
Javier Ortego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Amino Acid Residues Required for Inhibition of Host Gene Expression by Influenza Virus A/Viet Nam/1203/2004 H5N1 PA-X. Journal of Virology, 2022, 96, JVI0040821.	3.4	7
2	The Combined Expression of the Nonstructural Protein NS1 and the N-Terminal Half of NS2 (NS2) Tj ETQq0 0 Bluetongue Virus Challenge. Journal of Virology, 2022, 96, JVI0161421.	0 rgBT /Over 3.4	lock 10 Tf 50 5
3	Recombinant Modified Vaccinia Virus Development to Express VP2, NS1, and VP7 Proteins of Bluetongue. Methods in Molecular Biology, 2022, 2465, 177-193.	0.9	0
4	Using RVFV as a Vector Platform for the Expression of Ruminant Disease Antigens. Methods in Molecular Biology, 2022, 2465, 209-225.	0.9	0
5	Identification of Single Amino Acid Changes in the Rift Valley Fever Virus Polymerase Core Domain Contributing to Virus Attenuation In Vivo. Frontiers in Cellular and Infection Microbiology, 2022, 12, 875539.	3.9	3
6	Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines, 2022, 10, 1124.	4.4	3
7	Development of a multiplex assay for antibody detection in serum against pathogens affecting ruminants. Transboundary and Emerging Diseases, 2021, 68, 1229-1239.	3.0	7
8	The Change P82L in the Rift Valley Fever Virus NSs Protein Confers Attenuation in Mice. Viruses, 2021, 13, 542.	3.3	7
9	Natural Selection of H5N1 Avian Influenza A Viruses with Increased PA-X and NS1 Shutoff Activity. Viruses, 2021, 13, 1760.	3.3	10
10	Viral Vector Vaccines against Bluetongue Virus. Microorganisms, 2021, 9, 42.	3.6	14
11	Cross-protective immune responses against African horse sickness virus after vaccination with protein NS1 delivered by avian reovirus muNS microspheres and modified vaccinia virus Ankara. Vaccine, 2020, 38, 882-889.	3.8	11
12	Inhibition of Orbivirus Replication by Aurintricarboxylic Acid. International Journal of Molecular Sciences, 2020, 21, 7294.	4.1	10
13	Reverse genetics approaches: a novel strategy for African horse sickness virus vaccine design. Current Opinion in Virology, 2020, 44, 49-56.	5.4	9
14	A protective bivalent vaccine against Rift Valley fever and bluetongue. Npj Vaccines, 2020, 5, 70.	6.0	22
15	Heterologous Combination of ChAdOx1 and MVA Vectors Expressing Protein NS1 as Vaccination Strategy to Induce Durable and Cross-Protective CD8+ T Cell Immunity to Bluetongue Virus. Vaccines, 2020, 8, 346.	4.4	15
16	MVA Vectored Vaccines Encoding Rift Valley Fever Virus Glycoproteins Protect Mice against Lethal Challenge in the Absence of Neutralizing Antibody Responses. Vaccines, 2020, 8, 82.	4.4	13
17	Increasing the Safety Profile of the Master Donor Live Attenuated Influenza Vaccine. Pathogens, 2020, 9, 86.	2.8	18
18	A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Molecular Pharmaceutics, 2020, 17, 1608-1620.	4.6	13

#	Article	IF	CITATIONS
19	Recombinant Rift Valley fever viruses encoding bluetongue virus (BTV) antigens: Immunity and efficacy studies upon a BTV-4 challenge. PLoS Neglected Tropical Diseases, 2020, 14, e0008942.	3.0	10
20	Title is missing!. , 2020, 14, e0008942.		0
21	Title is missing!. , 2020, 14, e0008942.		0
22	Title is missing!. , 2020, 14, e0008942.		0
23	Title is missing!. , 2020, 14, e0008942.		0
24	Title is missing!. , 2020, 14, e0008942.		0
25	Title is missing!. , 2020, 14, e0008942.		0
26	Modeling Arboviral Infection in Mice Lacking the Interferon Alpha/Beta Receptor. Viruses, 2019, 11, 35.	3.3	24
27	The immunogenicity of recombinant vaccines based on modified Vaccinia Ankara (MVA) viruses expressing African horse sickness virus VP2 antigens depends on the levels of expressed VP2 protein delivered to the host. Antiviral Research, 2018, 154, 132-139.	4.1	15
28	Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12Âweeks following vaccination. Veterinary Research, 2018, 49, 21.	3.0	24
29	A Vaccine Based on a Modified Vaccinia Virus Ankara Vector Expressing Zika Virus Structural Proteins Controls Zika Virus Replication in Mice. Scientific Reports, 2018, 8, 17385.	3.3	43
30	A single dose of African horse sickness virus (AHSV) VP2 based vaccines provides complete clinical protection in a mouse model. Vaccine, 2018, 36, 7003-7010.	3.8	11
