David M Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4443803/publications.pdf

Version: 2024-02-01

24 583 11 22 papers citations h-index g-index

25 25 25 903 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Stoichiometry and microstructure effects on tungsten oxide chemiresistive films. Sensors and Actuators B: Chemical, 2001, 77, 375-382.	7.8	141
2	Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry. ACS Nano, 2018, 12, 4286-4294.	14.6	96
3	INTERACTIONS AT METAL/OXIDE AND OXIDE/OXIDE INTERFACES STUDIED BY ULTRATHIN FILM GROWTH ON SINGLE-CRYSTAL OXIDE SUBSTRATES. Surface Review and Letters, 1995, 02, 109-126.	1.1	68
4	High temperature stability of electrically conductive Pt–Rh/ZrO2 and Pt–Rh/HfO2 nanocomposite thin film electrodes. Microsystem Technologies, 2014, 20, 523-531.	2.0	40
5	Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	36
6	Energy Conversion Efficiency of an Exponentially Graded Thermoelectric Material. Journal of Electronic Materials, 2014, 43, 308-313.	2.2	26
7	Synthesis and thermal stability of Pt3Si, Pt2Si, and PtSi films grown by e-beam co-evaporation. Journal of Alloys and Compounds, 2016, 682, 216-224.	5.5	26
8	Langasite SAW pressure sensor for harsh environments. , 2012, , .		22
9	Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	21
10	Distinguishing Bulk Conduction from Band Bending Transduction Mechanisms in Chemiresistive Metal Oxide Gas Sensors. Journal of Physical Chemistry C, 2018, 122, 10607-10620.	3.1	20
11	Assessing Substitution Effects on Surface Chemistry by in Situ Ambient Pressure X-ray Photoelectron Spectroscopy on Perovskite Thin Films, BaCe _{<i>x</i>} Zr _{0.9â€"<i>x</i>} Y _{0.1} O _{2.95} (<i>x</i> = 0;) Tj E	T & q1 1 0.	.784314 rg <mark>87</mark>
12	Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries. Chemistry of Materials, 2018, 30, 2526-2534.	6.7	16
13	Nanostructure and bonding of zirconium diboride thin films studied by X-ray spectroscopy. Thin Solid Films, 2015, 596, 155-159.	1.8	8
14	Growth, structure, and high temperature stability of zirconium diboride thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	8
15	Co-sputtering of lithium vanadium oxide thin films with variable lithium content to enable advanced solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 12518-12531.	10.3	7
16	In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids. Electrochimica Acta, 2015, 185, 156-161.	5.2	6
17	Low temperature plasma-enhanced atomic layer deposition of sodium phosphorus oxynitride with tunable nitrogen content. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 032403.	2.1	5
18	Light Absorption by Crystalline and Amorphous Silicon Quantum Dots with Silver Adsorbates and Dopants. Journal of Physical Chemistry C, 2012, 116, 23107-23112.	3.1	4

#	Article	IF	CITATION
19	Zirconium diboride thin films for use in high temperature sensors and MEMS devices. Proceedings of SPIE, 2017, , .	0.8	4
20	Enhanced Crystallinity of hâ€BN Films Induced by Substrate Bias During Magnetron Sputtering. Physica Status Solidi (B): Basic Research, 2018, 255, 1700458.	1.5	3
21	Electronic and thermal properties of stoichiometric Pt3Si films grown by co-evaporation. Journal of Materials Science, 2018, 53, 3524-3536.	3.7	3
22	Electrically stable nanocomposite thin films formed by oxidation of Pt-ZrB2 nanolaminate templates. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 021805.	1.2	2
23	Comparison of PtSi Films Grown by Solid-State Reaction and by E-Beam Co-Evaporation: Thermal Stability in Air at 1000 °C. MRS Advances, 2016, 1, 1539-1544.	0.9	1
24	Plasma-Assisted Epitaxy of Piezoelectric ScxAl1-xN Films on Sapphire for Use in Harsh-Environment Microwave Acoustic Sensors. Journal of Electronic Materials, 0, , 1.	2.2	1