Ville Leinonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4446087/publications.pdf Version: 2024-02-01

		126907	138484
121	4,012	33	58
papers	citations	h-index	g-index
131	131	131	5206
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiology of Disease, 2022, 163, 105603.	4.4	4
2	Cerebrospinal fluid biomarkers that reflect clinical symptoms in idiopathic normal pressure hydrocephalus patients. Fluids and Barriers of the CNS, 2022, 19, 11.	5.0	18
3	Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells, 2022, 11, 106.	4.1	23
4	Postural sway does not differentiate individuals with chronic low back pain, single and multisite chronic musculoskeletal pain, or pain-free controls: a cross-sectional study of 229 subjects. Spine Journal, 2022, 22, 1523-1534.	1.3	5
5	Shortening of Saccades as a Possible Easy-to-Use Biomarker to Detect Risk of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 88, 609-618.	2.6	2
6	Protein tyrosine phosphatase receptor type Q in cerebrospinal fluid reflects ependymal cell dysfunction and is a potential biomarker for adult chronic hydrocephalus. European Journal of Neurology, 2021, 28, 389-400.	3.3	10
7	Higher Preimplantation Opioid Doses Associated With Long-Term Spinal Cord Stimulation Failure in 211 Patients With Failed Back Surgery Syndrome. Neuromodulation, 2021, 24, 102-111.	0.8	11
8	Plasma miR-9-3p and miR-136-3p as Potential Novel Diagnostic Biomarkers for Experimental and Human Mild Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 1563.	4.1	23
9	iNPH—the mystery resolving. EMBO Molecular Medicine, 2021, 13, e13720.	6.9	4
10	Cross-cultural adaptation and validation of the Finnish version of the central sensitization inventory and its relationship with dizziness and postural control. BMC Neurology, 2021, 21, 141.	1.8	11
11	5-Year health-related quality of life outcome in patients with idiopathic normal pressure hydrocephalus. Journal of Neurology, 2021, 268, 3283-3293.	3.6	5
12	Elevated CSF LRG and Decreased Alzheimer's Disease Biomarkers in Idiopathic Normal Pressure Hydrocephalus. Journal of Clinical Medicine, 2021, 10, 1105.	2.4	12
13	Time Trends of Cerebrospinal Fluid Biomarkers of Neurodegeneration in Idiopathic Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2021, 80, 1629-1642.	2.6	10
14	MECP2 Increases the Pro-Inflammatory Response of Microglial Cells and Phosphorylation at Serine 423 Regulates Neuronal Gene Expression upon Neuroinflammation. Cells, 2021, 10, 860.	4.1	8
15	Preoperative measurements on MRI in Chiari 1 patients fail to predict outcome after decompressive surgery. Acta Neurochirurgica, 2021, 163, 2005-2014.	1.7	11
16	The CERAD Neuropsychological Battery in Patients with Idiopathic Normal Pressure Hydrocephalus Compared with Normal Population and Patients with Mild Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 81, 1117-1130.	2.6	6
17	Shunt performance in 349 patients with hydrocephalus after aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica, 2021, 163, 2703-2714.	1.7	9
18	Upper limb dysfunction and activities in daily living in idiopathic normal pressure hydrocephalus. Acta Neurochirurgica, 2021, 163, 2675-2683.	1.7	6

#	Article	IF	CITATIONS
19	FTLD Patient–Derived Fibroblasts Show Defective Mitochondrial Function and Accumulation of p62. Molecular Neurobiology, 2021, 58, 5438-5458.	4.0	4
20	Gabapentinoids Associated With Lower Explantation Rate in 203 Patients With Spinal Cord Stimulation for Failed Back Surgery Syndrome. Neurosurgery, 2021, 89, 626-634.	1.1	2
21	Cerebrospinal fluid dynamics in idiopathic intracranial hypertension: a literature review and validation of contemporary findings. Acta Neurochirurgica, 2021, 163, 3353-3368.	1.7	10
22	ExÂVivo Porcine Models Are Valid for Testing and Training Microsurgical Lumbar Decompression Techniques. World Neurosurgery, 2021, 155, e64-e74.	1.3	2
23	A Novel Genetic Marker for the C9orf72 Repeat Expansion in the Finnish Population. Journal of Alzheimer's Disease, 2021, 83, 1325-1332.	2.6	6
