
Xiaoyu Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4449553/publications.pdf Version: 2024-02-01

Χιλονμ Ημ

#	Article	IF	CITATIONS
1	Epithelial NELF guards intestinal barrier function to ameliorate colitis by maintaining junctional integrity. Mucosal Immunology, 2022, 15, 279-288.	6.0	6
2	An ultra low-input method for global RNA structure probing uncovers Regnase-1-mediated regulation in macrophages. Fundamental Research, 2022, 2, 2-13.	3.3	9
3	CD127 imprints functional heterogeneity to diversify monocyte responses in inflammatory diseases. Journal of Experimental Medicine, 2022, 219, .	8.5	21
4	Group 3 Innate Lymphoid Cells Protect the Host from the Uropathogenic <i>Escherichia coli</i> Infection in the Bladder. Advanced Science, 2022, 9, e2103303.	11.2	8
5	Macrophages promote cartilage regeneration in a time―and phenotypeâ€dependent manner. Journal of Cellular Physiology, 2022, 237, 2258-2270.	4.1	9
6	Setd2 determines distinct properties of intestinal ILC3 subsets to regulate intestinal immunity. Cell Reports, 2022, 38, 110530.	6.4	10
7	Generation of a human induced pluripotent stem cell line FMUPDCi001-A from a patient with mental retardation, autosomal recessive 36 (MRT36) carrying the variants c.219dupA and c.587CÂ>ÂT in ADAT3. Stem Cell Research, 2022, 61, 102777.	0.7	0
8	Leptin receptor signaling sustains metabolic fitness of alveolar macrophages to attenuate pulmonary inflammation. Science Advances, 2022, 8, .	10.3	7
9	Three paralogous clusters of the miR-17~92 family of microRNAs restrain IL-12-mediated immune defense. Cellular and Molecular Immunology, 2021, 18, 1751-1760.	10.5	8
10	Engagement of TLR and Dectin-1/Syk Signaling Is Required for Activation of Notch Targets in Dendritic Cells. Infectious Microbes & Diseases, 2021, 3, 101-108.	1.3	2
11	LRRK2 plays essential roles in maintaining lung homeostasis and preventing the development of pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
12	Contact-dependent delivery of IL-2 by dendritic cells to CD4 T cells in the contraction phase promotes their long-term survival. Protein and Cell, 2020, 11, 108-123.	11.0	4
13	Regulatory network mediated by RBPâ€//NFATc1â€miR182 controls inflammatory bone resorption. FASEB Journal, 2020, 34, 2392-2407.	0.5	14
14	Metabolic regulation of innate immunity. Advances in Immunology, 2020, 145, 129-157.	2.2	10
15	α-Defensins Promote Bacteroides Colonization on Mucosal Reservoir to Prevent Antibiotic-Induced Dysbiosis. Frontiers in Immunology, 2020, 11, 2065.	4.8	14
16	The colonic macrophage transcription factor RBP-J orchestrates intestinal immunity against bacterial pathogens. Journal of Experimental Medicine, 2020, 217, .	8.5	17
17	Enhancing KDM5A and TLR activity improves the response to immune checkpoint blockade. Science Translational Medicine, 2020, 12, .	12.4	34
18	Negative elongation factor complex enables macrophage inflammatory responses by controlling anti-inflammatory gene expression. Nature Communications, 2020, 11, 2286.	12.8	24

