signaling system regulated by biogenic amines and peptide hormones in muscles of the earthworm Lumbricus terrestris. Journal of Evolutionary Biochemistry and Physiology, 2008, 44, 552-561.	0.6	1

#	Article	IF	CITATIONS
145	Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. International Review of Cell and Molecular Biology, 2008, 269, 151-282.	3.2	48
146	Serpentine type receptors and heterotrimeric G-proteins in yeasts: Structural-functional organization and molecular mechanisms of action. Journal of Evolutionary Biochemistry and Physiology, 2007, 43, 1-25.	0.6	3
147	Regulatory calcium effect on adenylyl cyclase functional activity in the infusorian Dileptis anser. Journal of Evolutionary Biochemistry and Physiology, 2007, 43, 145-153.	0.6	1
148	Streptozotocin model of diabetes mellitus in the mollusc Anodonta cygnea: functional state of the adenylyl cyclase mechanisms of action of insulin superfamily peptides and their effect on carbohydrate metabolism enzymes. Journal of Evolutionary Biochemistry and Physiology, 2007, 43, 548-556.	0.6	1
149	Discovery of adenylyl cyclase signaling system sensitive to biogenic amines in muscles of the earthworm Lumbricus terrestris. Doklady Biochemistry and Biophysics, 2007, 417, 316-319.	0.9	0
150	Structure-functional organization of adenylyl cyclases of unicellular eukaryotes and molecular mechanisms of their regulation. Cell and Tissue Biology, 2007, 1, 97-114.	0.4	2
151	Disturbance of transduction of adenylyl cyclase-inhibiting hormonal signaling in the myocardium and brain of rats with experimental type 2 diabetes. Cell and Tissue Biology, 2007, 1, 343-351.	0.4	1
152	Changed sensitivity of adenylate cyclase signaling system to biogenic amines and peptide hormones in tissues of starving rats. Bulletin of Experimental Biology and Medicine, 2007, 144, 12-16.	0.8	1
153	Functional coupling of hormone receptors with G proteins in the adenylate cyclase system of the rat muscle tissues and brain under conditions of short-term hyperglycemia. Bulletin of Experimental Biology and Medicine, 2007, 144, 684-688.	0.8	4
154	Molecular mechanisms of interaction of polycationic peptides with serpentine type receptors and heterotrimeric G-proteins in rat tissues. Journal of Evolutionary Biochemistry and Physiology, 2006, 42, 399-407.	0.6	0
155	Structural-functional organization of signaling systems coupled to G-proteins in ameba Dictyostelium discoideum. Journal of Evolutionary Biochemistry and Physiology, 2006, 42, 536-558.	0.6	1
156	Adenylyl cyclase signaling mechanisms of relaxin and insulin action: Similarities and differences. Cell Biology International, 2006, 30, 533-540.	3.0	11
157	Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin in skeletal muscles of rat with streptozotocin type 1 diabetes. Open Life Sciences, 2006, 1, 530-544.	1.4	39
158	Molecular mechanisms for the effect of mastoparan on G proteins in tissues of vertebrates and invertebrates. Bulletin of Experimental Biology and Medicine, 2006, 141, 302-306.	0.8	12
159	Decrease in functional activity of G-proteins hormone-sensitive adenylate cyclase signaling system, during experimental type II diabetes mellitus. Bulletin of Experimental Biology and Medicine, 2006, 142, 685-689.	0.8	10
160	Molecular mechanisms of relaxin action on adenylyl cyclase signaling systems using synthetic peptides, derived from relaxin receptor LGR7. Frontiers in Neuroendocrinology, 2006, 27, 150-151.	5.2	0
161	A Novel, Adenylate Cyclase, Signaling Mechanism of Relaxin H2 Action. Annals of the New York Academy of Sciences, 2005, 1041, 305-307.	3.8	12
162	Relaxin Adenylyl Cyclase System of Pregnant Women with Diabetes: Functional Defects in Insulin and Relaxin Adenylyl Cyclase Signaling Systems in Myometrium of Pregnant Women with Type 1 Diabetes. Annals of the New York Academy of Sciences, 2005, 1041, 446-448.	3.8	7

