Rachel A Segalman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4450907/publications.pdf

Version: 2024-02-01

196 papers

14,542 citations

18482 62 h-index 21540 114 g-index

198 all docs

198 docs citations

198 times ranked 14090 citing authors

#	Article	IF	CITATIONS
1	Organic thermoelectric materials for energy harvesting and temperature control. Nature Reviews Materials, 2016, 1 , .	48.7	927
2	Patterning with block copolymer thin films. Materials Science and Engineering Reports, 2005, 48, 191-226.	31.8	885
3	Thermoelectricity in Molecular Junctions. Science, 2007, 315, 1568-1571.	12.6	839
4	Controlling inelastic light scattering quantum pathways in graphene. Nature, 2011, 471, 617-620.	27.8	492
5	Water-Processable Polymerâ^'Nanocrystal Hybrids for Thermoelectrics. Nano Letters, 2010, 10, 4664-4667.	9.1	458
6	Block Copolymers for Organic Optoelectronics. Macromolecules, 2009, 42, 9205-9216.	4.8	393
7	Thermal Conductivity and Elastic Constants of PEDOT:PSS with High Electrical Conductivity. Macromolecules, 2015, 48, 585-591.	4.8	253
8	Probing the Chemistry of Molecular Heterojunctions Using Thermoelectricity. Nano Letters, 2008, 8, 715-719.	9.1	250
9	Enhanced Thermopower in PbSe Nanocrystal Quantum Dot Superlattices. Nano Letters, 2008, 8, 2283-2288.	9.1	244
10	Thermal Conductivity of High-Modulus Polymer Fibers. Macromolecules, 2013, 46, 4937-4943.	4.8	234
11	Effect of Interfacial Properties on Polymer–Nanocrystal Thermoelectric Transport. Advanced Materials, 2013, 25, 1629-1633.	21.0	219
12	Identifying the Length Dependence of Orbital Alignment and Contact Coupling in Molecular Heterojunctions. Nano Letters, 2009, 9, 1164-1169.	9.1	207
13	Polymer Chain Shape of Poly(3-alkylthiophenes) in Solution Using Small-Angle Neutron Scattering. Macromolecules, 2013, 46, 1899-1907.	4.8	197
14	Power Factor Enhancement in Solutionâ€Processed Organic nâ€Type Thermoelectrics Through Molecular Design. Advanced Materials, 2014, 26, 3473-3477.	21.0	196
15	Self-Assembly and Transport Limitations in Confined Nafion Films. Macromolecules, 2013, 46, 867-873.	4.8	192
16	Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. Physical Chemistry Chemical Physics, 2013, 15, 4024.	2.8	188
17	Molecular solar thermal (MOST) energy storage and release system. Energy and Environmental Science, 2012, 5, 8534.	30.8	171
18	Structure and Thermodynamics of Weakly Segregated Rodâ^'Coil Block Copolymers. Macromolecules, 2005, 38, 10127-10137.	4.8	163

