Michael Lardelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4449433/publications.pdf

Version: 2024-02-01

94 papers 4,490 citations

34 h-index 110387 64 g-index

119 all docs

119 docs citations

119 times ranked

5195 citing authors

#	Article	IF	CITATIONS
1	Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Developmental Brain Research, 1995, 84, 109-129.	1.7	453
2	The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mechanisms of Development, 1994, 46, 123-136.	1.7	302
3	The Peak of the Oil Age – Analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 2010, 38, 1398-1414.	8.8	254
4	Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction. Journal of Visualized Experiments, 2012, , e4196.	0.3	189
5	Expression of Notch 1, 2 and 3 is regulated by epithelial-mesenchymal interactions and retinoic acid in the developing mouse tooth and associated with determination of ameloblast cell fate Journal of Cell Biology, 1995, 130, 407-418.	5.2	170
6	Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mechanisms of Development, 1995, 53, 357-368.	1.7	167
7	Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Human Molecular Genetics, 2007, 16, 1905-1920.	2.9	136
8	Motch A and Motch Bâ€"Two Mouse Notch Homologues Coexpressed in a Wide Variety of Tissues. Experimental Cell Research, 1993, 204, 364-372.	2.6	133
9	Three novel Notch genes in zebrafish: implications for vertebrate Notch gene evolution and function. Development Genes and Evolution, 1997, 207, 51-63.	0.9	126
10	Alzheimer disease: Amyloidogenesis, the presenilins and animal models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 285-297.	3.8	119
11	Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Human Molecular Genetics, 2006, 15, 3446-3458.	2.9	117
12	A Rapid Apoptosis Assay Measuring Relative Acridine Orange Fluorescence in Zebrafish Embryos. Zebrafish, 2007, 4, 113-116.	1.1	115
13	Using the zebrafish model for Alzheimerââ,¬â"¢s disease research. Frontiers in Genetics, 2014, 5, 189.	2.3	110
14	Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mechanisms of Development, 1996, 59, 177-190.	1.7	104
15	Evaluation of Color Preference in Zebrafish for Learning and Memory. Journal of Alzheimer's Disease, 2012, 28, 459-469.	2.6	104
16	The Human NOTCH1, 2, and 3 Genes Are Located at Chromosome Positions 9q34, 1p13-p11, and 19p13.2-p13.1 in Regions of Neoplasia-Associated Translocation. Genomics, 1994, 24, 253-258.	2.9	93
17	The protein tyrosine phosphatase Pez regulates TGFβ, epithelial–mesenchymal transition, and organ development. Journal of Cell Biology, 2007, 178, 1223-1235.	5.2	76
18	Tyrosinase gene expression in zebrafish embryos. Development Genes and Evolution, 2001, 211, 150-153.	0.9	71

