
James S Blachly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. New England Journal of Medicine, 2018, 379, 2517-2528.	27.0	706
2	<i>BTK</i> ^{C481S} -Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2017, 35, 1437-1443.	1.6	367
3	Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18679-18684.	7.1	214
4	Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood, 2017, 129, 553-560.	1.4	193
5	BRD4 Profiling Identifies Critical Chronic Lymphocytic Leukemia Oncogenic Circuits and Reveals Sensitivity to PLX51107, a Novel Structurally Distinct BET Inhibitor. Cancer Discovery, 2018, 8, 458-477.	9.4	101
6	Targeting <scp>PI</scp> 3â€kinase (<scp>PI</scp> 3 <scp>K</scp>), <scp>AKT</scp> and m <scp>TOR</scp> axis in lymphoma. British Journal of Haematology, 2014, 167, 19-32.	2.5	90
7	Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: an analysis of Alliance studies. Leukemia, 2018, 32, 1338-1348.	7.2	80
8	Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years. Leukemia, 2020, 34, 3215-3227.	7.2	66
9	Emerging drug profile: cyclin-dependent kinase inhibitors. Leukemia and Lymphoma, 2013, 54, 2133-2143.	1.3	64
10	Acalabrutinib plus Obinutuzumab in Treatment-NaÃ⁻ve and Relapsed/Refractory Chronic Lymphocytic Leukemia. Cancer Discovery, 2020, 10, 394-405.	9.4	60
11	Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/ <i>KMT2A</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26340-26346.	7.1	59
12	Resistance to Acalabrutinib in CLL Is Mediated Primarily By BTK Mutations. Blood, 2019, 134, 504-504.	1.4	57
13	HDAC Inhibition Induces MicroRNA-182, which Targets RAD51 and Impairs HR Repair to Sensitize Cells to Sapacitabine in Acute Myelogenous Leukemia. Clinical Cancer Research, 2016, 22, 3537-3549.	7.0	55
14	Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. Leukemia, 2019, 33, 1620-1634.	7.2	55
15	Persistence of <i><scp>DNMT</scp>3A</i> R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. British Journal of Haematology, 2016, 175, 226-236.	2.5	49
16	PKC-Î ² as a therapeutic target in CLL: PKC inhibitor AEB071 demonstrates preclinical activity in CLL. Blood, 2014, 124, 1481-1491.	1.4	45
17	Poor Survival and Differential Impact of Genetic Features of Black Patients with Acute Myeloid Leukemia. Cancer Discovery, 2021, 11, 626-637.	9.4	41
18	Novel BCL2 mutations in venetoclax-resistant, ibrutinib-resistant CLL patients with BTK/PLCG2 mutations Blood 2020 135 2192-2195	1.4	40

#	Article	IF	CITATIONS
19	Phase 2 study of ibrutinib in classic and variant hairy cell leukemia. Blood, 2021, 137, 3473-3483.	1.4	40
20	Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. Journal of Hematology and Oncology, 2020, 13, 139.	17.0	39
21	Immunoglobulin transcript sequence and somatic hypermutation computation from unselected RNA-seq reads in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4322-4327.	7.1	38
22	Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia. Blood Advances, 2019, 3, 242-255.	5.2	38
23	Hairy cell leukemia: Update on molecular profiling and therapeutic advances. Blood Reviews, 2014, 28, 197-203.	5.7	35
24	Quality Control for RNA-Seq (QuaCRS): An Integrated Quality Control Pipeline. Cancer Informatics, 2014, 13s3, CIN.S14022.	1.9	33
25	Near-tetraploidy is associated with Richter transformation in chronic lymphocytic leukemia patients receiving ibrutinib. Blood Advances, 2017, 1, 1584-1588.	5.2	33