#	Article	IF	Citations
19	Thermoelectricity in Fullerene–Metal Heterojunctions. Nano Letters, 2011, 11, 4089-4094.	9.1	163
20	Ordering and Melting of Block Copolymer Spherical Domains in 2 and 3 Dimensions. Macromolecules, 2003, 36, 3272-3288.	4.8	161
21	Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Applied Physics Letters, 2006, 89, 173113.	3.3	159
22	Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions. Chemical Physics Letters, 2010, 491, 109-122.	2.6	151
23	Tuning Polythiophene Crystallization through Systematic Side Chain Functionalization. Macromolecules, 2010, 43, 7895-7899.	4.8	148
24	Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices. Journal of the American Chemical Society, 2010, 132, 16112-16119.	13.7	142
25	Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films. Macromolecules, 2003, 36, 6831-6839.	4.8	141
26	The relationship between morphology and performance of donor–acceptor rod–coil block copolymer solar cells. Soft Matter, 2009, 5, 4219.	2.7	127
27	Polypeptoids: a model system to study the effect of monomer sequence on polymer properties and self-assembly. Soft Matter, 2013, 9, 8400.	2.7	126
28	Controlling Nafion Structure and Properties via Wetting Interactions. Macromolecules, 2012, 45, 4681-4688.	4.8	120
29	Poly(3-alkylthiophene) Diblock Copolymers with Ordered Microstructures and Continuous Semiconducting Pathways. Journal of the American Chemical Society, 2011, 133, 9270-9273.	13.7	117
30	Interpretation of Stochastic Events in Single Molecule Conductance Measurements. Nano Letters, 2006, 6, 2362-2367.	9.1	115
31	Edge Effects on the Order and Freezing of a 2D Array of Block Copolymer Spheres. Physical Review Letters, 2003, 91, 196101.	7.8	111
32	Varying the ionic functionalities of conjugated polyelectrolytes leads to both p- and n-type carbon nanotube composites for flexible thermoelectrics. Energy and Environmental Science, 2015, 8, 2341-2346.	30.8	102
33	Subsecond Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-ray Scattering. ACS Macro Letters, 2012, 1, 33-36.	4.8	101
34	Dynamics of Rims and the Onset of Spinodal Dewetting at Liquid/Liquid Interfaces. Macromolecules, 1999, 32, 801-807.	4.8	100
35	Universalization of the Phase Diagram for a Model Rodâ^'Coil Diblock Copolymer. Macromolecules, 2008, 41, 6809-6817.	4.8	99
36	Real-Time Observation of Poly(3-alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties. Macromolecules, 2011, 44, 6653-6658.	4.8	99

#	Article	IF	Citations
37	Nonlamellar Phases in Asymmetric Rodâ 'Coil Block Copolymers at Increased Segregation Strengths. Macromolecules, 2007, 40, 6922-6929.	4.8	98
38	The Nature of Transport Variations in Molecular Heterojunction Electronics. Nano Letters, 2009, 9, 3406-3412.	9.1	97
39	Control of Crystallization and Melting Behavior in Sequence Specific Polypeptoids. Macromolecules, 2010, 43, 5627-5636.	4.8	97
40	Sequence of Hydrophobic and Hydrophilic Residues in Amphiphilic Polymer Coatings Affects Surface Structure and Marine Antifouling/Fouling Release Properties. ACS Macro Letters, 2014, 3, 364-368.	4.8	96
41	Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy and Environmental Science, 2014, 7, 1468-1476.	30.8	95
42	Ionic Conductivity of Nanostructured Block Copolymer/Ionic Liquid Membranes. Macromolecules, 2011, 44, 5281-5288.	4.8	92
43	Ionic Conduction in Nanostructured Membranes Based on Polymerized Protic Ionic Liquids. Macromolecules, 2013, 46, 1543-1548.	4.8	91
44	Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors. Chemical Science, 2016, 7, 1914-1919.	7.4	91
45	Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length, Ionic Content, and Confinement. Macromolecules, 2016, 49, 395-404.	4.8	88
46	Hierarchical Nanostructure Control in Rodâ^'Coil Block Copolymers with Magnetic Fields. Nano Letters, 2007, 7, 2742-2746.	9.1	86
47	Analysis of Order Formation in Block Copolymer Thin Films Using Resonant Soft X-ray Scattering. Macromolecules, 2007, 40, 2092-2099.	4.8	85
48	Robust production of purified H ₂ in a stable, self-regulating, and continuously operating solar fuel generator. Energy and Environmental Science, 2014, 7, 297-301.	30.8	85
49	Phase Transitions in Asymmetric Rodâ^'Coil Block Copolymers. Macromolecules, 2006, 39, 7078-7083.	4.8	84
50	Determination of the persistence length of helical and non-helical polypeptoids in solution. Soft Matter, 2012, 8, 3673.	2.7	83
51	Thermoreversible Hyaluronic Acidâ€PNIPAAm Hydrogel Systems for 3D Stem Cell Culture. Advanced Healthcare Materials, 2018, 7, e1800225.	7.6	83
52	The Role of Backbone Polarity on Aggregation and Conduction of Ions in Polymer Electrolytes. Journal of the American Chemical Society, 2020, 142, 7055-7065.	13.7	80
53	Phase Behavior of Polystyrene- <i>block</i> poly(2-vinylpyridine) Copolymers in a Selective Ionic Liquid Solvent. Macromolecules, 2009, 42, 4604-4613.	4.8	77
54	Inverse Rectification in Donor–Acceptor Molecular Heterojunctions. ACS Nano, 2011, 5, 9256-9263.	14.6	77

