Andrei Nikitin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4445132/publications.pdf

Version: 2024-02-01

57758 19749 14,578 120 44 117 citations h-index g-index papers 123 123 123 7711 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277, 107949.	2.3	770
2	Improved line list of 12CH4 in the 4100–4300 cmâ~'1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 279, 108021.	2.3	3
3	Kinetic Energy Operator of Linear Symmetric Molecules of the A2B2 Type in Polyspherical Orthogonal Coordinates. Atmospheric and Oceanic Optics, 2022, 35, 14-18.	1.3	3
4	Partition sums for non-local thermodynamic equilibrium conditions for nine molecules of importance in planetary atmospheres. Icarus, 2022, 378, 114947.	2.5	9
5	Vibrational levels of formaldehyde: Calculations from new high precision potential energy surfaces and comparison with experimental band origins. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260, 107478.	2.3	9
6	Towards a complete elucidation of the ro-vibrational band structure in the SF ₆ infrared spectrum from full quantum-mechanical calculations. Physical Chemistry Chemical Physics, 2021, 23, 12115-12126.	2.8	17
7	Modelling of the $2\hat{l}/21-\hat{l}/21$ and $\hat{l}/21$ band transitions of 13CH4 using high resolution Raman spectroscopy measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270, 107682.	2.3	2
8	Total internal partition sums for the HITRAN2020 database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, 107713.	2.3	35
9	The First Complex Experiment on Determining Parameters of the Vertical Distribution of Methane in the Troposphere over Western Siberia from Solar Spectra Recorded with an IFS-125M FTIR Spectrometer and In Situ Aircraft Measurements. Atmospheric and Oceanic Optics, 2021, 34, 61-67.	1.3	1
10	New <i>Ab Initio</i> Potential Energy Surfaces for NH ₃ Constructed from Explicitly Correlated Coupled-Cluster Methods. Journal of Physical Chemistry A, 2021, 125, 10568-10579.	2.5	9
11	High-sensitivity measurements of 12CH3D pure rotational lines in ground and excited vibrational states in the subTHz region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 242, 106781.	2.3	3
12	Derivation of ϕdependent coordinate transformations for nonrigid molecules in the Hougen–Bunker–Johns formalism. Journal of Chemical Physics, 2020, 153, 084102.	3.0	7
13	First Full-Dimensional Potential Energy and Dipole Moment Surfaces of SF ₆ . Journal of Physical Chemistry A, 2020, 124, 7014-7023.	2.5	11
14	An Accurate, Extensive, and Practical Line List of Methane for the HITEMP Database. Astrophysical Journal, Supplement Series, 2020, 247, 55.	7.7	92
15	Line list of 12CH4 in the 4300–4600 cmâ^'1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107061.	2.3	6
16	A global view of isotopic effects on ro-vibrational spectra of six-atomic molecules: a case study of eleven ethylene species. Physical Chemistry Chemical Physics, 2020, 22, 3204-3216.	2.8	11
17	Assignment and modeling of the 13CH4 cold absorption spectrum in the 5471–5852Âcmâ^'1 spectral range. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235, 278-286.	2.3	5
18	Symmetry effects in rotationally resolved spectra of bi-deuterated ethylene: Theoretical line intensities of <i>cis</i> , <i>trans</i> , and <i>as</i> -C2H2D2 isotopomers. Journal of Chemical Physics, 2019, 150, 194303.	3.0	7

#	Article	IF	CITATIONS
19	Improved line list of 12CH4 in the 8850–9180 cmâ-'1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106646.	2.3	9
20	Global modeling of NF3 line positions and intensities from far to mid-infrared up to 2200Âcmâ^1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106668.	2.3	14
21			

