
## **Dongliang Tian**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4445058/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Photo-induced water–oil separation based on switchable superhydrophobicity–superhydrophilicity<br>and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. Journal of<br>Materials Chemistry, 2012, 22, 19652. | 6.7  | 347       |
| 2  | Patterning of controllable surface wettability for printing techniques. Chemical Society Reviews, 2013, 42, 5184.                                                                                                                           | 38.1 | 299       |
| 3  | Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil. ACS Nano, 2017, 11, 2477-2485.                                                                                                                         | 14.6 | 186       |
| 4  | Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil. Physical Chemistry Chemical Physics, 2011, 13, 14606.                                                                                                | 2.8  | 185       |
| 5  | Fast Responsive and Controllable Liquid Transport on a Magnetic Fluid/Nanoarray Composite<br>Interface. ACS Nano, 2016, 10, 6220-6226.                                                                                                      | 14.6 | 144       |
| 6  | Electric Field Induced Switchable Wettability to Water on the Polyaniline Membrane and Oil/Water<br>Separation. Advanced Materials Interfaces, 2016, 3, 1600461.                                                                            | 3.7  | 137       |
| 7  | Patterned Wettability Transition by Photoelectric Cooperative and Anisotropic Wetting for Liquid Reprography. Advanced Materials, 2009, 21, 3744-3749.                                                                                      | 21.0 | 118       |
| 8  | Underwater Self-Cleaning Scaly Fabric Membrane for Oily Water Separation. ACS Applied Materials<br>& Interfaces, 2015, 7, 4336-4343.                                                                                                        | 8.0  | 113       |
| 9  | Highly Flexible Monolayered Porous Membrane with Superhydrophilicity–Hydrophilicity for<br>Unidirectional Liquid Penetration. ACS Nano, 2020, 14, 7287-7296.                                                                                | 14.6 | 95        |
| 10 | Multifunctional Magnetocontrollable Superwettableâ€Microcilia Surface for Directional Droplet<br>Manipulation. Advanced Science, 2019, 6, 1900834.                                                                                          | 11.2 | 92        |
| 11 | Externalâ€Fieldâ€Induced Gradient Wetting for Controllable Liquid Transport: From Movement on the Surface to Penetration into the Surface. Advanced Materials, 2017, 29, 1703802.                                                           | 21.0 | 90        |
| 12 | An Integrated Janus Mesh: Underwater Bubble Antibuoyancy Unidirectional Penetration. ACS Nano, 2018, 12, 5489-5494.                                                                                                                         | 14.6 | 88        |
| 13 | Closed Pore Structured NiCo <sub>2</sub> O <sub>4</sub> -Coated Nickel Foams for Stable and Effective Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 29177-29184.                                                       | 8.0  | 68        |
| 14 | Phototunable Underwater Oil Adhesion of Micro/Nanoscale Hierarchicalâ€ <b>S</b> tructured ZnO Mesh Films<br>with Switchable Contact Mode. Advanced Functional Materials, 2014, 24, 536-542.                                                 | 14.9 | 67        |
| 15 | Recent progress of electrowetting for droplet manipulation: from wetting to superwetting systems.<br>Materials Chemistry Frontiers, 2020, 4, 140-154.                                                                                       | 5.9  | 67        |
| 16 | Electric Field and Gradient Microstructure for Cooperative Driving of Directional Motion of Underwater Oil Droplets. Advanced Functional Materials, 2016, 26, 7986-7992.                                                                    | 14.9 | 61        |
| 17 | Photocontrollable Water Permeation on the Micro/Nanoscale Hierarchical Structured ZnO Mesh<br>Films. Langmuir, 2011, 27, 4265-4270.                                                                                                         | 3.5  | 53        |
| 18 | Switchable Wettability and Adhesion of Micro/Nanostructured Elastomer Surface via Electric Field<br>for Dynamic Liquid Droplet Manipulation. Advanced Science, 2020, 7, 2000772.                                                            | 11.2 | 53        |