#	Article	IF	CITATIONS
163	Pleiotropic Action of Insulin-like Peptides of Mollusk,Anodonta cygnea. Annals of the New York Academy of Sciences, 2005, 1040, 464-465.	3.8	11
164	Sensitivity of Adenylyl Cyclase Signaling System of the MolluskAnodonta cygneaGanglions to Serotonin and Adrenergic Agonists. Annals of the New York Academy of Sciences, 2005, 1040, 466-468.	3.8	11
165	Molecular Mechanisms of Modified Sensitivity of the Adenylate Cyclase Signaling System to Biogenic Amines during Streptozotocin-Induced Diabetes. Bulletin of Experimental Biology and Medicine, 2005, 140, 304-308.	0.8	4
166	Use of Peptide Strategy for Study of Molecular Mechanisms of Hormonal Signal Transduction into Cell. Journal of Evolutionary Biochemistry and Physiology, 2005, 41, 487-505.	0.6	0
167	Effect of SH-Specific Reagent 5,5′-Dithobis(2-Nitrobenzoic Acid) on Functional Activity of Components of Adenylyl Cyclase Signal System. Journal of Evolutionary Biochemistry and Physiology, 2005, 41, 623-630.	0.6	0
168	Regulatory Action of Synthetic Cationic Peptides Containing Residues of Glutamic Acid on Functional Activity of Components of the Adenylyl Cyclase Signal System. Journal of Evolutionary Biochemistry and Physiology, 2004, 40, 37-46.	0.6	0
169	Regulation of Adenylyl Cyclase Signaling System in Cell Cultures of Infusoria Dileptus anser and Tetrahymena pyriformis by Peptides of Insulin Superfamily. Journal of Evolutionary Biochemistry and Physiology, 2004, 40, 364-373.	0.6	2
170	Stimulatory Effect of Insulin and Epidermal Growth Factor on Activity of Protein Kinase A, Glucose-6-Phosphate Dehydrogenase, and Glycogen Synthase in Skeletal Muscles of Chick Embryos and Chickens. Journal of Evolutionary Biochemistry and Physiology, 2004, 40, 409-419.	0.6	0
171	Insulin-Regulated Adenylyl Cyclase Signaling System in Rat Skeletal Muscles under Conditions of in vivo Insulin Administration and of Insulin Insufficiency Produced by Streptozotocin Diabetes. Journal of Evolutionary Biochemistry and Physiology, 2004, 40, 420-431.	0.6	0
172	Title is missing!. Journal of Evolutionary Biochemistry and Physiology, 2003, 39, 266-280.	0.6	6
173	Regulation of the Adenylyl Cyclase System of the Infusorian Tetrahymena pyriformis by Hormonal and Non-Hormonal Agents and Its Dependence on the Basal Activity Level of Adenylyl Cyclase. Journal of Evolutionary Biochemistry and Physiology, 2003, 39, 416-424.	0.6	1
174	Insulin-Regulated Adenylyl Cyclase Signaling System in Cell Culture of Mouse Fibroblasts of L Line. Journal of Evolutionary Biochemistry and Physiology, 2003, 39, 547-554.	0.6	0
175	Sensitivity of lysosomal enzymes to the plant alkaloid sanguinarine: comparison with other SH-specific agents. Cell Biology International, 2003, 27, 887-895.	3.0	9
176	Comparative study of biological activity of insulins of lower vertebrates in the novel adenylyl cyclase test-system. Regulatory Peptides, 2003, 116, 81-86.	1.9	3
177	A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 11-36.	1.6	43
178	Study of the functional organization of a novel adenylate cyclase signaling mechanism of insulin action. Biochemistry (Moscow), 2002, 67, 335-342.	1.5	9
179	Role of Sulfhydryl Groups in Functioning of Adenylyl Cyclase Signaling System. Journal of Evolutionary Biochemistry and Physiology, 2002, 38, 121-135.	0.6	0
180	Title is missing!. Journal of Evolutionary Biochemistry and Physiology, 2002, 38, 176-183.	0.6	0

#	Article	IF	CITATIONS
181	Conservatism of the Insulin Signaling System in Evolution of Invertebrate and Vertebrate Animals. Journal of Evolutionary Biochemistry and Physiology, 2002, 38, 547-561.	0.6	20
182	Role of βγ-Dimers of GTP-Binding Proteins in Processes of Hormonal Signal Transduction. Journal of Evolutionary Biochemistry and Physiology, 2002, 38, 650-672. A dual role of protein kinase C in insulin signal transduction via adenvial cyclase signaling system in	0.6	2
183	muscle tissues of vertebrates and invertebrates11Abbreviations: PKĆ, protein kinase C (l̃±, l̂», l̂µ, l̈•, l̂¶, its) Tj ETQq signaling mechanism; DAC, diacylglycerol; PE, phorbol esters; PMA, phorbol 12-myristate 13-acetate; PI3-K. phosphatidylinositol 3-kinase: Gs-protein. stimulatory GTP-binding protein: Gi-protein, inhib.	1 1 0.7843 4.4	314 rgBT /〇 39
184	Biochemical Pharmacology, 2001, 61, 1277-1291. The regulatory role of protein kinase C in insulin signal transduction via adenylyl cyclase signalling system. , 2001, , 321-323.		0
185	Relaxin activating effect on the adenylyl cyclase and glycogen synthase in muscles of mammals and molluscs. , 2001, , 317-319.		1
186	On the tyrosine kinase mechanism of the novel effect of insulin and insulinlike growth factor I. Biochemical Pharmacology, 1996, 52, 1867-1874.	4.4	37
187	Involvement of the adenylyl cyclase signaling system in the action of insulin and mollusk insulin-like peptide. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 689-695.	1.6	32
188	Hormonal Signaling Systems of the Brain in Diabetes Mellitus. , 0, , .		9
189	The New Pharmacological Approaches for the Regulation of Functional Activity of G Protein-Coupled Receptors. , 0, , .		1