26	NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia, 2018, 32, 2536-2545.	7.2	33
27	Targeting BTK through microRNA in chronic lymphocytic leukemia. Blood, 2016, 128, 3101-3112.	1.4	30
28	Trametinib for the treatment of IGHV4-34, MAP2K1-mutant variant hairy cell leukemia. Leukemia and Lymphoma, 2018, 59, 1008-1011.	1.3	29
29	Selinexor in combination with decitabine in patients with acute myeloid leukemia: results from a phase 1 study. Leukemia and Lymphoma, 2020, 61, 387-396.	1.3	29
30	Classic hairy cell leukemia complicated by pancytopenia and severe infection: a report of 3 cases treated with vemurafenib. Blood Advances, 2019, 3, 116-118.	5.2	28
31	Preclinical activity and a pilot phase I study of pacritinib, an oral JAK2/FLT3 inhibitor, and chemotherapy in FLT3-ITD-positive AML. Investigational New Drugs, 2020, 38, 340-349.	2.6	28
32	Entospletinib in Combination with Induction Chemotherapy in Previously Untreated Acute Myeloid Leukemia: Response and Predictive Significance of <i>HOXA9</i> and <i>MEIS1</i> Expression. Clinical Cancer Research, 2020, 26, 5852-5859.	7.0	28
33	Hairy cell leukemia and COVID-19 adaptation of treatment guidelines. Leukemia, 2021, 35, 1864-1872.	7.2	28
34	Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression. Cancer Research, 2020, 80, 561-575.	0.9	27
35	Resistance Mechanisms to SYK Inhibition in Acute Myeloid Leukemia. Cancer Discovery, 2020, 10, 214-231.	9.4	27
36	Incidence and Type of Opportunistic Infections during Ibrutinib Treatment at a Single Academic Center. Blood, 2017, 130, 830-830.	1.4	27

#	Article	IF	CITATIONS
37	Long-Term Results of Alliance A041202 Show Continued Advantage of Ibrutinib-Based Regimens Compared with Bendamustine Plus Rituximab (BR) Chemoimmunotherapy. Blood, 2021, 138, 639-639.	1.4	27
38	Cotreatment of Hairy Cell Leukemia and Melanoma With the <i>BRAF</i> Inhibitor Dabrafenib. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 9-13.	4.9	26
39	Mutational Landscape and Gene Expression Patterns in Adult Acute Myeloid Leukemias with Monosomy 7 as a Sole Abnormality. Cancer Research, 2017, 77, 207-218.	0.9	23
40	Novel SF3B1 in-frame deletions result in aberrant RNA splicing in CLL patients. Blood Advances, 2017, 1, 995-1000.	5.2	23
41	The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget, 2017, 8, 25942-25954.	1.8	23
42	Erlotinib in African Americans With Advanced Non–Small Cell Lung Cancer: A Prospective Randomized Study With Genetic and Pharmacokinetic Analyses. Clinical Pharmacology and Therapeutics, 2014, 96, 182-191.	4.7	21
43	DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Research, 2021, 31, 747-761.	5.5	20
44	A Phase 1 Clinical Trial of Selinexor in Combination with Decitabine in Patients with Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Blood, 2016, 128, 1651-1651.	1.4	20
45	Cyclin-dependent kinase inhibitors for the treatment of chronic lymphocytic leukemia. Seminars in Oncology, 2016, 43, 265-273.	2.2	18
46	Interferon-Î ³ Promotes Antibody-mediated Fratricide of Acute Myeloid Leukemia Cells. Journal of Biological Chemistry, 2016, 291, 25656-25666.	3.4	17
47	MuCor: mutation aggregation and correlation. Bioinformatics, 2016, 32, 1557-1558.	4.1	17
48	Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9629-9634.	7.1	16
49	A novel regimen for relapsed/refractory adult acute myeloid leukemia using a <i>KMT2A</i> partial tandem duplication targeted therapy: results of phase 1 study NCI 8485. Haematologica, 2018, 103, 982-987.	3.5	16