#	Article	IF	CITATIONS
55	Impact of Hydrophobic Sequence Patterning on the Coil-to-Globule Transition of Protein-like Polymers. Macromolecules, 2012, 45, 5229-5236.	4.8	77
56	High Mobility Organic Field-Effect Transistors from Majority Insulator Blends. Chemistry of Materials, 2016, 28, 1256-1260.	6.7	75
57	Effect of Confinement on Proton Transport Mechanisms in Block Copolymer/Ionic Liquid Membranes. Macromolecules, 2012, 45, 3112-3120.	4.8	74
58	Xâ€Ray Scattering Reveals Ionâ€Induced Microstructural Changes During Electrochemical Gating of Poly(3â€Hexylthiophene). Advanced Functional Materials, 2018, 28, 1803687.	14.9	74
59	Self-Assembly of Rodâ^'Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008, 41, 7152-7159.	4.8	70
60	Synthesis and Self-Assembly of Poly(diethylhexyloxy- <i>p</i> -phenylenevinylene)- <i>b</i> -poly(methyl) Tj ETQq0	0 0 rgBT /	Overlock 10
61	Ultralow Thermal Conductivity in Polycrystalline CdSe Thin Films with Controlled Grain Size. Nano Letters, 2013, 13, 2122-2127.	9.1	67
62	Topographic Templating of Islands and Holes in Highly Asymmetric Block Copolymer Films. Macromolecules, 2003, 36, 4498-4506.	4.8	66
63	Mechanism of Crystallization and Implications for Charge Transport in Poly(3â€ethylhexylthiophene) Thin Films. Advanced Functional Materials, 2014, 24, 4515-4521.	14.9	66
64	Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. Macromolecules, 2017, 50, 2656-2667.	4.8	66
65	Role of Sideâ€Chain Branching on Thinâ€Film Structure and Electronic Properties of Polythiophenes. Advanced Functional Materials, 2015, 25, 2616-2624.	14.9	65
66	Role of Tethered Ion Placement on Polymerized Ionic Liquid Structure and Conductivity: Pendant versus Backbone Charge Placement. ACS Macro Letters, 2016, 5, 925-930.	4.8	63
67	Harvesting Waste Heat in Unipolar Ion Conducting Polymers. ACS Macro Letters, 2016, 5, 94-98.	4.8	62
68	Effect of an Ionic Liquid Solvent on the Phase Behavior of Block Copolymers. Macromolecules, 2010, 43, 5417-5423.	4.8	61
69	Surface Structure and Hydration of Sequence-Specific Amphiphilic Polypeptoids for Antifouling/Fouling Release Applications. Langmuir, 2015, 31, 9306-9311.	3.5	61
70	Morphology and Thermodynamic Properties of a Copolymer with an Electronically Conducting Block: Poly(3-ethylhexylthiophene)- <i>block</i> -poly(ethylene oxide). Nano Letters, 2012, 12, 4901-4906.	9.1	59
71	Electrochemical Effects in Thermoelectric Polymers. ACS Macro Letters, 2016, 5, 455-459.	4.8	59
72	Proton Hopping and Long-Range Transport in the Protic Ionic Liquid [Im][TFSI], Probed by Pulsed-Field Gradient NMR and Quasi-Elastic Neutron Scattering. Journal of Physical Chemistry B, 2012, 116, 8201-8209.	2.6	58

