
Guo-Jun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4444361/publications.pdf Version: 2024-02-01

<u>Cuo-lun Lui</u>

#	Article	IF	CITATIONS
1	Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). Nature Neuroscience, 2022, 25, 317-329.	14.8	29
2	Control of Neuroinflammation through Radiation-Induced Microglial Changes. Cells, 2021, 10, 2381.	4.1	24
3	Mitochondrial Translocator Protein (TSPO) Expression in the Brain After Whole Body Gamma Irradiation. Frontiers in Cell and Developmental Biology, 2021, 9, 715444.	3.7	19
4	Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 750775.	3.7	7
5	Adaptive in vivo device for theranostics of inflammation: Real-time monitoring of interferon-Î ³ and aspirin. Acta Biomaterialia, 2020, 101, 372-383.	8.3	20
6	Selective, high-contrast detection of syngeneic glioblastoma in vivo. Scientific Reports, 2020, 10, 9968.	3.3	9
7	The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells, 2020, 9, 512.	4.1	70
8	Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis. ACS Sensors, 2019, 4, 2181-2189.	7.8	13
9	IFN-Î ³ -induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing. Molecular Systems Design and Engineering, 2019, 4, 872-881.	3.4	17
10	Turn-On Fluorescence Aptasensor on Magnetic Nanobeads for Aflatoxin M1 Detection Based on an Exonuclease III-Assisted Signal Amplification Strategy. Nanomaterials, 2019, 9, 104.	4.1	9
11	Sifting through the surfeit of neuroinflammation tracers. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 204-224.	4.3	92
12	Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. International Journal of Molecular Sciences, 2018, 19, 2707.	4.1	105
13	Subcellular distribution of the 18 kDa translocator protein and transcript variant PBR-S in human cells. Gene, 2017, 613, 45-56.	2.2	4
14	Functional gains in energy and cell metabolism after <i>TSPO</i> gene insertion. Cell Cycle, 2017, 16, 436-447.	2.6	58
15	Epigenetic Silencing of the Human 18 kDa Translocator Protein in a T Cell Leukemia Cell Line. DNA and Cell Biology, 2017, 36, 103-108.	1.9	5
16	Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. International Journal of Molecular Sciences, 2016, 17, 2030.	4.1	12
17	The impact of high and low dose ionising radiation on the central nervous system. Redox Biology, 2016, 9, 144-156.	9.0	96
18	<i>Guwiyang Wurra</i> â€~Fire Mouse': a global gene knockout model for TSPO/PBR drug development, loss-of-function and mechanisms of compensation studies. Biochemical Society Transactions, 2015, 43, 553-558.	3.4	14

Guo-Jun Liu

#	Article	IF	CITATIONS
19	Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nature Communications, 2014, 5, 5452.	12.8	199
20	The 18 <scp>kDa</scp> Translocator Protein, Microglia and Neuroinflammation. Brain Pathology, 2014, 24, 631-653.	4.1	182
21	Glutamate potentiates lipopolysaccharide–stimulated interleukin-10 release from neonatal rat spinal cord astrocytes. Neuroscience, 2012, 207, 12-24.	2.3	7
22	Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience, 2011, 175, 93-103.	2.3	29
23	Glutamate induces directed chemotaxis of microglia. European Journal of Neuroscience, 2009, 29, 1108-1118.	2.6	104
24	Glutamate-stimulated ATP release from spinal cord astrocytes is potentiated by substance P. Journal of Neurochemistry, 2006, 99, 924-936.	3.9	64
25	Purine Release from Spinal Cord Microglia after Elevation of Calcium by Glutamate. Molecular Pharmacology, 2006, 70, 851-859.	2.3	58
26	Secretion of ATP from Schwann cells in response to uridine triphosphate. European Journal of Neuroscience, 2005, 21, 151-160.	2.6	62
27	Mechanisms of secretion of ATP from cortical astrocytes triggered by uridine triphosphate. NeuroReport, 2003, 14, 2177-2181.	1.2	38
28	ATP secretion from nerve trunks and Schwann cells mediated by glutamate. NeuroReport, 2003, 14, 2079-2083.	1.2	39
29	Evidence for Cooperativity Between Nicotinic Acetylcholine Receptors in Patch Clamp Records. Biophysical Journal, 2000, 78, 1-12	0.5	53