50	Molecular, clinical, and prognostic implications of <i>PTPN11</i> mutations in acute myeloid leukemia. Blood Advances, 2022, 6, 1371-1380.	5.2	16
51	Targeting DNA Damage Repair Functions of Two Histone Deacetylases, HDAC8 and SIRT6, Sensitizes Acute Myeloid Leukemia to NAMPT Inhibition. Clinical Cancer Research, 2021, 27, 2352-2366.	7.0	15
52	Dissection of the Major Hematopoietic Quantitative Trait Locus in Chromosome 6q23.3 Identifies miR-3662 as a Player in Hematopoiesis and Acute Myeloid Leukemia. Cancer Discovery, 2016, 6, 1036-1051.	9.4	14
53	TP-0903 is active in models of drug-resistant acute myeloid leukemia. JCI Insight, 2020, 5, .	5.0	14
54	Mutations in Genes Associated with Familial Predisposition to Myeloid Neoplasms: Their Frequency and Associations with Pretreatment Characteristics in Adult Patients (Pts) with Presumably Sporadic De Novo Acute Myeloid Leukemia (AML). Blood, 2018, 132, 1478-1478.	1.4	13

#	Article	IF	CITATIONS
55	Genetic Characterization and Prognostic Relevance of Acquired Uniparental Disomies in Cytogenetically Normal Acute Myeloid Leukemia. Clinical Cancer Research, 2019, 25, 6524-6531.	7.0	12
56	Uncovering the Genomic Landscape in Newly Diagnosed and Relapsed Pediatric Cytogenetically Normal <i>FLT3â€</i> ITD AML. Clinical and Translational Science, 2019, 12, 641-647.	3.1	12
57	PrEMeR-CG: inferring nucleotide level DNA methylation values from MethylCap-seq data. Bioinformatics, 2014, 30, 3567-3574.	4.1	11
58	Interim Results of a Phase 1b/2 Study of Entospletinib (GS-9973) Monotherapy and in Combination with Chemotherapy in Patients with Acute Myeloid Leukemia. Blood, 2016, 128, 2831-2831.	1.4	11
59	Infection at the Time of Initial Therapy for Hairy Cell Leukemia Is Associated with Inferior Time to Next Treatment. Blood, 2018, 132, 2305-2305.	1.4	11
60	Clinical features and gene- and microRNA-expression patterns in adult acute leukemia patients with t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3). Leukemia, 2016, 30, 1586-1589.	7.2	10
61	Cotargeting of XPO1 Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Acute Myeloid Leukemia. Cancers, 2020, 12, 1574.	3.7	10
62	Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood, 2021, 138, 1570-1582.	1.4	9
63	Clinical and molecular characterization of patients with acute myeloid leukemia and sole trisomies of chromosomes 4, 8, 11, 13 or 21. Leukemia, 2020, 34, 358-368.	7.2	8
64	Characterization and mitigation of fragmentation enzyme-induced dual stranded artifacts. NAR Genomics and Bioinformatics, 2020, 2, Iqaa070.	3.2	8
65	the Development and Expansion of Resistant Subclones Precedes Relapse during Ibrutinib Therapy in Patients with CLL. Blood, 2016, 128, 55-55.	1.4	8
66	High early death rates, treatment resistance, and short survival ofÂBlack adolescents and young adults with AML. Blood Advances, 2022, 6, 5570-5581.	5.2	8
67	Reduced dose pentostatin for initial management of hairy cell leukemia patients who have active infection or risk of hemorrhage is safe and effective. Haematologica, 2015, 100, e18-e20.	3.5	7
68	Chronic Lymphocytic Leukemia: Exploiting Vulnerabilities with Targeted Agents. Current Hematologic Malignancy Reports, 2016, 11, 52-60.	2.3	7