#	Article	IF	Citations
37	Analysis of the absorption spectrum of 12CH4 in the region 5855–6250 cmâ^'1 of the 2ν3 band. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 341-348.	2.3	29
38	Accurate line intensities of methane from first-principles calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200, 90-99.	2.3	45
39	Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications. Astrophysical Journal, 2017, 847, 105.	4.5	68
40	Analysis of PH3 spectra in the Octad range 2733–3660 cmâ~'1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 472-479.	2.3	13
41	Measurements and modeling of long-path 12CH4 spectra in the 5300–5550â€⁻cmâ°'1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 255-264.	2.3	20
42	The HITRAN2016 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 3-69.	2.3	2,840
43	Fourier Transform Spectroscopy of two trace gases namely Methane and Carbon monoxide for planetary and atmospheric research application. Journal of Physics: Conference Series, 2017, 810, 012008.	0.4	0
44	First theoretical global line lists of ethylene (¹² C ₂ H ₄) spectra for the temperature range 50a^700 K in the far-infrared for quantification of absorption and emission in planetary atmospheres. Astronomy and Astrophysics, 2016, 594, A47.	5.1	23
45	First fully (i) ab initio (i) potential energy surface of methane with a spectroscopic accuracy. Journal of Chemical Physics, 2016, 145, 114309.	3.0	43
46	Measurements and modeling of cold 13CH4 spectra in the 3750–4700 cmⰒ1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 174, 88-100.	2.3	18
47	The 2015 edition of the GEISA spectroscopic database. Journal of Molecular Spectroscopy, 2016, 327, 31-72.	1.2	311
48	TheoReTS â€" An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces. Journal of Molecular Spectroscopy, 2016, 327, 138-158.	1.2	122
49	Full-Dimensional Potential Energy and Dipole Moment Surfaces of GeH ₄ Molecule and Accurate First-Principle Rotationally Resolved Intensity Predictions in the Infrared. Journal of Physical Chemistry A, 2016, 120, 8983-8997.	2.5	15
50	Improved spectroscopic line list of methyl chloride in the 1900–2600 cmâ^'1 spectral region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 177, 49-58.	2.3	8
51	The 13CH4 absorption spectrum in the Icosad range (6600–7692 cmâ~1) at 80 K and 296 K: Empirical line lists and temperature dependence. Journal of Molecular Spectroscopy, 2016, 326, 115-121.	1.2	17
52	Analyses and modeling of the 12CH4 spectrum at 80 K between 6539 and 6800 cmâ^'1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 168, 207-216.	2.3	23
53	Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2ν3 band (5853–6201 cmⰒ1). Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 177, 170-180.	2.3	25
54	Ab initio variational predictions for understanding highly congested spectra: rovibrational assignment of 108 new methane sub-bands in the icosad range (6280–7800 cm ^{â°1}). Physical Chemistry Chemical Physics, 2016, 18, 176-189.	2.8	42

#	Article	IF	Citations
55	An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules. Journal of Chemical Physics, 2015, 142, 094118.	3.0	33
56	GOSAT-2014 methane spectral line list. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 154, 63-71.	2.3	48
57	First Predictions of Rotationally Resolved Infrared Spectra of Dideuteromethane (¹² CH ₂ D ₂) From Potential Energy and Dipole Moment Surfaces. Journal of Physical Chemistry A, 2015, 119, 4763-4779.	2.5	36
58	Accurate 12D dipole moment surfaces of ethylene. Chemical Physics Letters, 2015, 639, 275-282.	2.6	25
59	Methane high-temperature partition function from contact transformations and variational calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 167, 53-63.	2.3	20
60	Convergence of normal mode variational calculations of methane spectra: Theoretical linelist in the icosad range computed from potential energy and dipole moment surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 164, 207-220.	2.3	44
61	A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels. Journal of Chemical Physics, 2014, 141, 104301.	3.0	47
62	High order dipole moment surfaces of PH3 and ab initio intensity predictions in the Octad range. Journal of Molecular Spectroscopy, 2014, 305, 40-47.	1.2	30
63	THEORETICAL HOT METHANE LINE LISTS UP TO <i>T</i> i>= 2000 K FOR ASTROPHYSICAL APPLICATIONS. Astrophysical Journal, 2014, 789, 2.	4.5	72
64	Measurements and modeling of long-path 12CH4 spectra in the 4800–5300cmâ⁻'1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 138, 116-123.	2.3	29
65	Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations. Journal of Chemical Physics, 2014, 141, 044316.	3.0	57
66	Titanâ∈™s surface and atmosphere from Cassini/VIMS data with updated methane opacity. Icarus, 2013, 226, 470-486.	2.5	92
67	Methane line parameters in the HITRAN2012 database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130, 201-219.	2.3	121
68	The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130, 4-50.	2.3	2,810
69	High resolution spectroscopy and the first global analysis of the Tetradecad region of methane 12CH4. Physical Chemistry Chemical Physics, 2013, 15, 10071.	2.8	73
70	Preliminary modeling of CH3D from 4000 to 4550 cmâ^1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 114, 1-12.	2.3	33
71	Accurate Spectroscopic Models for Methane Polyads Derived from a Potential Energy Surface Using High-Order Contact Transformations. Journal of Physical Chemistry A, 2013, 117, 13779-13805.	2.5	112
72	Predictions for methane spectra from potential energy and dipole moment surfaces: Isotopic shifts and comparative study of 13CH4 and 12CH4. Journal of Molecular Spectroscopy, 2013, 291, 85-97.	1.2	60