31	CD8 T Cell Responses to an Immunodominant Epitope within the Nonstructural Protein NS1 Provide Wide Immunoprotection against Bluetongue Virus in IFNAR ^{â^'/â^'} Mice. Journal of Virology, 2018, 92, .	3.4	19
32	Microspheres-prime/rMVA-boost vaccination enhances humoral and cellular immune response in IFNAR(â~'/â~') mice conferring protection against serotypes 1 and 4 of bluetongue virus. Antiviral Research, 2017, 142, 55-62.	4.1	13
33	Pathological Characterization Of IFNAR(-/-) Mice Infected With Bluetongue Virus Serotype 4. International Journal of Biological Sciences, 2016, 12, 1448-1460.	6.4	18
34	Defeating Bluetongue virus: new approaches in the development of multiserotype vaccines. Future Virology, 2016, 11, 535-548.	1.8	3
35	Generation of Recombinant Modified Vaccinia Virus Ankara Encoding VP2, NS1, and VP7 Proteins of Bluetongue Virus. Methods in Molecular Biology, 2016, 1349, 137-150.	0.9	14
36	Antiserum from mice vaccinated with modified vaccinia Ankara virus expressing African horse sickness virus (AHSV) VP2 provides protection when it is administered 48h before, or 48h after challenge. Antiviral Research, 2015, 116, 27-33.	4.1	20

#	Article	IF	CITATIONS
37	An experimental subunit vaccine based on Bluetongue virus 4 VP2 protein fused to an antigen-presenting cells single chain antibody elicits cellular and humoral immune responses in cattle, guinea pigs and IFNAR(â^')â^') mice. Vaccine, 2015, 33, 2614-2619.	3.8	18
38	Identification of CD8 T cell epitopes in VP2 and NS1 proteins of African horse sickness virus in IFNAR(-/-) mice Virus Research, 2015, 210, 149-153.	2.2	14
39	Bluetongue virus revisited. Virus Research, 2014, 182, 1-2.	2.2	0
40	Recombinant vaccines against bluetongue virus. Virus Research, 2014, 182, 78-86.	2.2	38
41	Interferon $\hat{I}\pm/\hat{I}^2$ receptor knockout mice as a model to study bluetongue virus infection. Virus Research, 2014, 182, 35-42.	2.2	19
42	VP2, VP7, and NS1 proteins of bluetongue virus targeted in avian reovirus muNS-Mi microspheres elicit a protective immune response in IFNAR(â^'/â^') mice. Antiviral Research, 2014, 110, 42-51.	4.1	27
43	Vaccination of mice with a modified Vaccinia Ankara (MVA) virus expressing the African horse sickness virus (AHSV) capsid protein VP2 induces virus neutralising antibodies that confer protection against AHSV upon passive immunisation. Virus Research, 2014, 180, 23-30.	2.2	26
44	Protection of IFNAR (â~'/â~') Mice against Bluetongue Virus Serotype 8, by Heterologous (DNA/rMVA) and Homologous (rMVA/rMVA) Vaccination, Expressing Outer-Capsid Protein VP2. PLoS ONE, 2013, 8, e60574.	2.5	42
45	Ns1 Is a Key Protein in the Vaccine Composition to Protect Ifnar(â^'/â^') Mice against Infection with Multiple Serotypes of African Horse Sickness Virus. PLoS ONE, 2013, 8, e70197.	2.5	25
46	Multiserotype Protection Elicited by a Combinatorial Prime-Boost Vaccination Strategy against Bluetongue Virus. PLoS ONE, 2012, 7, e34735.	2.5	47
47	Immunization of knock-out α/β interferon receptor mice against lethal bluetongue infection with a BoHV-4-based vector expressing BTV-8 VP2 antigen. Vaccine, 2011, 29, 3074-3082.	3.8	47
48	Current strategies for subunit and genetic viral veterinary vaccine development. Virus Research, 2011, 157, 1-12.	2.2	63
49	A Modified Vaccinia Ankara Virus (MVA) Vaccine Expressing African Horse Sickness Virus (AHSV) VP2 Protects Against AHSV Challenge in an IFNAR â^'/â^' Mouse Model. PLoS ONE, 2011, 6, e16503.	2.5	53
50	Transmissible gastroenteritis virus (TGEV)-based vectors with engineered murine tropism express the rotavirus VP7 protein and immunize mice against rotavirus. Virology, 2011, 410, 107-118.	2.4	14
51	Experimental oral infection of bluetongue virus serotype 8 in type I interferon receptor-deficient mice. Journal of General Virology, 2010, 91, 2821-2825.	2.9	19
52	Establishment of a Bluetongue Virus Infection Model in Mice that Are Deficient in the Alpha/Beta Interferon Receptor. PLoS ONE, 2009, 4, e5171.	2.5	76
53	Heterologous prime boost vaccination with DNA and recombinant modified vaccinia virus Ankara protects IFNAR(â^'/â^') mice against lethal bluetongue infection. Vaccine, 2009, 28, 437-445.	3.8	59
54	Antigen delivery systems for veterinary vaccine development. Vaccine, 2008, 26, 6508-6528.	3.8	60

