Alain Buisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4445780/publications.pdf

Version: 2024-02-01

78 papers 5,556 citations

76326 40 h-index 76900 74 g-index

84 all docs

84 docs citations

times ranked

84

6567 citing authors

#	Article	IF	CITATIONS
1	The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature Medicine, 2001, 7, 59-64.	30.7	678
2	Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB Journal, 2008, 22, 4258-4271.	0.5	224
3	The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischaemia. British Journal of Pharmacology, 1992, 106, 766-767.	5.4	221
4	Activity-Dependent Tau Protein Translocation to Excitatory Synapse Is Disrupted by Exposure to Amyloid-Beta Oligomers. Journal of Neuroscience, 2014, 34, 6084-6097.	3.6	207
5	Neuroprotection Mediated by Glial Cell Line-Derived Neurotrophic Factor: Involvement of a Reduction of NMDA-Induced Calcium Influx by the Mitogen-Activated Protein Kinase Pathway. Journal of Neuroscience, 2001, 21, 3024-3033.	3.6	182
6	NMDA Receptor Activation Inhibits \hat{l}_{\pm} -Secretase and Promotes Neuronal Amyloid- \hat{l}^2 Production. Journal of Neuroscience, 2005, 25, 9367-9377.	3.6	178
7	Ischemia-Induced Interleukin-6 as a Potential Endogenous Neuroprotective Cytokine against NMDA Receptor-Mediated Excitoxicity in the Brain. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 956-966.	4.3	176
8	The inhibitory mGluR agonist, s-4-carboxy-3-hydroxy-phenylglycine selectively attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death. Neuropharmacology, 1995, 34, 1081-1087.	4.1	157
9	Mechanisms Involved in the Neuroprotective Activity of a Nitric Oxide Synthase Inhibitor During Focal Cerebral Ischemia. Journal of Neurochemistry, 1993, 61, 690-696.	3.9	156
10	Activation of Extrasynaptic, But Not Synaptic, NMDA Receptors Modifies Amyloid Precursor Protein Expression Pattern and Increases Amyloid-Î ² Production. Journal of Neuroscience, 2010, 30, 15927-15942.	3.6	156
11	Autophagy Is Required for Memory Formation and Reverses Age-Related Memory Decline. Current Biology, 2019, 29, 435-448.e8.	3.9	150
12	Reduction of Ischemic Brain Damage by Nitrous Oxide and Xenon. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1168-1173.	4.3	127
13	Transforming Growth Factor- \hat{l}^21 Potentiates Amyloid- \hat{l}^2 Generation in Astrocytes and in Transgenic Mice. Journal of Biological Chemistry, 2003, 278, 18408-18418.	3.4	127
14	A Transforming Growth Factor- \hat{l}^2 Antagonist Unmasks the Neuroprotective Role of This Endogenous Cytokine in Excitotoxic and Ischemic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1345-1353.	4.3	121
15	Upâ€regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor β1. FASEB Journal, 1998, 12, 1683-1691.	0.5	115
16	Iron overload accelerates neuronal amyloid- \hat{l}^2 production and cognitive impairment in transgenic mice model of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2288-2301.	3.1	106
17	Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death. NeuroReport, 2001, 12, 289-293.	1.2	103
18	Transforming growth factorâ€Î²l as a regulator of the serpins/tâ€PA axis in cerebral ischemia. FASEB Journal, 1999, 13, 1315-1324.	0.5	96