#	Article	IF	Citations
7 3	New assignments in the $2\hat{1}\frac{1}{4}$ m transparency window of the 12CH4 Octad band system. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 116, 101-109.	2.3	55
74	First principles intensity calculations of the methane rovibrational spectra in the infrared up to 9300 cmâ^1. Physical Chemistry Chemical Physics, 2013, 15, 10049.	2.8	82
75	New dipole moment surfaces of methane. Chemical Physics Letters, 2013, 565, 5-11.	2.6	63
76	Complete nuclear motion Hamiltonian in the irreducible normal mode tensor operator formalism for the methane molecule. Journal of Chemical Physics, 2012, 136, 244106.	3.0	81
77	Ab initio effective rotational Hamiltonians: A comparative study. International Journal of Quantum Chemistry, 2012, 112, 2201-2220.	2.0	26
78	Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres. Icarus, 2012, 218, 1-23.	2.5	64
79	An efficient code for calculation of the 6C, 9C and 12C symbols for , , and point groups. Computer Physics Communications, 2012, 183, 733-736.	7.5	4
80	Rotational and vibrational energy levels of methyl fluoride calculated from a new potential energy surface. Journal of Molecular Spectroscopy, 2012, 274, 28-34.	1.2	14
81	Extension of the MIRS computer package for the modeling of molecular spectra: From effective to full ab initio ro-vibrational Hamiltonians in irreducible tensor form. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1034-1042.	2.3	60
82	Absorption spectrum of deuterated water vapor enriched by 180 between 6000 and 9200cmâ^1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 653-669.	2.3	43
83	Refinements of the WKMC empirical line lists (5852–7919cmâ^'1) for methane between 80K and 296K. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1855-1873.	2.3	36
84	Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58μm window. Planetary and Space Science, 2012, 61, 85-98.	1.7	99
85	Preliminary assignments of 2ν3–ν4 hot band of 12CH4 in the 2μm transparency window from long-path F spectra. Journal of Molecular Spectroscopy, 2011, 268, 93-93.	TS 1.2	18
86	The 2009 edition of the GEISA spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 2395-2445.	2.3	306
87	Rotational and vibrational energy levels of methane calculated from a new potential energy surface. Chemical Physics Letters, 2011, 501, 179-186.	2.6	99
88	First assignment of the 5ν4 and ν2+4ν4 band systems of 12CH4 in the 6287–6550cmâ^1 region. Journal Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 28-40.	of 2.3	60
89	New efficient algorithm for the calculation of energy levels of AB ₃ type molecules. Molecular Physics, 2011, 109, 483-492.	1.7	4
90	GOSAT-2009 methane spectral line list in the 5550–6236cmⰒ1 range. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2211-2224.	2.3	79