69	MonoSeq Variant Caller Reveals Novel Mononucleotide Run Indel Mutations in Tumors with Defective DNA Mismatch Repair. Human Mutation, 2016, 37, 1004-1012.	2.5	6
70	LC-FACSeq is a method for detecting rare clones in leukemia. JCI Insight, 2020, 5, .	5.0	6
71	Structural characterization of NRAS isoform 5. Protein Science, 2016, 25, 1069-1074.	7.6	5
72	A precision medicine classification for treatment of acute myeloid leukemia in older patients. Journal of Hematology and Oncology, 2021, 14, 96.	17.0	5

#	Article	IF	CITATIONS
73	Performance of Standard Prognostic Models in Older Adults Receiving Ibrutinib for Treatment-NaÃ⁻ve (TN) Chronic Lymphocytic Leukemia (CLL): A Post Hoc Analysis of Alliance A041202 Phase 3 Trial. Blood, 2021, 138, 2642-2642.	1.4	5
74	Quantifying Hematopoietic Stem Cell Clonal Diversity by Selecting Informative Amplicon Barcodes. Scientific Reports, 2020, 10, 2153.	3.3	4
75	Poor Treatment Outcomes of Young (<60 Years) African American Patients (Pts) Diagnosed with Acute Myeloid Leukemia (AML) (Alliance). Blood, 2020, 136, 5-7.	1.4	4
76	Outcomes of the cyclophosphamide, vincristine, prednisone (CVP) +/â^' rituximab (R-CVP) regimen in older patients with newly diagnosed Ph- acute lymphoblastic leukemia. Leukemia Research, 2020, 89, 106297.	0.8	3
77	Genomic analysis of cellular hierarchy in acute myeloid leukemia using ultrasensitive LC-FACSeq. Leukemia, 2021, 35, 3406-3420.	7.2	3
78	The Novel BET Inhibitor PLX51107 Has In Vitro and In Vivo Activity Against Acute Myeloid Leukemia. Blood, 2016, 128, 3941-3941.	1.4	3
79	Trametinib for the Treatment of IGHV4-34, MAP2K1 Mutant Variant Hairy Cell Leukemia. Blood, 2016, 128, 5598-5598.	1.4	3
80	Rare t(X;14)(q28;q32) translocation reveals link between MTCP1 and chronic lymphocytic leukemia. Nature Communications, 2021, 12, 6338.	12.8	3
81	Incidence of venous thrombosis after peg-asparaginase in adolescent and young adults with acute lymphoblastic leukemia. International Journal of Hematologic Oncology, 2020, 9, IJH28.	1.6	3
82	VIP152 Is a Novel CDK9 Inhibitor with Efficacy in Chronic Lymphocytic Leukemia. Blood, 2021, 138, 270-270.	1.4	3
83	Preclinical and Pilot Study of Type I FLT3 Tyrosine Kinase Inhibitor, Crenolanib, with Sorafenib in Acute Myeloid Leukemia and <i>FLT3</i> -Internal Tandem Duplication. Clinical Cancer Research, 2022, 28, 2536-2546.	7.0	3
84	BMX kinase mediates gilteritinib resistance in <i>FLT3</i> -mutated AML through microenvironmental factors. Blood Advances, 2022, 6, 5049-5060.	5.2	3
85	A phase I study of lenalidomide plus chemotherapy with idarubicin and cytarabine in patients with relapsed or refractory acute myeloid leukemia and highâ€risk myelodysplastic syndrome. American Journal of Hematology, 2020, 95, 1457-1465.	4.1	2
86	Comparison of clinical and molecular characteristics of patients with acute myeloid leukemia and either TP73 or TP53 mutations. Leukemia, 2021, 35, 1188-1192.	7.2	2
87	Type of prior genotoxic insult determines the genomic characteristics of therapyâ€related myeloid neoplasms. American Journal of Hematology, 2021, 96, E223-E225.	4.1	2
88	Clinical and Prognostic Implications of PTPN11 Mutations in Acute Myeloid Leukemia (Alliance). Blood, 2020, 136, 20-21.	1.4	2
89	Co-Treatment Of Hairy Cell Leukemia and Melanoma With The BRAF Inhibitor Dabrafenib. Blood, 2013, 122, 5311-5311.	1.4	2
90	The Aberrantly Expressed Long Noncoding RNA, TRERNA1, Predicts for Aggressive Disease in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2911-2911.	1.4	2