#	Article	IF	Citations
19	Serine Protease Inhibitors: Novel Therapeutic Targets for Stroke?. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 755-764.	4.3	91
20	Striatal Protection Induced by Lesioning the Substantia Nigra of Rats Subjected to Focal Ischemia. Journal of Neurochemistry, 1992, 59, 1153-1157.	3.9	90
21	Transforming growth factor-beta and ischemic brain injury. Cellular and Molecular Neurobiology, 2003, 23, 539-550.	3.3	90
22	The amyloid- \hat{l}^2 oligomer A \hat{l}^2 *56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Science Signaling, 2017, 10, .	3.6	90
23	Synaptotoxicity in Alzheimer's Disease Involved a Dysregulation of Actin Cytoskeleton Dynamics through Cofilin 1 Phosphorylation. Journal of Neuroscience, 2018, 38, 10349-10361.	3.6	80
24	Tissue plasminogen activator and NMDA receptor cleavage. Nature Medicine, 2003, 9, 371-372.	30.7	79
25	Smad3-Dependent Induction of Plasminogen Activator Inhibitor-1 in Astrocytes Mediates Neuroprotective Activity of Transforming Growth Factor- \hat{l}^21 against NMDA-Induced Necrosis. Molecular and Cellular Neurosciences, 2002, 21, 634-644.	2.2	77
26	Membraneâ€delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons Journal of Physiology, 1997, 499, 721-732.	2.9	76
27	DCG-IV Selectively Attenuates Rapidly Triggered NMDA-induced Neurotoxicity in Cortical Neurons. European Journal of Neuroscience, 1996, 8, 138-143.	2.6	69
28	Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Molecular and Cellular Neurosciences, 2009, 40, 463-473.	2.2	69
29	ls tissue-type plasminogen activator a neuromodulator?. Molecular and Cellular Neurosciences, 2004, 25, 594-601.	2.2	65
30	Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. Neurolmage, 2012, 63, 760-770.	4.2	64
31	NMDA receptor dysfunction contributes to impaired brainâ€derived neurotrophic factorâ€induced facilitation of hippocampal synaptic transmission in a <scp>T</scp> au transgenic model. Aging Cell, 2013, 12, 11-23.	6.7	64
32	Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer's disease. Reviews in the Neurosciences, 2011, 22, 285-294.	2.9	63
33	TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid- \hat{l}^2 peptide. Molecular Neurodegeneration, 2017, 12, 53.	10.8	62
34	Evidence of Type I and Type II Transforming Growth Factorâ€Î² Receptors in Central Nervous Tissues: Changes Induced by Focal Cerebral Ischemia. Journal of Neurochemistry, 1998, 70, 2296-2304.	3.9	61
35	Interaction Between ÂCaMKII and GluN2B Controls ERK-Dependent Plasticity. Journal of Neuroscience, 2012, 32, 10767-10779.	3.6	60
36	Akt-dependent Expression of NAIP-1 Protects Neurons against Amyloid- \hat{l}^2 Toxicity. Journal of Biological Chemistry, 2005, 280, 24941-24947.	3.4	51

#	Article	IF	CITATIONS
37	Neurotrophin-3-induced PI-3 kinase/Akt signaling rescues cortical neurons from apoptosis. Experimental Neurology, 2004, 187, 38-46.	4.1	50
38	Transforming growth factor αâ€induced expression of typeâ€1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEB Journal, 2003, 17, 277-279.	0.5	48
39	Copper-catalyzed amination of (bromophenyl)ethanolamine for a concise synthesis of aniline-containing analogues of NMDA NR2B antagonist ifenprodil. Organic and Biomolecular Chemistry, 2010, 8, 1111.	2.8	48
40	Astrocyte–neuron interplay is critical for Alzheimer's disease pathogenesis and is rescued by TRPA1 channel blockade. Brain, 2022, 145, 388-405.	7.6	41
41	p3 peptide, a truncated form of ${\rm A}\hat{\rm I}^2$ devoid of synaptotoxic effect, does not assemble into soluble oligomers. FEBS Letters, 2008, 582, 1865-1870.	2.8	40
42	Reciprocal disruption of neuronal signaling and \hat{Al}^2 production mediated by extrasynaptic NMDA receptors: a downward spiral. Cell and Tissue Research, 2014, 356, 279-286.	2.9	40
43	Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. Glia, 2015, 63, 673-683.	4.9	40
44	Increased Expression of Transforming Growth Factor-Î ² after Cerebral Ischemia in the Baboon: An Endogenous Marker of Neuronal Stress?. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 820-827.	4.3	37
45	Selective Impairment of Some Forms of Synaptic Plasticity by Oligomeric Amyloid-β Peptide in the Mouse Hippocampus: Implication of Extrasynaptic NMDA Receptors. Journal of Alzheimer's Disease, 2012, 32, 183-196.	2.6	37
46	Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress. Pharmacological Research, 2014, 87, 8-17.	7.1	36
47	Nigrostriatal pathway modulates striatum vulnerability to quinolinic acid. Neuroscience Letters, 1991, 131, 257-259.	2.1	33
48	A key function for microtubule-associated-protein 6 in activity-dependent stabilisation of actin filaments in dendritic spines. Nature Communications, 2018, 9, 3775.	12.8	30
49	Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[18F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. European Journal of Medicinal Chemistry, 2011, 46, 2295-2309.	5.5	29
50	Transforming Growth Factor- $\hat{l}^21\hat{a}\in$ "Modulated Cerebral Gene Expression. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1114-1123.	4.3	24
51	Reduction in the neuronal surface of post and presynaptic GABA _B receptors in the hippocampus in a mouse model of Alzheimer's disease. Brain Pathology, 2020, 30, 554-575.	4.1	22
52	Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 2459.	4.1	21
53	2,7-Bis-(4-Amidinobenzylidene)-Cycloheptan-1-One Dihydrochloride, tPA Stop, Prevents tPA-Enhanced Excitotoxicity Both In Vitro and In Vivo. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1153-1159.	4.3	20
54	VEGF counteracts amyloid-Î ² -induced synaptic dysfunction. Cell Reports, 2021, 35, 109121.	6.4	19