#	Article	IF	CITATIONS
19	The structure and function of vertebrate fibroblast growth factor receptor 1. International Journal of Developmental Biology, 2002, 46, 393-400.	0.6	66
20	Zebrafish as a tool in Alzheimer's disease research. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 346-352.	3.8	60
21	Identification of a second presenilin gene in zebrafish with similarity to the human Alzheimer's disease gene presenilin2. Development Genes and Evolution, 2002, 212, 486-490.	0.9	58
22	Zebrafish fgfr1 is a member of the fgf8 synexpression group and is required for fgf8 signalling at the midbrain-hindbrain boundary. Development Genes and Evolution, 2004, 214, 285-95.	0.9	55
23	Characterization and Developmental Expression of the Amphioxus Homolog of Notch (AmphiNotch): Evolutionary Conservation of Multiple Expression Domains in Amphioxus and Vertebrates. Developmental Biology, 2001, 232, 493-507.	2.0	52
24	The BACE1-PSEN-AÎ ² PP Regulatory Axis has an Ancient Role in Response to Low Oxygen/Oxidative Stress. Journal of Alzheimer's Disease, 2012, 28, 515-530.	2.6	50
25	Distinct and regulated expression of Notch receptors in hematopoietic lineages and during myeloid differentiation. European Journal of Immunology, 2001, 31, 3240-3247.	2.9	49
26	Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity. Human Molecular Genetics, 2008, 17, 402-412.	2.9	48
27	Differential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease. Human Molecular Genetics, 2014, 23, 602-617.	2.9	48
28	Developmental control of Presenilin1 expression, endoproteolysis, and interaction in zebrafish embryos. Experimental Cell Research, 2003, 289, 124-132.	2.6	47
29	Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos. Experimental Cell Research, 2009, 315, 2791-2801.	2.6	47
30	Selective neuronal requirement for huntingtin in the developing zebrafish. Human Molecular Genetics, 2009, 18, 4830-4842.	2.9	47
31	Complex Splicing and Neural Expression of Duplicated Tau Genes in Zebrafish Embryos. Journal of Alzheimer's Disease, 2009, 18, 305-317.	2.6	46
32	Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 52, 781-799.	2.6	44
33	The Guinea Pig as a Model for Sporadic Alzheimer's Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes. PLoS ONE, 2013, 8, e66235.	2.5	42
34	Dysregulation of Neuronal Iron Homeostasis as an Alternative Unifying Effect of Mutations Causing Familial Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 533.	2.8	41
35	Accelerated brain aging towards transcriptional inversion in a zebrafish model of the K115fs mutation of human PSEN2. PLoS ONE, 2020, 15, e0227258.	2.5	38
36	Expression of three zebrafish orthologs of human FMR1-related genes and their phylogenetic relationships. Development Genes and Evolution, 2004, 214, 567-574.	0.9	36

3

#	Article	IF	CITATIONS
37	Evolutionary analysis of vertebrate Notch genes. Development Genes and Evolution, 2001, 211, 350-354.	0.9	35
38	Alzheimer's disease-related peptide PS2V plays ancient, conserved roles in suppression of the unfolded protein response under hypoxia and stimulation of \hat{l}^3 -secretase activity. Human Molecular Genetics, 2015, 24, 3662-3678.	2.9	33
39	Brain transcriptome analysis of a familial Alzheimer's disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production. Molecular Brain, 2019, 12, 43.	2.6	33
40	Zebrafish Angiotensin II Receptor-like 1a (agtrl1a) is expressed in migrating hypoblast, vasculature, and in multiple embryonic epithelia. Gene Expression Patterns, 2007, 7, 258-265.	0.8	30
41	The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease. Frontiers in Neuroscience, 2016, 10, 193.	2.8	30
42	Alternative splicing in a presenilin 2 variant associated with Alzheimer disease. Annals of Clinical and Translational Neurology, 2019, 6, 762-777.	3.7	29
43	Brain transcriptome analysis reveals subtle effects on mitochondrial function and iron homeostasis of mutations in the SORL1 gene implicated in early onset familial Alzheimer's disease. Molecular Brain, 2020, 13, 142.	2.6	26
44	Altering Presenilin Gene Activity in Zebrafish Embryos Causes Changes in Expression of Genes with Potential Involvement in Alzheimer's Disease Pathogenesis. Journal of Alzheimer's Disease, 2009, 16, 133-147.	2.6	25
45	The Zebrafish Equivalent of Alzheimer's Disease-Associated PRESENILIN Isoform PS2V Regulates Inflammatory and Other Responses to Hypoxic Stress. Journal of Alzheimer's Disease, 2016, 52, 581-608.	2.6	25
46	The zebrafish orthologue of familial Alzheimer's disease gene PRESENILIN 2 is required for normal adult melanotic skin pigmentation. PLoS ONE, 2018, 13, e0206155.	2.5	25
47	The response of HMGA1 to changes in oxygen availability is evolutionarily conserved. Experimental Cell Research, 2011, 317, 1503-1512.	2.6	23
48	Expression of three spalt (sal) gene homologues in zebrafish embryos. Development Genes and Evolution, 2003, 213, 35-43.	0.9	22
49	Sorting Out the Role of the Sortilin-Related Receptor 1 in Alzheimer's Disease. Journal of Alzheimer's Disease Reports, 2020, 4, 123-140.	2.2	22
50	A Zebrafish Melanophore Model of AmyloidÎ ² Toxicity. Zebrafish, 2010, 7, 155-159.	1.1	21
51	The identity and distribution of neural cells expressing the mesodermal determinant spadetail. BMC Developmental Biology, 2002, 2, 9.	2.1	19
52	Iron Responsive Element-Mediated Responses to Iron Dyshomeostasis in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 1597-1630.	2.6	18
53	The evolutionary relationships of zebrafish genes tbx6 , tbx16 $\!\!\!/$ spadetail and mga. Development Genes and Evolution, 2003, 213, 519-522.	0.9	17
54	Transgenic Zebrafish Recapitulating tbx 16 Gene Early Developmental Expression. PLoS ONE, 2011, 6, e21559.	2.5	17