#	Article	IF	Citations
73	Thin Film Structure of Symmetric Rodâ^'Coil Block Copolymers. Macromolecules, 2007, 40, 3287-3295.	4.8	56
74	Role of Disorder Induced by Doping on the Thermoelectric Properties of Semiconducting Polymers. Chemistry of Materials, 2018, 30, 2965-2972.	6.7	55
75	Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport. ACS Central Science, 2022, 8, 169-175.	11.3	54
76	Multivalent ion conduction in solid polymer systems. Molecular Systems Design and Engineering, 2019, 4, 263-279.	3.4	53
77	Universal and Solution-Processable Precursor to Bismuth Chalcogenide Thermoelectrics. Chemistry of Materials, 2010, 22, 1943-1945.	6.7	52
78	Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions. Chemistry of Materials, 2014, 26, 7229-7235.	6.7	52
79	Spin-On Organic Polymer Dopants for Silicon. Journal of Physical Chemistry Letters, 2013, 4, 3741-3746.	4.6	51
80	Largeâ€scale integration of flexible materials into rolled and corrugated thermoelectric modules. Journal of Applied Polymer Science, 2017, 134, .	2.6	51
81	Persistence length of polyelectrolytes with precisely located charges. Soft Matter, 2013, 9, 90-98.	2.7	50
82	Directing Self-Assembly Toward Perfection. Science, 2008, 321, 919-920.	12.6	48
83	Tunable Phase Behavior of Polystyrene–Polypeptoid Block Copolymers. Macromolecules, 2012, 45, 6027-6035.	4.8	48
84	Where Biology and Traditional Polymers Meet: The Potential of Associating Sequence-Defined Polymers for Materials Science. Jacs Au, 2021, 1, 1556-1571.	7.9	48
85	Ionic Liquid Distribution in Ordered Block Copolymer Solutions. Macromolecules, 2010, 43, 3750-3756.	4.8	45
86	lon Transport in Dynamic Polymer Networks Based on Metal–Ligand Coordination: Effect of Cross-Linker Concentration. Macromolecules, 2018, 51, 2017-2026.	4.8	45
87	Branched Side Chains Govern Counterion Position and Doping Mechanism in Conjugated Polythiophenes. ACS Macro Letters, 2018, 7, 1492-1497.	4.8	45
88	Tailoring the Seebeck Coefficient of PEDOT:PSS by Controlling Ion Stoichiometry in Ionic Liquid Additives. Chemistry of Materials, 2018, 30, 4816-4822.	6.7	45
89	Higher Order Liquid Crystalline Structure in Low-Polydispersity DEH-PPV. Macromolecules, 2006, 39, 4469-4479.	4.8	44
90	Spatial organization of cellâ€adhesive ligands for advanced cell culture. Biotechnology Journal, 2013, 8, 1411-1423.	3.5	44

#	Article	lF	CITATION
91	Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing. Journal of Materials Chemistry A, 2017, 5, 3346-3357.	10.3	44
92	Structure–Conductivity Relationships of Block Copolymer Membranes Based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing. Macromolecules, 2016, 49, 2216-2223.	4.8	43
93	Decoupling Bulk Mechanics and Mono- and Multivalent Ion Transport in Polymers Based on Metal–Ligand Coordination. Chemistry of Materials, 2018, 30, 5759-5769.	6.7	43
94	Lightâ€Controllable Ionic Conductivity in a Polymeric Ionic Liquid. Angewandte Chemie - International Edition, 2020, 59, 5123-5128.	13.8	43
95	Crystalline Structure in Thin Films of DEHâ^'PPV Homopolymer and PPV-b-PI Rodâ^'Coil Block Copolymers. Macromolecules, 2008, 41, 58-66.	4.8	42
96	Tunable Surface Properties from Sequence-Specific Polypeptoid–Polystyrene Block Copolymer Thin Films. Macromolecules, 2012, 45, 7072-7082.	4.8	42
97	Impact of Helical Chain Shape in Sequence-Defined Polymers on Polypeptoid Block Copolymer Self-Assembly. Macromolecules, 2018, 51, 2089-2098.	4.8	42
98	Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9176-9189.	6.7	42
99	Isothermal Crystallization Kinetics and Time–Temperature–Transformation of the Conjugated Polymer: Poly(3-(2′-ethyl)hexylthiophene). Chemistry of Materials, 2017, 29, 5654-5662.	6.7	41
100	Mixed Conductive Soft Solids by Electrostatically Driven Network Formation of a Conjugated Polyelectrolyte. Chemistry of Materials, 2018, 30, 1417-1426.	6.7	41
101	Controlling the Doping Mechanism in Poly(3-hexylthiophene) Thin-Film Transistors with Polymeric lonic Liquid Dielectrics. Chemistry of Materials, 2019, 31, 8820-8829.	6.7	41
102	The Role of Hydrogen Bonding in Peptoid-Based Marine Antifouling Coatings. Macromolecules, 2019, 52, 1287-1295.	4.8	41
103	Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes. ACS Macro Letters, 2012, 1, 937-943.	4.8	39
104	Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes?. Macromolecules, 2020, 53, 5649-5654.	4.8	39
105	Glass Transition Temperature and Ion Binding Determine Conductivity and Lithium–Ion Transport in Polymer Electrolytes. ACS Macro Letters, 2021, 10, 104-109.	4.8	38
106	Synthesis and Characterization of Fluorinated Heterofluorene-Containing Donorâ^'Acceptor Systems. Journal of Organic Chemistry, 2010, 75, 1871-1887.	3.2	37
107	Formation and Structure of Lyotropic Liquid Crystalline Mesophases in Donor–Acceptor Semiconducting Polymers. Macromolecules, 2016, 49, 7220-7229.	4.8	37
108	Effects of Side Chain Branch Point on Self Assembly, Structure, and Electronic Properties of High Mobility Semiconducting Polymers. Macromolecules, 2018, 51, 8597-8604.	4.8	37

