Chee Man Cheong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442750/publications.pdf

Version: 2024-02-01

1478505 1474206 9 369 9 6 citations h-index g-index papers 9 9 9 715 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Barrier-to-autointegration-factor (Banf1) modulates DNA double-strand break repair pathway choice via regulation of DNA-dependent kinase (DNA-PK) activity. Nucleic Acids Research, 2021, 49, 3294-3307.	14.5	13
2	The Impact of Rare Human Variants on Barrier-To-Auto-Integration Factor 1 (Banf1) Structure and Function. Frontiers in Cell and Developmental Biology, 2021 , 9 , 775441 .	3.7	8
3	LCRFâ€0006, a small molecule mimetic of the Nâ€cadherin antagonist peptide ADHâ€1, synergistically increases multiple myeloma response to bortezomib. FASEB BioAdvances, 2020, 2, 339-353.	2.4	6
4	Twist-1 is upregulated by NSD2 and contributes to tumour dissemination and an epithelial-mesenchymal transition-like gene expression signature in $t(4;14)$ -positive multiple myeloma. Cancer Letters, 2020, 475, 99-108.	7.2	22
5	N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer, 2018, 18, 939.	2.6	222
6	HIF-2α Promotes Dissemination of Plasma Cells in Multiple Myeloma by Regulating CXCL12/CXCR4 and CCR1. Cancer Research, 2017, 77, 5452-5463.	0.9	41
7	Therapeutic targeting of Nâ \in cadherin is an effective treatment for multiple myeloma. British Journal of Haematology, 2015, 171, 387-399.	2.5	25
8	Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo. Experimental Cell Research, 2015, 332, 24-38.	2.6	31
9	Identification of an Epithelial-to-Mesenchymal Transition (EMT)-like Programme in t(4;14)-Positive Multiple Myeloma Reveals Novel Targets for Therapeutic Intervention. Blood, 2014, 124, 647-647.	1.4	1