#	Article	IF	CITATIONS
55	A Review of the Familial Alzheimer's Disease Locus PRESENILIN 2 and Its Relationship to PRESENILIN 1. Journal of Alzheimer's Disease, 2018, 66, 1323-1339.	2.6	17
56	Sequence of zebrafish fibulin-1 and its expression in developing heart and other embryonic organs. Development Genes and Evolution, 1997, 207, 340-351.	0.9	16
57	Expression Analysis of a Tyrosinase Promoter Sequence in Zebrafish. Pigment Cell & Melanoma Research, 2003, 16, 117-126.	3.6	15
58	Activity-dependent expression of neuronal PAS domain-containing protein 4 (npas4a) in the developing zebrafish brain. Frontiers in Neuroanatomy, 2014, 8, 148.	1.7	15
59	Hypoxia alters expression of Zebrafish Microtubule-associated protein Tau (mapta, maptb) gene transcripts. BMC Research Notes, 2014, 7, 767.	1.4	14
60	Evolutionary and Expression Analysis of the Zebrafish Deubiquitylating Enzyme, Usp9. Zebrafish, 2007, 4, 95-101.	1.1	13
61	Identification and expression analysis of the zebrafish orthologues of the mammalian MAP1LC3 gene family. Experimental Cell Research, 2014, 328, 228-237.	2.6	13
62	Nonspecific, Nested Suppression PCR Method for Isolation of Unknown Flanking DNA. BioTechniques, 2000, 28, 895-902.	1.8	12
63	Identification and expression analysis of the zebrafish orthologue of Klotho. Development Genes and Evolution, 2011, 221, 179-186.	0.9	12
64	Accelerated loss of hypoxia response in zebrafish with familial Alzheimer's disease-like mutation of presenilin 1. Human Molecular Genetics, 2020, 29, 2379-2394.	2.9	12
65	The Development of an in vivo γ-Secretase Assay using Zebrafish Embryos. Journal of Alzheimer's Disease, 2013, 36, 521-534.	2.6	11
66	The Comparison of Methods for Measuring Oxidative Stress in Zebrafish Brains. Zebrafish, 2014, 11, 248-254.	1.1	11
67	Transcriptome analysis indicates dominant effects on ribosome and mitochondrial function of a premature termination codon mutation in the zebrafish gene psen2. PLoS ONE, 2020, 15, e0232559.	2.5	11
68	Animal Models of Alzheimer's Disease. , 2017, , 1031-1085.		9
69	Brain Transcriptome Analysis of a Protein-Truncating Mutation in Sortilin-Related Receptor 1 Associated With Early-Onset Familial Alzheimer's Disease Indicates Early Effects on Mitochondrial and Ribosome Function. Journal of Alzheimer's Disease, 2021, 79, 1105-1119.	2.6	9
70	PRESENILIN 1 Mutations Causing Early-Onset Familial Alzheimer's Disease or Familial Acne Inversa Differ in Their Effects on Genes Facilitating Energy Metabolism and Signal Transduction. Journal of Alzheimer's Disease, 2021, 82, 327-347.	2.6	9
71	Zebrafish aplnra functions in epiboly. BMC Research Notes, 2009, 2, 231.	1.4	8
72	Transcriptome analyses of 7-day-old zebrafish larvae possessing a familial Alzheimer's disease-like mutation in psen1 indicate effects on oxidative phosphorylation, ECM and MCM functions, and iron homeostasis. BMC Genomics, 2021, 22, 211.	2.8	8