#	Article	IF	CITATIONS
109	Sequence Effects on Block Copolymer Self-Assembly through Tuning Chain Conformation and Segregation Strength Utilizing Sequence-Defined Polypeptoids. Macromolecules, 2019, 52, 1277-1286.	4.8	37
110	Complexation of a Conjugated Polyelectrolyte and Impact on Optoelectronic Properties. ACS Macro Letters, 2019, 8, 88-94.	4.8	37
111	Exploring the Potential of Fulvalene Dimetals as Platforms for Molecular Solar Thermal Energy Storage: Computations, Syntheses, Structures, Kinetics, and Catalysis. Chemistry - A European Journal, 2014, 20, 15587-15604.	3.3	35
112	Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors. Advanced Functional Materials, 2021, 31, 2104301.	14.9	35
113	Dynamics of Magnetic Alignment in Rod–Coil Block Copolymers. Macromolecules, 2013, 46, 4462-4471.	4.8	34
114	Unraveling the Effect of Conformational and Electronic Disorder in the Charge Transport Processes of Semiconducting Polymers. Advanced Functional Materials, 2018, 28, 1804142.	14.9	34
115	Effects of Counterâ€ion Size on Delocalization of Carriers and Stability of Doped Semiconducting Polymers. Advanced Electronic Materials, 2020, 6, 2000595.	5.1	33
116	Formation of a Rigid Amorphous Fraction in Poly(3-(2′-ethyl)hexylthiophene). ACS Macro Letters, 2014, 3, 684-688.	4.8	32
117	Anisotropic Thermal Transport in Thermoelectric Composites of Conjugated Polyelectrolytes/Single-Walled Carbon Nanotubes. Macromolecules, 2016, 49, 4957-4963.	4.8	31
118	Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination. Journal of the American Chemical Society, 2021, 143, 1562-1569.	13.7	31
119	Domain Size Control in Self-Assembling Rodâ^'Coil Block Copolymer and Homopolymer Blends. Macromolecules, 2007, 40, 3320-3327.	4.8	30
120	Controlling Nanorod Self-Assembly in Polymer Thin Films. Macromolecules, 2011, 44, 7364-7371.	4.8	30
121	Nonaggregating Doped Polymers Based on Poly(3,4-Propylenedioxythiophene). Macromolecules, 2019, 52, 2203-2213.	4.8	29
122	Chain Stiffness of Donor–Acceptor Conjugated Polymers in Solution. Macromolecules, 2022, 55, 437-449.	4.8	29
123	Spatial Resolution of a Type II Heterojunction in a Single Bipolar Molecule. Nano Letters, 2009, 9, 3963-3967.	9.1	27
124	Largeâ€Area, Nanometerâ€Scale Discrete Doping of Semiconductors via Block Copolymer Selfâ€Assembly. Advanced Materials Interfaces, 2015, 2, 1500421.	3.7	26
125	Rapid and Selective Deposition of Patterned Thin Films on Heterogeneous Substrates via Spin Coating. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21177-21183.	8.0	26
126	Molecular Considerations for Mesophase Interaction and Alignment of Lyotropic Liquid Crystalline Semiconducting Polymers. ACS Macro Letters, 2017, 6, 619-624.	4.8	24