24	Surgically Treated C1 Fractures: A Population-Based Study. World Neurosurgery, 2021, 154, e333-e342.	1.3	2
25	Cross-Cultural Adaptation, Reliability, and Psychophysical Validation of the Pain and Sleep Questionnaire Three-Item Index in Finnish. Journal of Clinical Medicine, 2021, 10, 4887.	2.4	6
26	Quantified analysis of Al̂² plaques and microglia from <i>in vivo</i> cohort of patients with idiopathic normal pressure hydrocephalus. Alzheimer's and Dementia, 2021, 17, .	0.8	0
27	Value stream map assessment of the extended day: 23h surgery model. Intelligent Buildings International, 2020, 12, 17-31.	2.3	4
28	Presynaptic Vesicle Protein SEPTIN5 Regulates the Degradation of APP C-Terminal Fragments and the Levels of Al ² . Cells, 2020, 9, 2482.	4.1	8
29	Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Molecular Neurodegeneration, 2020, 15, 66.	10.8	22
30	Diabetes is associated with familial idiopathic normal pressure hydrocephalus: a case–control comparison with family members. Fluids and Barriers of the CNS, 2020, 17, 57.	5.0	6
31	Idiopathic normal pressure hydrocephalus as a novel window for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046282.	0.8	0
32	Preoperative Predictors of Better Long-term Functional Ability and Decreased Pain Following LSS Surgery. Spine, 2020, 45, 776-783.	2.0	7
33	Finnish study of intraoperative irrigation versus drain alone after evacuation of chronic subdural haematoma (FINISH): a study protocol for a multicentre randomised controlled trial. BMJ Open, 2020, 10, e038275.	1.9	6
34	Corticospinal excitability in idiopathic normal pressure hydrocephalus: a transcranial magnetic stimulation study. Fluids and Barriers of the CNS, 2020, 17, 6.	5.0	6
35	Unfolding the outcomes of surgical treatment of lumbar spinal stenosis—a prospective 5- and 10-year follow-up study. European Spine Journal, 2020, 29, 2231-2242.	2.2	6
36	Long-Term Outcome of Spinal Cord Stimulation in Failed Back Surgery Syndrome: 20 Years of Experience With 224 Consecutive Patients. Neurosurgery, 2019, 84, 1011-1018.	1.1	44

#	Article	IF	CITATIONS
37	Prevalence of Schizophrenia in Idiopathic Normal Pressure Hydrocephalus. Neurosurgery, 2019, 84, 883-889.	1.1	15
38	The Kuopio idiopathic normal pressure hydrocephalus protocol: initial outcome of 175 patients. Fluids and Barriers of the CNS, 2019, 16, 21.	5.0	32
39	Surgical techniques for degenerative cervical spine in Finland from 1999 to 2015. Acta Neurochirurgica, 2019, 161, 2161-2173.	1.7	6
40	Psychiatric disorders are a common prognostic marker for worse outcome in patients with idiopathic intracranial hypertension. Clinical Neurology and Neurosurgery, 2019, 186, 105527.	1.4	18
41	Predicting Development of Alzheimer's Disease in Patients with Shunted Idiopathic Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2019, 71, 1233-1243.	2.6	28
42	[11C]PIB PET Is Associated with the Brain Biopsy Amyloid-β Load in Subjects Examined for Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2019, 67, 1343-1351.	2.6	13
43	Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology. JAMA Neurology, 2019, 76, 1035.	9.0	455
44	CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1117-1123.	1.9	61
45	Surgery for degenerative cervical spine disease in Finland, 1999–2015. Acta Neurochirurgica, 2019, 161, 2147-2159.	1.7	17
46	Prevalence of <i>C9ORF72</i> Expansion in a Large Series of Patients with Idiopathic Normal-Pressure Hydrocephalus. Dementia and Geriatric Cognitive Disorders, 2019, 47, 91-103.	1.5	9
47	Finnish Trial on Practices of Anterior Cervical Decompression and Fusion (FACADE): a protocol for a prospective randomised non-inferiority trial comparing outpatient versus inpatient care. BMJ Open, 2019, 9, e032575.	1.9	0
48	MIM-Deficient Mice Exhibit Anatomical Changes in Dendritic Spines, Cortex Volume and Brain Ventricles, and Functional Changes in Motor Coordination and Learning. Frontiers in Molecular Neuroscience, 2019, 12, 276.	2.9	14