#	Article	IF	CITATIONS
91	A Phase I Clinical Trial Testing the Safety of IL-21-Expanded, Universally Alloreactive Donor-Derived Natural Killer Cells for Relapsed/Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2021, 138, 1732-1732.	1.4	2
92	High Early Death Rates, Treatment Resistance and Short Survival of Black Adolescent and Young Adults (AYAs) with Acute Myeloid Leukemia (AML) (Alliance). Blood, 2021, 138, 221-221.	1.4	2
93	A Phase I Clinical Trial Testing the Safety of IL-21-Expanded, Off-the-Shelf, Third-Party Natural Killer Cells for Relapsed/Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2020, 136, 44-44.	1.4	2
94	Ribosomal revelation. Blood, 2016, 127, 958-959.	1.4	1
95	Implementation of standardized variant-calling nomenclature in the age of next-generation sequencing: where do we stand?. Leukemia, 2019, 33, 809-810.	7.2	1
96	Additional Gene Mutations Refine the 2017 European Leukemianet (ELN) Classification of Adult Patients (Pts) with De Novo Acute Myeloid Leukemia (AML) Aged <60 Years: An Analysis of Alliance for Clinical Trials in Oncology (Alliance) Studies. Blood, 2018, 132, 2740-2740.	1.4	1
97	Targeting BTK By a microRNA Mechanism in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1232-1232.	1.4	1
98	Role of Histone Deacetylase-Mediated Gene Silencing in Chronic Lymphocytic Leukemia Progression. Blood, 2016, 128, 2705-2705.	1.4	1
99	Exploring the Role of the Recurrent Exportin 1 (XPO1/CRM1) Mutations E571G and E571K in Chronic Lymphocytic Leukemia. Blood, 2016, 128, 972-972.	1.4	1
100	Down-Regulation of CD25 Antigen in Hairy Cell Leukemia Patients after Treatment. Blood, 2018, 132, 4143-4143.	1.4	1
101	A Precision Medicine Heirarchical Classification Developed Using Variant Allele Frequency (VAF) for Treatment of Older Patients (Pts) with Acute Myeloid Leukemia (AML): Alliance Clinical Trials in Oncology (Alliance) Historical Patient Control. Blood, 2018, 132, 1489-1489.	1.4	1
102	Role of Mutant p53 in the Progression of Chronic Lymphocytic Leukemia. Blood, 2019, 134, 2526-2526.	1.4	1
103	The Protein Kinase C Inhibitor MS-553 for the Treatment of Chronic Lymphocytic Leukemia. Blood, 2019, 134, 2077-2077.	1.4	1
104	Diagnostic utility of bronchoscopy in newly diagnosed acute leukemia patients. Hematological Oncology, 2022, 40, 116-119.	1.7	1
105	Effect of High Intensity Chemotherapy Vs Targeted Therapy on Survival in AML Patients Aged 60-75. Blood, 2021, 138, 4125-4125.	1.4	1
106	High-Dimensional Analysis Identifies Mechanisms of Gilteritinib Resistance in FLT3-Mutated AML. Blood, 2021, 138, 207-207.	1.4	1
107	Final Results of a Phase II Study of Fc Engineered, CD19 Antibody Tafasitamab in Combination with Lenalidomide or Ibrutinib in Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2020, 136, 22-23.	1.4	1
108	Evaluation of the Incidence and Risk Factors Associated with Major Cardiovascular Events in Patients Receiving Acalabrutinib Therapy. Blood, 2020, 136, 29-30.	1.4	1

#	Article	IF	CITATIONS
109	Separating the wheat from the chaff in cHL. Blood, 2015, 125, 1051-1052.	1.4	О
110	Abstract A43: EGFR-targeted therapy in African Americans with advanced non-small cell lung cancer: A prospective clinical, pharmacogenetic, and pharmacokinetic study , 2012, , .		0