#	Article	IF	CITATIONS
55	Reply to "Tissue plasminogen activator and NMDA receptor cleavage". Nature Medicine, 2003, 9, 372-373.	30.7	18
56	Confocal Microscopy Imaging of NR2B-Containing NMDA Receptors Based on Fluorescent Ifenprodil-Like Conjugates. Bioconjugate Chemistry, 2012, 23, 21-26.	3.6	18
57	Tubulin tyrosination regulates synaptic function and is disrupted in Alzheimer's disease. Brain, 2022, 145, 2486-2506.	7.6	17
58	Neuroprotection by Nitrous Oxide and Xenon and Its Relation to Minimum Alveolar Concentration. Anesthesiology, 2004, 101, 260-261.	2.5	14
59	Involvement of CRF2 signaling in enterocyte differentiation. World Journal of Gastroenterology, 2017, 23, 5127.	3.3	14
60	Assembly of The Mitochondrial Complexâ€I Assembly Complex Suggests a Regulatory Role for Deflavination. Angewandte Chemie - International Edition, 2021, 60, 4689-4697.	13.8	14
61	A Soluble Transforming Growth Factor- \hat{l}^2 (TGF- \hat{l}^2) Type I Receptor Mimics TGF- \hat{l}^2 Responses. Journal of Biological Chemistry, 2001, 276, 46243-46250.	3.4	13
62	Effect of $\hat{Al^2}$ Oligomers on Neuronal APP Triggers a Vicious Cycle Leading to the Propagation of Synaptic Plasticity Alterations to Healthy Neurons. Journal of Neuroscience, 2020, 40, 5161-5176.	3.6	13
63	Comparison of the pharmacological properties of GK11 and MK801, two NMDA receptor antagonists: towards an explanation for the lack of intrinsic neurotoxicity of GK11. Journal of Neurochemistry, 2007, 103, 1682-1696.	3.9	10
64	Nitric Oxide and Cerebral Ischemia. Annals of the New York Academy of Sciences, 1994, 738, 341-347.	3.8	8
65	Pyr1-Mediated Pharmacological Inhibition of LIM Kinase Restores Synaptic Plasticity and Normal Behavior in a Mouse Model of Schizophrenia. Frontiers in Pharmacology, 2021, 12, 627995.	3.5	8
66	Matching Gene Expression with Hypometabolism after Cerebral Ischemia in the Nonhuman Primate. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1165-1169.	4.3	7
67	Improved optical slicing by stimulated emission depletion light sheet microscopy. Biomedical Optics Express, 2020, 11, 660.	2.9	7
68	Synthesis and in Vitro Characterisation of Ifenprodilâ€Based Fluorescein Conjugates as GluN1/GluN2B <i>N</i> â€Methylâ€≺scp>Dâ€aspartate Receptor Antagonists. ChemBioChem, 2013, 14, 759-769.	2.6	6
69	Lesioning the substantia nigra reduces striatal infarct volume following focal ischemia in rats. Fundamental and Clinical Pharmacology, 1991, 5, 645-647.	1.9	5
70	Combination of horseradish peroxidase and lucifer yellow staining for selective labeling of neurons at the electron microscopic level Journal of Histochemistry and Cytochemistry, 1991, 39, 1579-1583.	2.5	3
71	Le tranforming growth factor-β (TGF-p) a t-il un rÃ1e neuroprotecteur dans l'ischémie cérébrale ?. Société De Biologie Journal, 2003, 197, 145-150.	0.3	3
72	Matching Gene Expression With Hypometabolism After Cerebral Ischemia in the Nonhuman Primate. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1165-1169.	4.3	2

#	Article	IF	CITATION
73	GluN2B Subunit Labeling with Fluorescent Probes and High-Resolution Live Imaging. Methods in Molecular Biology, 2017, 1677, 171-183.	0.9	1
74	P22 REDUCTION OF ISCHEMIC BRAIN DAMAGE BY NITROUS OXIDE AND XENON Behavioural Pharmacology, 2006, 17, 547.	1.7	0
75	O3-04-01: Amyloid-Beta oligomers accumulate in the postsynaptic density fraction and reveal cognitive impairment in transgenic mice model of Alzheimer's disease., 2011, 7, S505-S505.		0
76	Specific alterations of tau phosphorylation and neuronal signaling induced by the amyloid- \hat{l}^2 oligomer Al 2 *56. Neurobiology of Aging, 2016, 39, S27.	3.1	0
77	Amyloid Fibers Reveal Themselves With Nearâ€Infrared. Movement Disorders, 2019, 34, 1643-1643.	3.9	0
78	Differential role of synaptic an extrasynaptic NMDA receptors in glutamate mediated neuronal injury. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S445-S445.	4.3	0