49	A multiomic approach to characterize the temporal sequence in Alzheimer's disease-related pathology. Neurobiology of Disease, 2019, 124, 454-468.	4.4	41
50	Interrelationship between the Levels of C9orf72 and Amyloid-β Protein Precursor and Amyloid-β in Human CellsÂand Brain Samples. Journal of Alzheimer's Disease, 2018, 62, 269-278.	2.6	3
51	Sushi repeatâ€containing protein Xâ€linked 2: A novel phylogenetically conserved hypothalamoâ€pituitary protein. Journal of Comparative Neurology, 2018, 526, 1806-1819.	1.6	4
52	Incidence, Comorbidities, and Mortality in Idiopathic Normal PressureÂHydrocephalus. World Neurosurgery, 2018, 112, e624-e631.	1.3	37
53	Copy number loss in SFMBT1 is common among Finnish and Norwegian patients with iNPH. Neurology: Genetics, 2018, 4, e291.	1.9	14
54	Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 963.	2.8	65

#	Article	IF	CITATIONS
55	Alterations in mitochondria-endoplasmic reticulum connectivity in human brain biopsies from idiopathic normal pressure hydrocephalus patients. Acta Neuropathologica Communications, 2018, 6, 102.	5.2	19
56	Raised intracranial pressure and brain edema. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 25-37.	1.8	47
57	S-[18F]THK-5117-PET and [11C]PIB-PET Imaging in Idiopathic Normal Pressure Hydrocephalus in Relation to Confirmed Amyloid-β Plaques and Tau in Brain Biopsies. Journal of Alzheimer's Disease, 2018, 64, 171-179.	2.6	14
58	Cerebrospinal fluid circulation and hydrocephalus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 39-50.	1.8	45
59	Rate and Risk Factors for Shunt Revision in Pediatric Patients with Hydrocephalus—A Population-Based Study. World Neurosurgery, 2017, 101, 615-622.	1.3	42
60	Frontotemporal dementia as a comorbidity to idiopathic normal pressure hydrocephalus (iNPH): a short review of literature and an unusual case. Fluids and Barriers of the CNS, 2017, 14, 10.	5.0	18
61	Associations of intracranial pressure with brain biopsy, radiological findings, and shunt surgery outcome in patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochirurgica, 2017, 159, 51-61.	1.7	9
62	Alzheimer's Disease-Related Polymorphisms in Shunt-Responsive Idiopathic Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2017, 60, 1077-1085.	2.6	8
63	[P4–510]: [18F]THKâ€5117â€PET AND [11C]PIBâ€PET IMAGING IN IDIOPATHIC NORMAL PRESSURE HYDROC (INPH) IN RELATION TO CONFIRMED AMYLOIDâ€Î² PLAQUES AND TAU IN BRAIN BIOPSIES. Alzheimer's and Dementia, 2017, 13, P1537.	EPHALUS 0.8	0
64	Why Does the Health-Related Quality of Life in Idiopathic Normal-Pressure Hydrocephalus Fail to Improve Despite the Favorable Clinical Outcome?. World Neurosurgery, 2017, 108, 356-366.	1.3	4
65	Immunohistochemical Characterization and Sensitivity to Human Adenovirus Serotypes 3, 5, and 11p of New Cell Lines Derived from Human Diffuse Grade II to IV Gliomas. Translational Oncology, 2017, 10, 772-779.	3.7	5
66	Healthâ€related qualityâ€ofâ€life outcome in patients with idiopathic normalâ€pressure hydrocephalus – a 1â€year followâ€up study. European Journal of Neurology, 2017, 24, 58-66.	3.3	30
67	Normal Pressure Hydrocephalusâ~†. , 2017, , .		0
68	SEPT8 modulates Î ² -amyloidogenic processing of APP via affecting the sorting and accumulation of BACE1. Journal of Cell Science, 2016, 129, 2224-38.	2.0	15
69	Familial idiopathic normal pressure hydrocephalus. Journal of the Neurological Sciences, 2016, 368, 11-18.	0.6	30
70	High Risk of Dementia in Ventricular Enlargement with Normal Pressure Hydrocephalus Related Symptoms1. Journal of Alzheimer's Disease, 2016, 52, 497-507.	2.6	36
71	Effects of Alzheimer's Disease-Associated Risk Loci on Amyloid-β Accumulation in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. Journal of Alzheimer's Disease, 2016, 55, 995-1003.	2.6	6
72	Risk of Shunting After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2016, 47, 2488-2496.	2.0	67

