Masamori Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4449743/publications.pdf

Version: 2024-02-01

687363 752698 68 535 13 20 citations h-index g-index papers 70 70 70 184 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Light Management for Enhancing Optical Gain in a Solarâ€Pumped Fiber Laser Employing a Solidâ€State Luminescent Solar Concentrator. Advanced Photonics Research, 2022, 3, .	3.6	5
2	Diode pumped alkali laser: current status and prospects. Optical and Quantum Electronics, 2022, 54, .	3.3	3
3	Solar Pumping of Fiber Lasers with Solidâ€ S tate Luminescent Concentrators: Design Optimization by Ray Tracing. Advanced Optical Materials, 2021, 9, 2100479.	7.3	10
4	Collisional mixing and quenching cross sections of Cs 6 ² P levels with methane, ethane, and propane. Optics Express, 2021, 29, 42887.	3.4	3
5	A fully planar solar pumped laser based on a luminescent solar collector. Communications Physics, 2020, 3, .	5.3	28
6	All-inorganic cesium lead halide perovskite nanocrystals for solar-pumped laser application. Journal of Applied Physics, 2020, 127, .	2.5	15
7	Modeling of diode-pumped cesium vapor laser by combination of computational fluid dynamics and wave-optics. Japanese Journal of Applied Physics, 2020, 59, 022002.	1.5	6
8	Peak-power enhancement of a cavity-dumped cesium-vapor laser by using dual longitudinal-mode oscillations. Optics Express, 2020, 28, 33994.	3.4	5
9	Monte Carlo simulation of a transversely excited solar-pumped fiber laser. Japanese Journal of Applied Physics, 2019, 58, 112006.	1.5	8
10	Solar-pumped fiber laser with all-inorganic cesium lead halide perovskite quantum dots. , 2019, , .		1
11	Effect of the thermally excited lower laser level in a neodymium-doped fiber. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 736.	2.1	8
12	Pulsed output generation in a diode-pumped cesium vapor laser using the cavity dumping technique. Optics Letters, 2019, 44, 1312.	3.3	5
13	Wave-optics simulation of diode-pumped cesium vapor laser coupled with a simplified gas-flow model. Japanese Journal of Applied Physics, 2018, 57, 092701.	1.5	6
14	Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation. Optical Engineering, 2018, 57, 1.	1.0	6
15	Solar-pumped fiber laser with transverse-excitation geometry. , 2018, , .		O
16	Scalable pump beam arrangement for diode pumped alkali lasers. , 2018, , .		2
17	Investigation of diode-pumped alkali lasers and their computational model calculationse. , 2018, , .		O
18	Possible repetitive pulse operation of diode-pumped alkali laser (DPAL). Proceedings of SPIE, 2017, , .	0.8	2

#	Article	IF	CITATIONS
19	Low-loss pigtail reflector for fiber lasers. Review of Scientific Instruments, 2017, 88, 053112.	1.3	8
20	Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry. Optics Letters, 2017, 42, 3427.	3.3	25
21	Anomalous enhancement of drilling rate in carbon fiber reinforced plastic using azimuthally polarized CO2laser. Laser Physics, 2016, 26, 096001.	1.2	7
22	Output power characteristics of diode-pumped cesium vapor laser. Japanese Journal of Applied Physics, 2015, 54, 122701.	1.5	27
23	Analysis of an optical resonator formed by a pair of specially shaped axicons. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 507.	1.5	6
24	Positive Gain Observation in a Nd-Doped Active Fiber Pumped by Low-Concentrated Solar-Like Xenon Lamp. Japanese Journal of Applied Physics, 2012, 51, 022701.	1.5	8
25	Optical characteristics of Cr3+ and Nd3+ codoped Y3Al5O12 ceramics. Optics and Laser Technology, 2010, 42, 610-616.	4.6	14
26	An all-gas-phase amine based iodine laser using molecular iodine as atomic iodine donor. Chemical Physics Letters, 2010, 485, 296-298.	2.6	8
27	<title>Sheet metal cutting with a 2 kW radially polarized CO<formula><inf><roman>2</roman></inf></formula> laser</title> . Proceedings of SPIE, 2010, , .	0.8	6
28	Characteristics of an all gas-phase iodine laser using molecular iodine as atomic iodine donor. Journal Physics D: Applied Physics, 2010, 43, 425203.	2.8	4
29	An all gas-phase iodine laser based on amine chemistry. Chemical Physics Letters, 2009, 476, 25-27.	2.6	9
30	Azimuthally polarized 1 kW CO_2 laser with a triple-axicon retroreflector optical resonator. Optics Letters, 2008, 33, 1771.	3.3	42
31	Simple Real Time Trace Nitrogen Dioxide Detector Based on Continuous-Wave Cavity Ringdown Spectroscopy Using Passively Locked External Cavity Diode Laser. Japanese Journal of Applied Physics, 2008, 47, 6478-6483.	1.5	6
32	Compact diode laser trace gas system with an optical fiber coupled flexible high-finesse external cavity based on cavity ringdown spectroscopy. , 2008, , .		0
33	Development of Hybrid Simulation for Supersonic Chemical Oxygen-lodine Laser. AIAA Journal, 2007, 45, 90-97.	2.6	12
34	Doughnut Like Beam Generation by a W-Axicon Resonator with Variable Geometry. Japanese Journal of Applied Physics, 2007, 46, 593-596.	1.5	2
35	Performance characteristics of a compact cylindrical multi-pass cell for laser absorption based trace gas sensor., 2007,,.		2
36	Performance Comparison of Real-Time Laser Absorption Spectrometers for NH ₃ Detection at 1.54 and 3.0314m in a H ₂ O Vapor Mixture. The Review of Laser Engineering, 2007, 35, 173-179.	0.0	0