DONGLIANG TIAN

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ciliaâ€Inspired Flexible Arrays for Intelligent Transport of Viscoelastic Microspheres. Advanced<br>Functional Materials, 2018, 28, 1706666.                                                  | 14.9 | 51        |
| 20 | Ordered Honeycomb Structure Surface Generated by Breath Figures for Liquid Reprography. Advanced<br>Functional Materials, 2014, 24, 7241-7248.                                                | 14.9 | 43        |
| 21 | Uncoupled surface spin induced exchange bias in α-MnO2 nanowires. Scientific Reports, 2014, 4, 6641.                                                                                          | 3.3  | 39        |
| 22 | Molecular-Structure-Induced Under-Liquid Dual Superlyophobic Surfaces. ACS Nano, 2020, 14, 14869-14877.                                                                                       | 14.6 | 37        |
| 23 | Photoelectric Cooperative Induced Wetting on Alignedâ€Nanopore Arrays for Liquid Reprography.<br>Advanced Functional Materials, 2011, 21, 4519-4526.                                          | 14.9 | 35        |
| 24 | Switchable Direction of Liquid Transport <i>via</i> an Anisotropic Microarray Surface and Thermal Stimuli. ACS Nano, 2020, 14, 1436-1444.                                                     | 14.6 | 34        |
| 25 | Bioinspired Continuous and Spontaneous Antigravity Oil Collection and Transportation. Advanced Functional Materials, 2018, 28, 1704220.                                                       | 14.9 | 30        |
| 26 | Photoelectric cooperative patterning of liquid permeation on the micro/nano hierarchically structured mesh film with low adhesion. Nanoscale, 2014, 6, 12822-12827.                           | 5.6  | 27        |
| 27 | Electrowettingâ€Induced Stiction Switch of a Microstructured Wire Surface for Unidirectional<br>Droplet and Bubble Motion. Advanced Functional Materials, 2018, 28, 1800775.                  | 14.9 | 23        |
| 28 | Magnetic field actuated manipulation and transfer of oil droplets on a stable underwater superoleophobic surface. Physical Chemistry Chemical Physics, 2016, 18, 16202-16207.                 | 2.8  | 20        |
| 29 | An Innovative Design by Singleâ€Layer Superaerophobic Mesh: Continuous Underwater Bubble<br>Antibuoyancy Collection and Transportation. Advanced Functional Materials, 2020, 30, 1907027.     | 14.9 | 20        |
| 30 | Optoelectrowettability conversion on superhydrophobic CdS QDs sensitized TiO2 nanotubes. Journal of Colloid and Interface Science, 2012, 366, 1-7.                                            | 9.4  | 17        |
| 31 | Stretch-Enhanced Anisotropic Wetting on Transparent Elastomer Film for Controlled Liquid<br>Transport. ACS Nano, 2021, 15, 19981-19989.                                                       | 14.6 | 15        |
| 32 | A bioinspired magnetic responsive cilia array surface for microspheres underwater directional transport. Science China Chemistry, 2020, 63, 347-353.                                          | 8.2  | 14        |
| 33 | Atomic Scale Evolution of Graphitic Shells Growth via Pyrolysis of Cobalt Phthalocyanine. Advanced<br>Materials Interfaces, 2020, 7, 2001112.                                                 | 3.7  | 13        |
| 34 | The highly efficient collection of underwater oil droplets on an anisotropic porous cone surface<br><i>via</i> an electric field. Journal of Materials Chemistry A, 2020, 8, 8605-8611.       | 10.3 | 13        |
| 35 | Patterned liquid permeation through the TiO2 nanotube array coated Ti mesh by photoelectric cooperation for liquid printing. Journal of Materials Chemistry A, 2014, 2, 2498.                 | 10.3 | 8         |
| 36 | Directional Transport: Bioinspired Continuous and Spontaneous Antigravity Oil Collection and<br>Transportation (Adv. Funct. Mater. 5/2018). Advanced Functional Materials, 2018, 28, 1870032. | 14.9 | 8         |

DONGLIANG TIAN

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Switchable smart porous surface for controllable liquid transportation. Materials Horizons, 2022, 9, 780-790.                                                                                                                   | 12.2 | 7         |
| 38 | A fast adaptive gating system based on the reconfigurable morphology of liquid metal <i>via</i> an electric field on porous surfaces. Journal of Materials Chemistry A, 2020, 8, 24184-24191.                                   | 10.3 | 6         |
| 39 | Morphology-controlled self-assembled nanostructures of a porphyrin derivative and their photoelectrochemical properties. RSC Advances, 2014, 4, 4063-4068.                                                                      | 3.6  | 5         |
| 40 | Directional Motion: Electric Field and Gradient Microstructure for Cooperative Driving of<br>Directional Motion of Underwater Oil Droplets (Adv. Funct. Mater. 44/2016). Advanced Functional<br>Materials, 2016, 26, 8148-8148. | 14.9 | 3         |
| 41 | Porous Films: Ordered Honeycomb Structure Surface Generated by Breath Figures for Liquid<br>Reprography (Adv. Funct. Mater. 46/2014). Advanced Functional Materials, 2014, 24, 7226-7226.                                       | 14.9 | 1         |
| 42 | Droplet Manipulation: Multifunctional Magnetocontrollable Superwettableâ€Microcilia Surface for<br>Directional Droplet Manipulation (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970102.                                    | 11.2 | 1         |
| 43 | BIOINSPIRED DESIGN OF SUPER-ANTIWETTING INTERFACES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 355-390.                                                                                                 | 0.1  | 0         |