Oscar Agertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4448277/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Fundamental differences between SPH and grid methods. Monthly Notices of the Royal Astronomical Society, 0, 380, 963-978.	4.4	525
2	TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS. Astrophysical Journal, 2013, 770, 25.	4.5	371
3	The formation of disc galaxies in a ĥCDM universe. Monthly Notices of the Royal Astronomical Society, 2011, 410, 1391-1408.	4.4	234
4	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. Astrophysical Journal, Supplement Series, 2014, 210, 14.	7.7	185
5	ON THE INTERPLAY BETWEEN STAR FORMATION AND FEEDBACK IN GALAXY FORMATION SIMULATIONS. Astrophysical Journal, 2015, 804, 18.	4.5	180
6	Disc formation and the origin of clumpy galaxies at high redshift. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 397, L64-L68.	3.3	167
7	SIMULATIONS OF DISK GALAXIES WITH COSMIC RAY DRIVEN GALACTIC WINDS. Astrophysical Journal Letters, 2013, 777, L16.	8.3	165
8	Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2461-2479.	4.4	134
9	Large-scale galactic turbulence: can self-gravity drive the observed H i velocity dispersions?. Monthly Notices of the Royal Astronomical Society, 2009, 392, 294-308.	4.4	112
10	The Source of Ionization along the Magellanic Stream. Astrophysical Journal, 2007, 670, L109-L112.	4.5	107
11	Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170616.	2.1	102
12	THE IMPACT OF STELLAR FEEDBACK ON THE STRUCTURE, SIZE, AND MORPHOLOGY OF GALAXIES IN MILKY-WAY-SIZED DARK MATTER HALOS. Astrophysical Journal, 2016, 824, 79.	4.5	96
13	Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 34-58.	4.4	95
14	Systematic uncertainties in the determination of the local dark matter density. Physical Review D, 2010, 82, .	4.7	89
15	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST. Astrophysical Journal, 2016, 833, 202.	4.5	88
16	EDGE: the mass–metallicity relation as a critical test of galaxy formation physics. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1656-1672.	4.4	87
17	The origin of the Milky Way globular clusters. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3622-3636.	4.4	85
18	VINTERGATAN – I. The origins of chemically, kinematically, and structurally distinct discs in a simulated Milky Way-mass galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5826-5845.	4.4	75

OSCAR AGERTZ

#	Article	IF	CITATIONS
19	A systematic look at the effects of radiative feedback on disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2837-2853.	4.4	69
20	Column density profiles of multiphase gaseous haloes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1164-1187.	4.4	58
21	A Toomre-like stability criterion for the clumpy and turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1223-1230.	4.4	57
22	The impact of stellar feedback on the density and velocity structure of the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1093-1110.	4.4	57
23	Discreteness Effects in ΛCDM Simulations: A Waveletâ€Statistical View. Astrophysical Journal, 2008, 686, 1-12.	4.5	47
24	EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses. Astrophysical Journal Letters, 2019, 886, L3.	8.3	47
25	EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1508-1520.	4.4	44
26	Characterizing gravitational instability in turbulent multicomponent galactic discs. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2156-2166.	4.4	41
27	VINTERGATAN – II. The history of the Milky Way told by its mergers. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5846-5867.	4.4	41
28	Larson's scaling laws, and the gravitational instability of clumpy discs at high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1230-1238.	4.4	37
29	Physical properties and scaling relations of molecular clouds: the effect of stellar feedback. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3167-3180.	4.4	35
30	The roles of stellar feedback and galactic environment in star-forming molecular clouds. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3536-3551.	4.4	34
31	Constraining churning and blurring in the Milky Way using large spectroscopic surveys – an exploratory study. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1419-1433.	4.4	31
32	On the observed diversity of star formation efficiencies in Giant Molecular Clouds. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5482-5491.	4.4	30
33	EDGE: two routes to dark matter core formation in ultra-faint dwarfs. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3509-3522.	4.4	29
34	The Smith Cloud and its dark matter halo: survival of a Galactic disc passage. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2883-2891.	4.4	28
35	A diversity of starburst-triggering mechanisms in interacting galaxies and their signatures in CO emission. Astronomy and Astrophysics, 2019, 625, A65.	5.1	28
36	VINTERGATAN III: how to reset the metallicity of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5868-5876.	4.4	28

OSCAR AGERTZ

#	Article	IF	CITATIONS
37	How runaway stars boost galactic outflows. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3328-3341.	4.4	25
38	The nature of strong H i absorbers probed by cosmological simulations: satellite accretion and outflows. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3634-3645.	4.4	23
39	Rapid filamentary accretion as the origin of extended thin discs. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4346-4356.	4.4	23
40	An Alternative to Grids and Glasses: Quaquaversal Preâ€Initial Conditions forNâ€Body Simulations. Astrophysical Journal, 2007, 656, 631-635.	4.5	21
41	From lenticulars to blue compact dwarfs: the stellar mass fraction is regulated by disc gravitational instability. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5656-5664.	4.4	20
42	Novel Adaptive softening for collisionless <i>N</i> -body simulations: eliminating spurious haloes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 468-479.	4.4	19
43	Supernovae feedback propagation: the role of turbulence. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3887-3894.	4.4	19
44	Observing the circumgalactic medium of simulated galaxies through synthetic absorption spectra. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1822-1835.	4.4	17
45	From giant clumps to clouds – I. The impact of gas fraction evolution on the stability of galactic discs. Monthly Notices of the Royal Astronomical Society, 2021, 508, 352-370.	4.4	15
46	EDGE: What shapes the relationship between H <scp>i</scp> and stellar observables in faint dwarf galaxies?. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5672-5681.	4.4	14
47	EDGE: a new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1755-1765.	4.4	13
48	From giant clumps to clouds – III. The connection between star formation and turbulence in the ISM. Monthly Notices of the Royal Astronomical Society, 2022, 514, 480-496.	4.4	13
49	From giant clumps to clouds – II. The emergence of thick disc kinematics from the conditions of star formation in high redshift gas rich galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3806-3814.	4.4	11
50	EDGE: The sensitivity of ultra-faint dwarfs to a metallicity-dependent initial mass function. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2326-2334.	4.4	10
51	Runaway stars masquerading as star formation in galactic outskirts. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 502, L29-L34.	3.3	8
52	EDGE: the puzzling ellipticity of Eridanus Il's star cluster and its implications for dark matter at the heart of an ultra-faint dwarf. Monthly Notices of the Royal Astronomical Society, 2022, 515, 185-200.	4.4	5