Χιλογύ Ηυ

#	Article	IF	CITATIONS
19	Editorial: Innate Immunity Programming and Memory in Resolving and Non-Resolving Inflammation. Frontiers in Immunology, 2020, 11, 177.	4.8	3
20	Stereotyping in East and West: live with it or deal with it?. Nature Immunology, 2020, 21, 234-234.	14.5	0
21	MicroRNAs of the miR-17~92 family maintain adipose tissue macrophage homeostasis by sustaining IL-10 expression. ELife, 2020, 9, .	6.0	20
22	Def6 regulates endogenous type-l interferon responses in osteoblasts and suppresses osteogenesis. ELife, 2020, 9, .	6.0	11
23	TLE4 acts as a corepressor of Hes1 to inhibit inflammatory responses in macrophages. Protein and Cell, 2019, 10, 300-305.	11.0	19
24	TMEM43-S358L mutation enhances NF-κB-TGFβ signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Protein and Cell, 2019, 10, 104-119.	11.0	31
25	Slc6a8-Mediated Creatine Uptake and Accumulation Reprogram Macrophage Polarization via Regulating Cytokine Responses. Immunity, 2019, 51, 272-284.e7.	14.3	121
26	Sweet Memories of 8 Empowered by Butyrate. Immunity, 2019, 51, 201-203.	14.3	3
27	Hes1 attenuates type I IFN responses via VEGF-C and WDFY1. Journal of Experimental Medicine, 2019, 216, 1396-1410.	8.5	13
28	Nutrient Sensing by the Intestinal Epithelium Orchestrates Mucosal Antimicrobial Defense via Translational Control of Hes1. Cell Host and Microbe, 2019, 25, 706-718.e7.	11.0	20
29	Dlg1 Maintains Dendritic Cell Function by Securing Voltage-Gated K+ Channel Integrity. Journal of Immunology, 2019, 202, 3187-3197.	0.8	10
30	Epithelial Hes1 maintains gut homeostasis by preventing microbial dysbiosis. Mucosal Immunology, 2018, 11, 716-726.	6.0	35
31	Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Archives of Toxicology, 2018, 92, 469-485.	4.2	26
32	The Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. Cell, 2018, 175, 1059-1073.e21.	28.9	148
33	Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages. ELife, 2018, 7, .	6.0	77
34	Biphasic modulation of insulin signaling enables highly efficient hematopoietic differentiation from human pluripotent stem cells. Stem Cell Research and Therapy, 2018, 9, 205.	5.5	22
35	NOTCH1 Signaling Regulates Self-Renewal and Platinum Chemoresistance of Cancer Stem–like Cells in Human Non–Small Cell Lung Cancer. Cancer Research, 2017, 77, 3082-3091.	0.9	64
36	Def6 Restrains Osteoclastogenesis and Inflammatory Bone Resorption. Journal of Immunology, 2017, 198, 3436-3447.	0.8	11

Χιλογύ Ηυ

#	Article	IF	CITATIONS
37	Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nature Communications, 2017, 8, 1739.	12.8	28
38	MicroRNA-21: A Positive Regulator for Optimal Production of Type I and Type III Interferon by Plasmacytoid Dendritic Cells. Frontiers in Immunology, 2017, 8, 947.	4.8	16
39	Combining Vγ9VÎ′2 T Cells with a Lipophilic Bisphosphonate Efficiently Kills Activated Hepatic Stellate Cells. Frontiers in Immunology, 2017, 8, 1381.	4.8	13
40	RBP-J–Regulated miR-182 Promotes TNF-α–Induced Osteoclastogenesis. Journal of Immunology, 2016, 196, 4977-4986.	0.8	59
41	The transcriptional repressor Hes1 attenuates inflammation by regulating transcription elongation. Nature Immunology, 2016, 17, 930-937.	14.5	64
42	RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes. Protein and Cell, 2016, 7, 201-209.	11.0	42
43	Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein and Cell, 2016, 7, 159-174.	11.0	206
44	Interferon-Î ³ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nature Immunology, 2015, 16, 838-849.	14.5	239
45	RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. Journal of Clinical Investigation, 2014, 124, 5057-5073.	8.2	52
46	Synergistic Activation of Inflammatory Cytokine Genes by Interferon-Î ³ -Induced Chromatin Remodeling and Toll-like Receptor Signaling. Immunity, 2013, 39, 454-469.	14.3	250
47	Increased Th17 Cells in the Tumor Microenvironment Is Mediated by IL-23 via Tumor-Secreted Prostaglandin E2. Journal of Immunology, 2013, 190, 5894-5902.	0.8	73
48	TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. Journal of Experimental Medicine, 2012, 209, 319-334.	8.5	157
49	Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nature Immunology, 2012, 13, 642-650.	14.5	361
50	TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. Journal of Cell Biology, 2012, 196, i2-i2.	5.2	0
51	Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages. Nature Immunology, 2011, 12, 607-615.	14.5	160
52	Myxoma Virus Induces Type I Interferon Production in Murine Plasmacytoid Dendritic Cells via a TLR9/MyD88-, IRF5/IRF7-, and IFNAR-Dependent Pathway. Journal of Virology, 2011, 85, 12835-12835.	3.4	0
53	Myxoma Virus Induces Type I Interferon Production in Murine Plasmacytoid Dendritic Cells via a TLR9/MyD88-, IRF5/IRF7-, and IFNAR-Dependent Pathway. Journal of Virology, 2011, 85, 10814-10825.	3.4	37
54	Notch- and Transducin-like Enhancer of Split (TLE)-dependent Histone Deacetylation Explain Interleukin 12 (IL-12) p70 Inhibition by Zymosan. Journal of Biological Chemistry, 2011, 286, 16583-16595.	3.4	27