#	Article	IF	CITATIONS
127	Effects of Helical Chain Shape on Lamellae-Forming Block Copolymer Self-Assembly. Macromolecules, 2019, 52, 2560-2568.	4.8	24
128	Structure determination of Pt-coated Au dumbbells <i>via</i> fluctuation X-ray scattering. Journal of Synchrotron Radiation, 2012, 19, 695-700.	2.4	23
129	In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks. Nature Communications, 2020, 11, 2069.	12.8	23
130	Enhancing the Ionic Conductivity of Poly(3,4-propylenedioxythiophenes) with Oligoether Side Chains for Use as Conductive Cathode Binders in Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 2672-2686.	6.7	23
131	End-to-End Distance Probability Distributions of Dilute Poly(ethylene oxide) in Aqueous Solution. Journal of the American Chemical Society, 2020, 142, 19631-19641.	13.7	22
132	Electrical properties of doped conjugated polyelectrolytes with modulated density of the ionic functionalities. Chemical Communications, 2015, 51, 17607-17610.	4.1	21
133	Room-level ventilation in schools and universities. Atmospheric Environment: X, 2022, 13, 100152.	1.4	21
134	Near-surface and internal lamellar structure and orientation in thin films of rod–coil block copolymers. Soft Matter, 2009, 5, 182-192.	2.7	20
135	Integrated microfluidic test-bed for energy conversion devices. Physical Chemistry Chemical Physics, 2013, 15, 7050.	2.8	20
136	Confined crystallization in lamellae forming poly(3â€(2â€2ê€ethyl)hexylthiophene) (<scp>P3EHT</scp>) block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 205-215.	2.1	20
137	Mussel-Inspired Strategy for Stabilizing Ultrathin Polymer Films and Its Application to Spin-On Doping of Semiconductors. Chemistry of Materials, 2018, 30, 5285-5292.	6.7	20
138	Synthesis and characterization of 2,7-bis(pentafluorophenylethynyl)hexafluoroheterofluorenes: new materials with high electron affinities. Chemical Communications, 2008, , 5107.	4.1	19
139	Improving the Gas Barrier Properties of Nafion via Thermal Annealing: Evidence for Diffusion through Hydrophilic Channels and Matrix. Macromolecules, 2015, 48, 3303-3309.	4.8	19
140	Monomer Sequence Effects on Interfacial Width and Mixing in Self-Assembled Diblock Copolymers. Macromolecules, 2020, 53, 3262-3272.	4.8	19
141	Electronic, Ionic, and Mixed Conduction in Polymeric Systems. Annual Review of Materials Research, 2021, 51, 1-20.	9.3	19
142	Thermal Control of Confined Crystallization within P3EHT Block Copolymer Microdomains. Macromolecules, 2017, 50, 8097-8105.	4.8	18
143	Decoupling Mechanical and Conductive Dynamics of Polymeric Ionic Liquids via a Trivalent Anion Additive. Macromolecules, 2017, 50, 8979-8987.	4.8	18
144	Increased Order–Disorder Transition Temperature for a Rod–Coil Block Copolymer in the Presence of a Magnetic Field. Macromolecules, 2011, 44, 7503-7507.	4.8	17