#	Article	IF	Citations
91	<i>Ab initio</i> ro-vibrational Hamiltonian in irreducible tensor formalism: a method for computing energy levels from potential energy surfaces for symmetric-top molecules. Molecular Physics, 2010, 108, 2121-2135.	1.7	59
92	Vibration energy levels of the PH3, PH2D, and PHD2 molecules calculated from high order potential energy surface. Journal of Chemical Physics, 2009, 130, 244312.	3.0	38
93	Modeling of vibrational energy levels of methane from the Ab initio constructed potential energy surface. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2009, 106, 176-182.	0.6	7
94	Global modeling of the lower three polyads of PH3: Preliminary results. Journal of Molecular Spectroscopy, 2009, 256, 4-16.	1.2	19
95	Measurements of N2- and O2-broadening and shifting parameters of methane spectral lines in the 5550–6236cmⰒ1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 654-668.	2.3	50
96	The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 533-572.	2.3	3,129
97	Isotopic substitution shifts in methane and vibrational band assignment in the 5560–6200 cmⰒ1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 964-973.	2.3	37
98	Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800cmâ°1. Chemical Physics, 2009, 356, 131-146.	1.9	156
99	The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1043-1059.	2.3	161
100	Vibrational energy levels of methyl chloride calculated from full dimensional ab initio potential energy surface. Journal of Molecular Spectroscopy, 2008, 252, 17-21.	1.2	22
101	Titan's 3-micron spectral region from ISO high-resolution spectroscopy. Icarus, 2006, 180, 176-185.	2.5	74
102	Preliminary analysis of CH3D from 3250 to 3700cmâ^1. Journal of Molecular Spectroscopy, 2006, 240, 14-25.	1.2	34
103	The 2003 edition of the GEISA/IASI spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 95, 429-467.	2.3	146
104	Global analysis of 12CH335Cl and 12CH337Cl: simultaneous fit of the lower five polyads (0–2600cmâ^'1). Journal of Molecular Spectroscopy, 2005, 230, 174-184.	1.2	33
105	New ground state constants of 12CH335Cl and 12CH337Cl from global polyad analysis. Journal of Molecular Spectroscopy, 2005, 230, 168-173.	1.2	32
106	Line intensities of CH3D in the Triad region: 6–10Î⅓m. Journal of Molecular Structure, 2004, 695-696, 181-188.	3.6	4
107	<title>Global analysis of chloromethane: determinability of ground state constants</title> ., 2004, , .		6
108	Methane line parameters in HITRAN. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82, 219-238.	2.3	117

#	Article	IF	CITATIONS
109	The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82, 239-249.	2.3	72
110	New measurements and global analysis of chloromethane in the region from 0 to 1800cmâ^'1. Journal of Molecular Spectroscopy, 2003, 221, 199-212.	1.2	23
111	Analysis of the CH3D Nonad from 2000 to 3300 cmâ°'1. Journal of Molecular Spectroscopy, 2002, 216, 225-251.	1.2	59
112	The infrared spectrum of CH 3 D between 900 and 3200 cm \hat{a}^{1} : extended assignment and modeling. Journal of Molecular Structure, 2000, 517-518, 1-24.	3.6	51
113	The 1997 spectroscopic GEISA databank. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 62, 205-254.	2.3	237
114	GEISA-PC software in 1996: innovations toward the atmospheric optics needs. , 1997, , .		0
115	Molecular atmospheric transmittance function in the range of 2–400 μm and earth radiation balance. Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 57, 1-10.	2.3	2
116	Improved Algorithms for the Modeling of Vibrational Polyads of Polyatomic Molecules: Application toT,O, andC3Molecules. Journal of Molecular Spectroscopy, 1997, 182, 72-84.	1.2	73
117	The High Resolution Infrared Spectrum of CH3D in the Region 900–1700 cmâ^'1. Journal of Molecular Spectroscopy, 1997, 184, 120-128.	1.2	50
118	$2\hat{l}\frac{1}{2}$ 3 Band of 12CF4 and Its Simultaneous Analysis with $\hat{l}\frac{1}{2}$ 3. Journal of Molecular Spectroscopy, 1995, 170, 431-448.	1.2	11
119	T.D.S. spectroscopic databank for spherical tops: DOS version. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52, 459-479.	2.3	57
120	Irreducible tensor operators and operations over them in the theory of molecular spectra. Russian Physics Journal, 1993, 36, 200-208.	0.4	0