Χιλογύ Ηυ

#	Article	IF	CITATIONS
55	Autoamplification of Notch Signaling in Macrophages by TLR-Induced and RBP-J–Dependent Induction of Jagged1. Journal of Immunology, 2010, 185, 5023-5031.	0.8	105
56	Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nature Medicine, 2009, 15, 1066-1071.	30.7	270
57	Cross-regulation of Signaling Pathways by Interferon-Î ³ : Implications for Immune Responses and Autoimmune Diseases. Immunity, 2009, 31, 539-550.	14.3	733
58	Regulation of interferon and Tollâ€like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunological Reviews, 2008, 226, 41-56.	6.0	261
59	TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon–response genes. Nature Immunology, 2008, 9, 378-387.	14.5	388
60	Integrated Regulation of Toll-like Receptor Responses by Notch and Interferon-Î ³ Pathways. Immunity, 2008, 29, 691-703.	14.3	235
61	IFN-Î ³ and STAT1 Arrest Monocyte Migration and Modulate RAC/CDC42 Pathways. Journal of Immunology, 2008, 180, 8057-8065.	0.8	57
62	Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. Journal of Leukocyte Biology, 2007, 82, 237-243.	3.3	247
63	FcÎ ³ RIII-Dependent Inhibition of Interferon-Î ³ Responses Mediates Suppressive Effects of Intravenous Immune Globulin. Immunity, 2007, 26, 67-78.	14.3	147
64	IFN-Î ³ Suppresses IL-10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity, 2006, 24, 563-574.	14.3	370
65	The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression. EMBO Journal, 2006, 25, 108-117.	7.8	141
66	IFN-Î ³ -Primed Macrophages Exhibit Increased CCR2-Dependent Migration and Altered IFN-Î ³ Responses Mediated by Stat1. Journal of Immunology, 2005, 175, 3637-3647.	0.8	57
67	Homeostatic Role of Interferons Conferred by Inhibition of IL-1-Mediated Inflammation and Tissue Destruction. Journal of Immunology, 2005, 175, 131-138.	0.8	53
68	Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors. Nature Immunology, 2004, 5, 1181-1189.	14.5	88
69	Signaling by STATs. Arthritis Research, 2004, 6, 159.	2.0	121
70	The JAK/STAT pathway in rheumatoid arthritis: Pathogenic or protective?. Arthritis and Rheumatism, 2003, 48, 2092-2096.	6.7	85
71	Inhibition of IFN-Î ³ Signaling by Glucocorticoids. Journal of Immunology, 2003, 170, 4833-4839.	0.8	156
72	Reprogramming of IL-10 Activity and Signaling by IFN-γ. Journal of Immunology, 2003, 171, 5034-5041.	0.8	134

#	Article	IF	CITATIONS
73	Sensitization of IFN-Î ³ Jak-STAT signaling during macrophage activation. Nature Immunology, 2002, 3, 859-866.	14.5	194