#	Article	IF	Citations
145	Melting Behavior of Poly(3-(2′-ethyl)hexylthiophene). Macromolecules, 2014, 47, 8305-8310.	4.8	17
146	Confined Crystallization within Cylindrical P3EHT Block Copolymer Microdomains. Macromolecules, 2017, 50, 6128-6136.	4.8	17
147	Temperature-Dependence of Persistence Length Affects Phenomenological Descriptions of Aligning Interactions in Nematic Semiconducting Polymers. Chemistry of Materials, 2018, 30, 748-761.	6.7	17
148	Role of Side-Chain Architecture in Poly(ethylene oxide)-Based Copolymers. Macromolecules, 2020, 53, 4960-4967.	4.8	17
149	Amphiphilic Nitroxide-Bearing Siloxane-Based Block Copolymer Coatings for Enhanced Marine Fouling Release. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28790-28801.	8.0	17
150	Aqueous Formulation of Concentrated Semiconductive Fluid Using Polyelectrolyte Coacervation. ACS Macro Letters, 2021, 10, 1008-1014.	4.8	17
151	Square Grains in Asymmetric Rodâ^'Coil Block Copolymers. Langmuir, 2008, 24, 1604-1607.	3.5	15
152	Absence of Electrostatic Rigidity in Conjugated Polyelectrolytes with Pendant Charges. ACS Macro Letters, 2019, 8, 1147-1152.	4.8	15
153	The Role of Polymer–lon Interaction Strength on the Viscoelasticity and Conductivity of Solvent-Free Polymer Electrolytes. Macromolecules, 2020, 53, 10574-10581.	4.8	15
154	Tuning the Double Gyroid Phase Window in Block Copolymers via Polymer Chain Conformation Near the Interface. Macromolecules, 2021, 54, 5388-5396.	4.8	15
155	Polymer Diffusion in Semicrystalline Polymers Using Secondary Ion Mass Spectroscopy. Macromolecules, 2004, 37, 2613-2617.	4.8	13
156	Photocrosslinking polymeric ionic liquids <i>via</i> anthracene cycloaddition for organic electronics. Journal of Materials Chemistry C, 2018, 6, 8762-8769.	5 . 5	13
157	Directly Probing Polymer Thin Film Chemistry and Counterion Influence on Water Sorption. ACS Applied Polymer Materials, 2020, 2, 4752-4761.	4.4	13
158	Li+ and Oxidant Addition To Control Ionic and Electronic Conduction in Ionic Liquid-Functionalized Conjugated Polymers. Chemistry of Materials, 2021, 33, 6464-6474.	6.7	13
159	Liquid Crystalline Orientation of Rod Blocks within Lamellar Nanostructures from Rodâ^'Coil Diblock Copolymers. Macromolecules, 2010, 43, 6531-6534.	4.8	12
160	Confinement Promotes Hydrogen Bond Network Formation and Grotthuss Proton Hopping in Ion-Conducting Block Copolymers. Macromolecules, 2022, 55, 615-622.	4.8	12
161	Rheological properties and the mechanical signatures of phase transitions in weakly-segregated rod-coil block copolymers. Soft Matter, 2009, 5, 2453.	2.7	11
162	Sequence Modulates Polypeptoid Hydration Water Structure and Dynamics. Biomacromolecules, 2022, 23, 1745-1756.	5.4	11