#	Article	IF	CITATIONS
55	Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology, 2007, 368, 296-308.	2.4	121
56	Construction of a Severe Acute Respiratory Syndrome Coronavirus Infectious cDNA Clone and a Replicon To Study Coronavirus RNA Synthesis. Journal of Virology, 2006, 80, 10900-10906.	3.4	198
57	Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology, 2003, 308, 13-22.	2.4	97
58	CRALBP transcriptional regulation in ciliary epithelial, retinal Müller and retinal pigment epithelial cells. Experimental Eye Research, 2003, 76, 257-260.	2.6	19
59	Virus-based vectors for gene expression in mammalian cells: Coronavirus. New Comprehensive Biochemistry, 2003, 38, 151-168.	0.1	6
60	Generation of a Replication-Competent, Propagation-Deficient Virus Vector Based on the Transmissible Gastroenteritis Coronavirus Genome. Journal of Virology, 2002, 76, 11518-11529.	3.4	145
61	Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium. British Journal of Ophthalmology, 2002, 86, 676-683.	3.9	52
62	Differential regulation of gene expression of neurotensin and prohormone convertases PC1 and PC2 in the bovine ocular ciliary epithelium: possible implications on neurotensin processing. Neuroscience Letters, 2002, 333, 49-53.	2.1	12
63	Nature of the Virus Associated with Endemic Balkan Nephropathy. Emerging Infectious Diseases, 2002, 8, 869-870.	4.3	7
64	Identification of a Neuropeptide and Neuropeptide-Processing Enzymes in Aqueous Humor Confers Neuroendocrine Features to the Human Ocular Ciliary Epithelium. Journal of Neurochemistry, 2002, 66, 787-796.	3.9	29
65	Molecular Identification and Coexpression of Galanin and GalR-1 Galanin Receptor in the Human Ocular Ciliary Epithelium: Differential Modulation of Their Expression by the Activation of α2- and β2-Adrenergic Receptors in Cultured Ciliary Epithelial Cells. Journal of Neurochemistry, 2002, 71, 2260-2270.	3.9	19
66	Coronavirus derived expression systems. Journal of Biotechnology, 2001, 88, 183-204.	3.8	40
67	The Membrane M Protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability. Journal of Virology, 2001, 75, 1312-1324.	3.4	162
68	Organization of Two Transmissible Gastroenteritis Coronavirus Membrane Protein Topologies within the Virion and Core. Journal of Virology, 2001, 75, 12228-12240.	3.4	68
69	The Membrane M Protein of the Transmissible Gastroenteritis Coronavirus Binds to the Internal Core through the Carboxy-Terminus. Advances in Experimental Medicine and Biology, 2001, 494, 589-593.	1.6	11
70	Expression of the TIGR gene in the iris, ciliary body, and trabecular meshwork of the human eye. Ophthalmic Genetics, 2000, 21, 155-169.	1.2	41
71	Differential gene expression in the human ciliary epithelium. Progress in Retinal and Eye Research, 1999, 18, 403-429.	15.5	68
72	Functional Expression of Components of the Natriuretic Peptide System in Human Ocular Nonpigmented Ciliary Epithelial Cells. Biochemical and Biophysical Research Communications, 1999, 258, 21-28.	2.1	32

#	Article	IF	CITATIONS
73	Measles Virus Fusion Protein Is Palmitoylated on Transmembrane-Intracytoplasmic Cysteine Residues Which Participate in Cell Fusion. Journal of Virology, 1998, 72, 8198-8204.	3.4	46
74	Lysosomes Behave as Ca2+-regulated Exocytic Vesicles in Fibroblasts and Epithelial Cells. Journal of Cell Biology, 1997, 137, 93-104.	5.2	476
75	Gene Expression of Proteases and Protease Inhibitors in the Human Ciliary Epithelium and ODM-2 Cells. Experimental Eye Research, 1997, 65, 289-299.	2.6	26
76	Cloning and characterization of subtracted cDNAs from a human ciliary body library encodingTIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Letters, 1997, 413, 349-353.	2.8	139
77	Molecular Characterization and Differential Gene Induction of the Neuroendocrineâ€Specific Genes Neurotensin, Neurotensin Receptor, PC1, PC2, and 7B2 in the Human Ocular Ciliary Epithelium. Journal of Neurochemistry, 1997, 69, 1829-1839.	3.9	27
78	Isolation and Characterization of Cell-Specific cDNA Clones from a Subtractive Library of the Ocular Ciliary Body of a Single Normal Human Donor: Transcription and Synthesis of Plasma Proteins. Journal of Biochemistry, 1995, 118, 921-931.	1.7	61