3

#	Article	IF	CITATIONS
37	Measurements of NO ₂ Concentration with Wide Dynamic Range Based on Laser Absorption Spectroscopy Using a Multi-Pass Optical Cell. The Review of Laser Engineering, 2006, 34, 246-250.	0.0	1
38	Two-stage ejector based pressure recovery system for small scale SCOIL. Experimental Thermal and Fluid Science, 2006, 30, 415-426.	2.7	15
39	Trace NO <inf>2</inf> detection based on differential cavity ringdown spectroscopy using a dual wavelength passively locked external cavity diode laser., 2006,,.		2
40	Removal of Water Vapor in a Mist Singlet Oxygen Generator for Chemical Oxygen Iodine Laser. Japanese Journal of Applied Physics, 2004, 43, 567-570.	1.5	2
41	Parametric Studies on Improved Laser Cutting Performance of Magnesium Alloy with Two Flow Nozzles. Japanese Journal of Applied Physics, 2004, 43, 5347-5351.	1.5	9
42	High-efficiency chemical oxygen–iodine laser using a streamwise vortex generator. Applied Physics Letters, 2004, 84, 2983-2985.	3.3	21
43	Numerical simulation of an optical resonator for generation of a doughnut-like laser beam. Optics Express, 2004, 12, 1959.	3.4	43
44	Trace Methane Detection Based on Raman Spectroscopy Using a High Finesse Optical Resonator. The Review of Laser Engineering, 2004, 32, 208-210.	0.0	14
45	Performance Characteristics of Power Build-Up Cavity for Raman Spectroscopic Measurement. Optical Review, 2003, 10, 342-345.	2.0	21
46	Performance Characteristics of Narrow Linewidth Fiber Laser Pumped Mid-IR Difference Frequency Mixing Light Source for Methane Detection. Japanese Journal of Applied Physics, 2003, 42, 1263-1267.	1.5	12
47	Development of a Nitrogen Dioxide Gas Sensor Based on Mid-Infrared Absorption Spectroscopy The Review of Laser Engineering, 2003, 31, 151-155.	0.0	6
48	Numerical Simulation of a Mist Singlet Oxygen Generator. Japanese Journal of Applied Physics, 2002, 41, 125-133.	1.5	2
49	Development of a Mist Singlet Oxygen Generator. Japanese Journal of Applied Physics, 2002, 41, 5193-5197.	1.5	14
50	Parametric study of a mist-singlet oxygen generator. III Journal of Advanced Science, 2002, 14, 89-90.	0.1	0
51	Numerical simulation of the w-axicon type optical resonator for coaxial slab CO2lasers. Journal Physics D: Applied Physics, 2001, 34, 68-77.	2.8	16
52	Parametric study of a mist-singlet oxygen generator. II Journal of Advanced Science, 2001, 13, 88-89.	0.1	0
53	Two-Dimensional Simulation of and Experiments on the Forward-Backward Modes Coupled Unstable Resonator. Japanese Journal of Applied Physics, 2001, 40, 617-624.	1.5	3
54	Output Power Enhancement of a Chemical Oxygen-Iodine Laser by Predissociated Iodine Injection. Japanese Journal of Applied Physics, 2000, 39, 468-474.	1.5	35

#	Article	IF	CITATIONS
55	Chemical oxygen-iodine laser for decommissioning and dismantlement of nuclear facilities Journal of Advanced Science, 2000, 12, 146-147.	0.1	1
56	Parametric study of a mist jet-singlet oxygen generator Journal of Advanced Science, 2000, 12, 136-137.	0.1	1
57	Cutting and Drilling of Inorganic Materials for Civil Engineering Using a Chemical Oxygen-lodine Laser The Review of Laser Engineering, 2000, 28, 171-175.	0.0	1
58	Supersonic chemical oxygen iodine laser with microwave discharge dissociation of iodine molecule Journal of Advanced Science, 2000, 12, 138-139.	0.1	0
59	Waveform Shaping of a Chemical Oxygen-lodine Laser Utilizing the Zeeman Effect. Japanese Journal of Applied Physics, 1999, 38, 5105-5108.	1.5	2
60	High-pressure, high-efficiency operation of a chemical oxygen-iodine laser. Applied Physics Letters, 1999, 75, 3081-3083.	3.3	13
61	High peak power pulse generation of the Chemical Oxygenlodine Laser with an External Magnetic Field Journal of Advanced Science, 1999, 11, 144-145.	0.1	О
62	High pressure operation of Chemical Oxygen Iodine Laser Journal of Advanced Science, 1999, 11, 142-143.	0.1	0
63	Output power control of the chemical oxygen-iodine laser with an external magnetic field Journal of Advanced Science, 1998, 10, 148-149.	0.1	O
64	Performance of jet type singlet oxygen generator of supersonic COIL for optical power system Journal of Advanced Science, 1998, 10, 152-153.	0.1	0
65	High-efficiency operation of supersonic COIL using nitrogen as buffer gas for optical power system Journal of Advanced Science, 1998, 10, 150-151.	0.1	O
66	Report of 8th International Symposium on gas flow and chemical lasers. II The Review of Laser Engineering, 1990, 18, 1024-1030.	0.0	0
67	An ultra-compact NO2 detector based on cavity ringdown spectroscopy using a laser diode pumped power build-up cavity. , 0, , .		0
68	Generation of Doughnut-Like Beams by Means of a W-axicon Resonator with a Movable Axicon Element. , 0, , .		1