111	A Novel Inhibitor of BET Family Bromodomains Demonstrates In Vivo and I n Vi tro Potency in B-Cell Malignancies. Blood, 2015, 126, 318-318.	1.4	Ο
112	In Vitro and In Vivo Anti-Leukemic Effects of KPT-9274, a Reported PAK4 Allosteric Modulator, in Acute Myeloid Leukemia: Promising Results Justifying Further Development in This Disease. Blood, 2015, 126, 2471-2471.	1.4	0
113	Abstract 3093: 3D structural report of NRAS isoform 5. , 2016, , .		0
114	Abstract 1117: Dissection of the major hematopoietic quantitative trait locus in chromosome 6q23.3 identifies miR-3662 as a player in hematopoiesis and AML. , 2016, , .		0
115	A Distributed International Patient Data Registry for Hairy Cell Leukemia. Blood, 2016, 128, 5986-5986.	1.4	0
116	The Mutational Patterns Associated with Cytogenetic Subsets of De Novo Acute Myeloid Leukemia (AML): A Study of 1603 Adult Patients (Pts). Blood, 2016, 128, 287-287.	1.4	0
117	CCND1 and CCND2 Mutations Are Frequent in Adults with Core-Binding Factor Acute Myeloid Leukemia (CBF-AML) with t(8;21)(q22;q22). Blood, 2016, 128, 2740-2740.	1.4	0
118	Genomic Profiling Identifies Novel Mutations and Fusion Genes in Newly Diagnosed and Relapsed Pediatric FLT3-ITD-Positive AML. Blood, 2016, 128, 2838-2838.	1.4	0
119	Uniparental Disomies (UPD) of Chromosome 13q Is Associated with Shorter Disease-Free Survival in Adult Patients (Pts) with De Novo Cytogenetically Normal Acute Myeloid Leukemia (CN-AML). Blood, 2018, 132, 2777-2777.	1.4	Ο
120	NAMPT Inhibitor KPT-9274 Selectively Targets Self-Renewal Capacity in Acute Myeloid Leukemia. Blood, 2018, 132, 3931-3931.	1.4	0
121	Clinical and Molecular Characteristics of Acute Myeloid Leukemia (AML) Patients with TP53 Mutations and TP73 Mutations. Blood, 2018, 132, 1488-1488.	1.4	0
122	Identification of Novel Synthetic Lethal Partners of NAMPT Inhibitor By CRISPR-Cas9 Screens in Acute Myeloid Leukemia. Blood, 2019, 134, 2072-2072.	1.4	0
123	On the analysis of the human immunome via an information theoretical approach. International Journal of Computational Biology and Drug Design, 2020, 13, 555.	0.3	0
124	Epigenetic Phenocopying Expands Molecular Risk Assessment in Acute Myeloid Leukemia (Alliance). Blood, 2021, 138, 803-803.	1.4	0
125	Multi-Dimensional Analysis of Adult Acute Myeloid Leukemia (AML) Landscape Cross-Continents Reveals Age Associated Trends in Mutations and Outcomes. Blood, 2021, 138, 685-685.	1.4	0
126	CD200R1 Distinguishes Uncommitted Precursors from Functionally Mature NK Cells within the Human Tonsil Stage 4A NK Cell Population. Blood, 2021, 138, 993-993.	1.4	0

#	Article	IF	CITATIONS
127	Comparative Outcomes and Molecular Response Predictors of IDH1/2-Mutated Adult Acute Myeloid Leukemia (AML) Patients (Pts) after Frontline Treatment with Intensive Induction Chemotherapy (IC), Targeted Inhibitors, or Hypomethylating Agents (HMA) (Alliance). Blood, 2021, 138, 226-226.	1.4	0
128	White Blood Cell Count (WBC) Levels Are Associated with Molecular Profiles and Are Independent Outcome Predictors in Acute Myeloid Leukemia (AML) Patients (Pts) (Alliance). Blood, 2021, 138, 3369-3369.	1.4	0
129	Differential Impact of Prognostically Significant Gene Mutations in Acute Myeloid Leukemia (AML) Patients (Pts) Older Than 70 Years (y) Treated with Cytarabine-Based Induction Therapy. Blood, 2020, 136, 40-41.	1.4	0
130	Challenges and Gaps in Clinical Trial Genomic Data Management. JCO Clinical Cancer Informatics, 2022, 6, e2100193.	2.1	0