#	Article	IF	CITATIONS
73	Multimodal analysis to predict shunt surgery outcome of 284 patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochirurgica, 2016, 158, 2311-2319.	1.7	21
74	Implantable RF-coil with multiple electrodes for long-term EEC-fMRI monitoring in rodents. Journal of Neuroscience Methods, 2016, 274, 154-163.	2.5	15
75	Sub-classification based specific movement control exercises are superior to general exercise in sub-acute low back pain when both are combined with manual therapy: A randomized controlled trial. BMC Musculoskeletal Disorders, 2016, 17, 135.	1.9	33
76	Embedding an Eye Tracker Into a Surgical Microscope: Requirements, Design, and Implementation. IEEE Sensors Journal, 2016, 16, 2070-2078.	4.7	24
77	Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Neurobiology of Disease, 2016, 85, 187-205.	4.4	27
78	The effect of decompressive surgery on lumbar paraspinal and biceps brachii muscle function and movement perception in lumbar spinal stenosis: a 2-year follow-up. European Spine Journal, 2016, 25, 789-794.	2.2	6
79	The Expression of Transthyretin and Amyloid-β Protein Precursor is Altered in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. Journal of Alzheimer's Disease, 2015, 48, 959-968.	2.6	19
80	Amyloid-β and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2015, 46, 261-269.	2.6	39
81	Healthâ€related quality of life in patients with idiopathic normal pressure hydrocephalus. European Journal of Neurology, 2015, 22, 1391-1399.	3.3	21
82	Chasing the Effects of Pre-Analytical Confounders – A Multicenter Study on CSF-AD Biomarkers. Frontiers in Neurology, 2015, 6, 153.	2.4	38
83	Feasibility of radiological markers in idiopathic normal pressure hydrocephalus. Acta Neurochirurgica, 2015, 157, 1709-1719.	1.7	40
84	Genetic Variation in δ-Opioid Receptor Associates with Increased β- and γ-Secretase Activity in the Late Stages of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 48, 507-516.	2.6	16
85	Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and inÂvitro models. Neurobiology of Aging, 2015, 36, 1221.e15-1221.e28.	3.1	55
86	Prospective Flutemetamol Positron Emission Tomography and Histopathology in Normal Pressure Hydrocephalus. Neurodegenerative Diseases, 2014, 13, 237-245.	1.4	18
87	Preoperative MRI Findings Predict Two-Year Postoperative Clinical Outcome in Lumbar Spinal Stenosis. PLoS ONE, 2014, 9, e106404.	2.5	23
88	Cerebrospinal Fluid Biomarker and Brain Biopsy Findings in Idiopathic Normal Pressure Hydrocephalus. PLoS ONE, 2014, 9, e91974.	2.5	91
89	Association between bone mineral density and lumbar disc degeneration. Maturitas, 2014, 79, 449-455.	2.4	34
90	Diagnostic effectiveness of quantitative [18F]flutemetamol PET imaging for detection of fibrillar amyloid Î ² using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathologica Communications, 2014, 2, 46.	5.2	19

#	Article	IF	CITATIONS
91	Association of Modic changes with health-related quality of life among patients referred to spine surgery. Scandinavian Journal of Pain, 2014, 5, 36-40.	1.3	5
92	High-fat diet increases tau expression in the brain of T2DM and AD mice independently of peripheral metabolic status. Journal of Nutritional Biochemistry, 2014, 25, 634-641.	4.2	50
93	Effects of Alzheimer's Disease-Associated Risk Loci on Cerebrospinal Fluid Biomarkers and Disease Progression: A Polygenic Risk Score Approach. Journal of Alzheimer's Disease, 2014, 43, 565-573.	2.6	49
94	P1-082: INCREASED GAMMA-SECRETASE ACTIVITY IN IDIOPATHIC NORMAL PRESSURE HYDROCEPHALUS PATIENTS WITH B-AMYLOID PATHOLOGY. , 2014, 10, P332-P333.		0
95	P3-189: DIAGNOSTIC EFFECTIVENESS OF QUANTITATIVE [18F]FLUTEMETAMOL PET IMAGING IN SUBJECTS WITH NORMAL PRESSURE HYDROCEPHALUS USING BIOPSY HISTOPATHOLOGY STANDARD OF TRUTH FOR DETECTION OF FIBRILLAR AMYLOID B. , 2014, 10, P699-P699.		0
96	Increased Î ³ -Secretase Activity in Idiopathic Normal Pressure Hydrocephalus Patients with Î ² -Amyloid Pathology. PLoS ONE, 2014, 9, e93717.	2.5	12