#	Article	IF	Citations
163	Ionic Tunability of Conjugated Polyelectrolyte Solutions. Macromolecules, 2022, 55, 3437-3448.	4.8	11
164	Oligopeptide-modified hydrophobic and hydrophilic polymers as antifouling coatings. Green Materials, 2017, 5, 31-43.	2.1	9
165	Influence of pore morphology on the diffusion of water in triblock copolymer membranes. Journal of Chemical Physics, 2020, 152, 014904.	3.0	9
166	Versatile Synthetic Platform for Polymer Membrane Libraries Using Functional Networks. Macromolecules, 2021, 54, 866-873.	4.8	9
167	Quantifying Polypeptoid Conformational Landscapes through Integrated Experiment and Simulation. Macromolecules, 2021, 54, 5011-5021.	4.8	9
168	Impact of Side Chain Chemistry on Lithium Transport in Mixed Ion–Electron-Conducting Polymers. Chemistry of Materials, 2022, 34, 4672-4681.	6.7	9
169	Insensitivity of Sterically Defined Helical Chain Conformations to Solvent Quality in Dilute Solution. ACS Macro Letters, 2020, 9, 849-854.	4.8	8
170	Database Creation, Visualization, and Statistical Learning for Polymer Li ⁺ -Electrolyte Design. Chemistry of Materials, 2021, 33, 4863-4876.	6.7	8
171	Non-intuitive Trends in Flory–Huggins Interaction Parameters in Polyether-Based Polymers. Macromolecules, 2021, 54, 6670-6677.	4.8	8
172	Dopamine-Mediated Polymer Coating Facilitates Area-Selective Atomic Layer Deposition. ACS Applied Polymer Materials, 2021, 3, 4924-4931.	4.4	8
173	Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at $Au(1\ 1\ 1)$ electrode interface. Journal of Colloid and Interface Science, 2022, 606, 1170-1178.	9.4	8
174	Deciphering the three-dimensional morphology of free-standing block copolymer thin films by transmission electron microscopy. Micron, 2013, 44, 442-450.	2.2	7
175	On the growth, structure and dynamics of P3EHT crystals. Journal of Materials Chemistry C, 2020, 8, 8155-8170.	5.5	7
176	Grain Structure in Block Copolymer Thin Films Studied by Guided Wave Depolarized Light Scattering. Macromolecules, 2005, 38, 4282-4288.	4.8	6
177	Control of thermal and optoelectronic properties in conjugated poly (3-alkylthiophenes). MRS Communications, 2014, 4, 45-50.	1.8	6
178	The role of anions in light-driven conductivity in diarylethene-containing polymeric ionic liquids. Polymer Chemistry, 2021, 12, 719-724.	3.9	5
179	Postdeposition Processing Influences the Relative Contributions of Electronic and Ionic Seebeck Effects in the Thermoelectric Response of Conducting Polymers. Journal of Physical Chemistry C, 2021, 125, 12289-12296.	3.1	5
180	New Approaches to EUV Photoresists: Studies of Polyacetals and Polypeptoids to Expand the Photopolymer Toolbox. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 71-74.	0.3	5

#	Article	IF	CITATIONS
181	Effects of Amphiphilic Polypeptoid Side Chains on Polymer Surface Chemistry and Hydrophilicity. ACS Applied Materials & Diterfaces, 2022, 14, 7340-7349.	8.0	5
182	Role of Electron-Deficient Imidazoles in Ion Transport and Conductivity in Solid-State Polymer Electrolytes. Macromolecules, 2022, 55, 971-977.	4.8	5
183	Polycation radius of gyration in a polymeric ionic liquid (PIL): the PIL melt is not a theta solvent. Physical Chemistry Chemical Physics, 2022, 24, 4526-4532.	2.8	5
184	Polymer Electrolyte Based on Cyano-Functionalized Polysiloxane with Enhanced Salt Dissolution and High Ionic Conductivity. Macromolecules, 2022, 55, 5723-5732.	4.8	5
185	Tuning the optoelectronic properties of P3EHT block copolymers by surface modification. International Journal of Nanotechnology, 2017, 14, 540.	0.2	3
186	Redox-Active Polymeric Ionic Liquids with Pendant N-Substituted Phenothiazine. ACS Applied Materials & Company (1988) & Compa	8.0	3
187	Discrete, Shallow Doping of Semiconductors via Cylinderâ€Forming Block Copolymer Selfâ€Assembly. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
188	A High-Performance Solution-Processable Hybrid Thermoelectric Material. , 2012, , .		2
189	Lightâ€Controllable Ionic Conductivity in a Polymeric Ionic Liquid. Angewandte Chemie, 2020, 132, 5161-5166.	2.0	2
190	Thermoelectricity at the Organic-Inorganic Interface. , 2010, , .		1
191	Ordered polymer-based spin-on dopants. , 2019, , .		1
192	Ultra-thin conformal coating for spin-on doping applications. , 2019, , .		1
193	In memory of professor Edward J. Kramer. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 117-117.	2.1	0
194	In memory of professor Edward J. Kramer. Journal of Polymer Science Part A, 2016, 54, 227-227.	2.3	0
195	Optimum in ligand density for conductivity in polymer electrolytes. Molecular Systems Design and Engineering, 2021, 6, 1025-1038.	3.4	0
196	Solar Cells Based on Diblock Copolymers. Optical Science and Engineering, 2005, , .	0.1	0