Iain Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/444641/publications.pdf Version: 2024-02-01

IAIN SCOTT

#	Article	IF	CITATIONS
1	Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovascular Research, 2023, 119, 571-586.	3.8	12
2	Diet-induced obese mice are resistant to improvements in cardiac function resulting from short-term adropin treatment. Current Research in Physiology, 2022, 5, 55-62.	1.7	3
3	GPER-dependent estrogen signaling increases cardiac GCN5L1 expression. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H762-H768.	3.2	6
4	Empagliflozin restores cardiac metabolic flexibility in diet-induced obese C57BL6/J mice. Current Research in Physiology, 2022, 5, 232-239.	1.7	8
5	Adropin: a hepatokine modulator of vascular function and cardiac fuel metabolism. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H238-H244.	3.2	29
6	The emerging roles of GCN5L1 in mitochondrial and vacuolar organelle biology. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194598.	1.9	8
7	Rethinking Protein Acetylation in Pressure Overload-Induced Heart Failure. Circulation Research, 2020, 127, 1109-1111.	4.5	5
8	Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet. Scientific Reports, 2020, 10, 10665.	3.3	17
9	Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin resistance. Molecular Metabolism, 2020, 41, 101051.	6.5	27
10	Calreticulin expression in human cardiac myocytes induces ER stressâ€associated apoptosis. Physiological Reports, 2020, 8, e14400.	1.7	8
11	Rescue of myocardial energetic dysfunction in diabetes through the correction of mitochondrial hyperacetylation by honokiol. JCI Insight, 2020, 5, .	5.0	17
12	Increased fatty acid oxidation enzyme activity in the hearts of mice fed a high fat diet does not correlate with improved cardiac contractile function. Current Research in Physiology, 2020, 3, 44-49.	1.7	4
13	Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochemical Journal, 2019, 476, 1713-1724.	3.7	22
14	Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiological Reports, 2019, 7, e14043.	1.7	34
15	Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions. Physiological Reports, 2019, 7, e14054.	1.7	9
16	Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice. Journal of Molecular and Cellular Cardiology, 2019, 129, 174-178.	1.9	41
17	Cardiac-specific deletion of GCN5L1 restricts recovery from ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 69-78.	1.9	19
18	GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism. Trends in Cell Biology, 2018, 28, 346-355.	7.9	42

Ιαιν Scott

#	Article	IF	CITATIONS
19	The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA. Journal of Biological Chemistry, 2018, 293, 17676-17684.	3.4	62
20	GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking. Journal of Cell Science, 2018, 131, .	2.0	15
21	Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway. Redox Biology, 2018, 18, 25-32.	9.0	66
22	Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H265-H274.	3.2	60
23	GCN5L1 modulates cross-talk between mitochondria and cell signaling to regulate FoxO1 stability and gluconeogenesis. Nature Communications, 2017, 8, 523.	12.8	41
24	α-Lipoic acid promotes α-tubulin hyperacetylation and blocks the turnover of mitochondria through mitophagy. Biochemical Journal, 2016, 473, 1821-1830.	3.7	11
25	Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0160783.	2.5	34
26	Gcn5â€like Protein 1 (Gcn5L1) Regulates Unfolded Protein Response and Hepatic Glucose Production. FASEB Journal, 2015, 29, 884.26.	0.5	0
27	GCN5-like Protein 1 (GCN5L1) Controls Mitochondrial Content through Coordinated Regulation of Mitochondrial Biogenesis and Mitophagy. Journal of Biological Chemistry, 2014, 289, 2864-2872.	3.4	104
28	Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 525-534.	2.4	56
29	Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. Journal of Cell Science, 2013, 126, 4843-9.	2.0	85
30	Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochemical Journal, 2012, 443, 655-661.	3.7	184
31	Regulation of cellular homoeostasis by reversible lysine acetylation. Essays in Biochemistry, 2012, 52, 13-22.	4.7	25
32	SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radical Biology and Medicine, 2010, 49, 1230-1237.	2.9	148
33	The role of mitochondria in the mammalian antiviral defense system. Mitochondrion, 2010, 10, 316-320.	3.4	62
34	Mitochondrial factors in the regulation of innate immunity. Microbes and Infection, 2009, 11, 729-736.	1.9	12