97	Influence of comorbidities in idiopathic normal pressure hydrocephalus — research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids and Barriers of the CNS, 2013, 10, 22.	5.0	167
98	Lumbar paraspinal and biceps brachii muscle function and movement perception in lumbar spinal stenosis. European Spine Journal, 2013, 22, 788-793.	2.2	7
99	Positron emission tomography with [¹⁸ F]flutemetamol and [¹¹ C] <scp>PiB</scp> for <i>in vivo</i> detection of cerebral cortical amyloid in normal pressure hydrocephalus patients. European Journal of Neurology, 2013, 20, 1043-1052.	3.3	40
100	Content validity and responsiveness of a Finnish version of the Patient-Specific Functional Scale. European Journal of Physiotherapy, 2013, 15, 134-138.	1.3	8
101	Poor Cognitive Outcome in Shunt-Responsive Idiopathic Normal Pressure Hydrocephalus. Neurosurgery, 2013, 72, 1-8.	1.1	129
102	APOE4 predicts amyloid-β in cortical brain biopsy but not idiopathic normal pressure hydrocephalus. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 1119-1124.	1.9	23
103	Cortical Brain Biopsy in Long-Term Prognostication of 468 Patients with Possible Normal Pressure Hydrocephalus. Neurodegenerative Diseases, 2012, 10, 166-169.	1.4	56
104	[18F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathologica, 2012, 124, 833-845.	7.7	75
105	O1-01-01: Cerebrospinal fluid biomarkers for Alzheimer's disease are associated with neuropathology in cortical brain biopsy. , 2012, 8, P83-P84.		0
106	CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology, 2012, 78, 1568-1575.	1.1	208
107	Postâ€mortem findings in 10 patients with presumed normalâ€pressure hydrocephalus and review of the literature. Neuropathology and Applied Neurobiology, 2012, 38, 72-86.	3.2	82
108	Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus. International Journal of Alzheimer's Disease, 2011, 2011, 1-6.	2.0	37

#	Article	IF	CITATIONS
109	Amyloid and tau proteins in cortical brain biopsy and Alzheimer's disease. Annals of Neurology, 2010, 68, 446-453.	5.3	128
110	O2-02-01: Prediction of Alzheimer's disease by beta-amyloid plaques and tau protein in frontal cortical biopsy. , 2010, 6, S97-S97.		0
111	Assessment of β-Amyloid in a Frontal Cortical Brain Biopsy Specimen and by Positron Emission Tomography With Carbon 11–Labeled Pittsburgh Compound B. Archives of Neurology, 2008, 65, 1304.	4.5	196
112	Low Back Pain Suppresses Preparatory and Triggered Upper-Limb Activation After Sudden Upper-Limb Loading. Spine, 2007, 32, E150-E155.	2.0	31
113	Back and neck extensor loading and back pain provocation in urban bus drivers with and without low back pain. Pathophysiology, 2005, 12, 249-255.	2.2	19
114	Paraspinal Muscle Denervation, Paradoxically Good Lumbar Endurance, and an Abnormal Flexion–Extension Cycle in Lumbar Spinal Stenosis. Spine, 2003, 28, 324-331.	2.0	29
115	Lumbar Paraspinal Muscle Function, Perception of Lumbar Position, and Postural Control in Disc Herniation-Related Back Pain. Spine, 2003, 28, 842-848.	2.0	89
116	Lumbar paraspinal muscle function, perception of lumbar position, and postural control in disc herniation-related back pain. Spine, 2003, 28, 842-8.	2.0	42
117	Impaired Lumbar Movement Perception in Association With Postural Stability and Motor- and Somatosensory-Evoked Potentials in Lumbar Spinal Stenosis. Spine, 2002, 27, 975-983.	2.0	51
118	Paraspinal muscle responses during sudden upper limb loading. European Journal of Applied Physiology, 2002, 88, 42-49.	2.5	23
119	Disc Herniation-Related Back Pain Impairs Feed-Forward Control of Paraspinal Muscles. Spine, 2001, 26, E367-E372.	2.0	85
120	Back and hip extensor activities during trunk flexion/extension: Effects of low back pain and rehabilitation. Archives of Physical Medicine and Rehabilitation, 2000, 81, 32-37.	0.9	170
121	Back and hip extensor activities during trunk flexion/extension: Effects of low back pain and rehabilitation. Archives of Physical Medicine and Rehabilitation, 2000, 81, 32-37.	0.9	109