Ping Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4445516/publications.pdf

Version: 2024-02-01

858243 889612 23 416 12 19 citations h-index g-index papers 23 23 23 551 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Type III CRISPR-based RNA editing for programmable control of SARS-CoV-2 and human coronaviruses. Nucleic Acids Research, 2022, 50, e47-e47.	6.5	8
2	An Approach to Proximity Ligation by T4 RNA Ligase to Screen sRNA That Regulate CRISPR-Cas Systems. Springer Protocols, 2021, , 301-309.	0.1	0
3	Microbial and genetic-based framework identifies drug targets in inflammatory bowel disease. Theranostics, 2021, 11, 7491-7506.	4.6	13
4	Calcium-responsive kinase LadS modulates type I–F CRISPR-Cas adaptive immunity. Biochemical and Biophysical Research Communications, 2021, 546, 155-161.	1.0	5
5	CRISPR base editor treats premature-aging syndrome. Signal Transduction and Targeted Therapy, 2021, 6, 158.	7.1	2
6	Gut Microbiota Regulate Gut–Lung Axis Inflammatory Responses by Mediating ILC2 Compartmental Migration. Journal of Immunology, 2021, 207, 257-267.	0.4	30
7	Bitter receptor TAS2R138 facilitates lipid droplet degradation in neutrophils during Pseudomonas aeruginosa infection. Signal Transduction and Targeted Therapy, 2021, 6, 210.	7.1	9
8	Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision Clinical Medicine, 2021, 4, 179-191.	1.3	40
9	MicroRNA-302/367 Cluster Impacts Host Antimicrobial Defense via Regulation of Mitophagic Response Against Pseudomonas aeruginosa Infection. Frontiers in Immunology, 2020, 11, 569173.	2.2	18
10	Fossicking for microbial defense system: novel antiviral immunity. Signal Transduction and Targeted Therapy, 2020, 5, 281.	7.1	1
11	oprC Impairs Host Defense by Increasing the Quorum-Sensing-Mediated Virulence of Pseudomonas aeruginosa. Frontiers in Immunology, 2020, 11, 1696.	2.2	11
12	Small-Molecule Inhibitor of 8-Oxoguanine DNA Glycosylase 1 Regulates Inflammatory Responses during <i>Pseudomonas aeruginosa</i> Infection. Journal of Immunology, 2020, 205, 2231-2242.	0.4	25
13	CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells. Molecular Cell, 2020, 78, 850-861.e5.	4.5	65
14	TRPC1 intensifies house dust mite–induced airway remodeling by facilitating epithelialâ€toâ€mesenchymal transition and STAT3/NFâ€PB signaling. FASEB Journal, 2019, 33, 1074-1085.	0.2	18
15	Bacterial Type I CRISPR as systems influence inflammasome activation in mammalian host by promoting autophagy. Immunology, 2019, 158, 240-251.	2.0	9
16	High-throughput screen reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho termination. Nature Communications, 2019, 10, 3728.	5.8	30
17	Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug. Precision Clinical Medicine, 2019, 2, 166-182.	1.3	10
18	Design of Cecal Ligation and Puncture and Intranasal Infection Dual Model of Sepsis-Induced Immunosuppression. Journal of Visualized Experiments, 2019, , .	0.2	5

PING LIN

#	Article	IF	CITATIONS
19	Protective Features of Autophagy in Pulmonary Infection and Inflammatory Diseases. Cells, 2019, 8, 123.	1.8	52
20	CdpR Inhibits CRISPR-Cas Adaptive Immunity to Lower Anti-viral Defense while Avoiding Self-Reactivity. IScience, 2019, 13, 55-68.	1.9	14
21	DNA Repair Interacts with Autophagy To Regulate Inflammatory Responses to Pulmonary Hyperoxia. Journal of Immunology, 2017, 198, 2844-2853.	0.4	30
22	Response to Comment on "DNA Repair Interacts with Autophagy To Regulate Inflammatory Responses to Pulmonary Hyperoxia― Journal of Immunology, 2017, 199, 381.2-382.	0.4	0
23	Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduction and Targeted Therapy, 2016, 1, 16032.	7.1	21