#	Article	IF	CITATIONS
73	In-Frame and Frameshift Mutations in Zebrafish Presenilin 2 Affect Different Cellular Functions in Young Adult Brains. Journal of Alzheimer's Disease Reports, 2021, 5, 395-404.	2.2	8
74	Brain transcriptomes of zebrafish and mouse Alzheimer's disease knock-in models imply early disrupted energy metabolism. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	8
7 5	Loss of park7 activity has differential effects on expression of iron responsive element (IRE) gene sets in the brain transcriptome in a zebrafish model of Parkinson's disease. Molecular Brain, 2021, 14, 83.	2.6	7
76	Simple, Directional cDNA Cloning for In Situ Transcript Hybridization Screens. BioTechniques, 2001, 31, 938-946.	1.8	6
77	A hyperactive sleeping beauty transposase enhances transgenesis in zebrafish embryos. BMC Research Notes, 2010, 3, 282.	1.4	6
78	Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord. Experimental Cell Research, 2010, 316, 3292-3303.	2.6	6
79	Robust homeostasis of Presenilin1 protein levels by transcript regulation. Neuroscience Letters, 2012, 519, 14-19.	2.1	6
80	Mining the Data on Coal. Science, 2009, 324, 880-881.	12.6	5
81	Scientists need to confront economists about peak oil. Nature, 2007, 446, 257-257.	27.8	4
82	Analysis of nicastrin gene phylogeny and expression in zebrafish. Development Genes and Evolution, 2015, 225, 171-178.	0.9	4
83	Relevance of a Truncated PRESENILIN 2 Transcript to Alzheimer's Disease and Neurodegeneration. Journal of Alzheimer's Disease, 2021, 80, 1479-1489.	2.6	4
84	Zebrafish Chromosome 14 Gene Differential Expression in the fmr1hu2787 Model of Fragile X Syndrome. Frontiers in Genetics, 2021, 12, 625466.	2.3	4
85	Generation and PCR Screening of Bacteriophage λ Sublibraries Enriched for Rare Clones the		3
86	Mitochondrion to endoplasmic reticulum apposition length in zebrafish embryo spinal progenitors is unchanged in response to perturbations associated with Alzheimer's disease. PLoS ONE, 2017, 12, e0179859.	2.5	3
87	Discriminatory Frontier policy. Nature, 1995, 376, 12-12.	27.8	1
88	Nonspecific, Nested Suppression PCR Method for Isolation of Unknown Flanking DNA ("Cold-Start) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
89	Degenerate codon mixing for PCR-based manipulation of highly repetitive sequences. BMC Research Notes, 2018, 11, 202.	1.4	1
90	No observed effect on brain vasculature of Alzheimer's disease-related mutations in the zebrafish presenilin 1 gene. Molecular Brain, 2021, 14, 22.	2.6	1

#	Article	lF	CITATIONS
91	Generation and PCR Screening of Bacteriophage h Sublibraries Enriched for Rare Clones (the) Tj ETQq1 1 0.78431	l4 rgBT /	Overlock 10 Ti
92	Residents' rights. Nature, 1995, 378, 330-330.	27.8	O
93	Models of Alzheimer's Disease. , 2013, , 595-632.		О
94	The evolved divergence of \hat{l}^3 -secretase-susceptibility of homologous proteins Ngfrb and Nradd in zebrafish. BMC Research Notes, 2021, 14, 460.	1.4	0