Gerard C Blobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442487/publications.pdf Version: 2024-02-01

		44042	29127
122	11,288	48	104
papers	citations	h-index	g-index
100	100	100	15407
123	123	123	15407
all docs	docs citations	times ranked	citing authors
123 all docs	123 docs citations	123 times ranked	15407 citing authors

#	Article	IF	CITATIONS
1	Role of Transforming Growth Factor Î ² in Human Disease. New England Journal of Medicine, 2000, 342, 1350-1358.	13.9	2,264
2	Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans. Genome Research, 2003, 13, 2363-2371.	2.4	954
3	Role of Transforming Growth Factor Beta in Human Cancer. Journal of Clinical Oncology, 2005, 23, 2078-2093.	0.8	614
4	Mechanical Stiffness Grades Metastatic Potential in Patient Tumor Cells and in Cancer Cell Lines. Cancer Research, 2011, 71, 5075-5080.	0.4	597
5	Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 197-228.	1.8	544
6	Â-Arrestin 2 Mediates Endocytosis of Type III TGF-Â Receptor and Down-Regulation of Its Signaling. Science, 2003, 301, 1394-1397.	6.0	246
7	Regulation of protein kinase C and role in cancer biology. Cancer and Metastasis Reviews, 1994, 13, 411-431.	2.7	234
8	Role of transforming growth factor- \hat{l}^2 in hematologic malignancies. Blood, 2006, 107, 4589-4596.	0.6	228
9	Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cellular Signalling, 1995, 7, 171-184.	1.7	221
10	The type III TGF-Î ² receptor suppresses breast cancer progression. Journal of Clinical Investigation, 2007, 117, 206-217.	3.9	212
11	Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood, 2010, 116, e118-e127.	0.6	188
12	A Novel Mechanism for Regulating Transforming Growth Factor β (TGF-β) Signaling. Journal of Biological Chemistry, 2001, 276, 39608-39617.	1.6	169
13	The Type III Transforming Growth Factor-Î ² Receptor as a Novel Tumor Suppressor Gene in Prostate Cancer. Cancer Research, 2007, 67, 1090-1098.	0.4	167
14	Phosphorylation Specificities of Protein Kinase C Isozymes for Bovine Cardiac Troponin I and Troponin T and Sites within These Proteins and Regulation of Myofilament Properties. Journal of Biological Chemistry, 1996, 271, 23277-23283.	1.6	163
15	Bone Morphogenetic Proteins Signal through the Transforming Growth Factor-β Type III Receptor. Journal of Biological Chemistry, 2008, 283, 7628-7637.	1.6	161
16	Roles for the type III TGF-Î ² receptor in human cancer. Cellular Signalling, 2010, 22, 1163-1174.	1.7	154
17	Heparan sulfate signaling in cancer. Trends in Biochemical Sciences, 2014, 39, 277-288.	3.7	154
18	Context-specific Effects of Fibulin-5 (DANCE/EVEC) on Cell Proliferation, Motility, and Invasion. Journal of Biological Chemistry, 2002, 277, 27367-27377.	1.6	141

#	Article	IF	CITATIONS
19	Bevacizumab, Oxaliplatin, and Capecitabine With Radiation Therapy in Rectal Cancer: Phase I Trial Results. International Journal of Radiation Oncology Biology Physics, 2007, 68, 472-478.	0.4	135
20	Increased Toxicity With Gefitinib, Capecitabine, and Radiation Therapy in Pancreatic and Rectal Cancer: Phase I Trial Results. Journal of Clinical Oncology, 2006, 24, 656-662.	0.8	134
21	The type III TGF-β receptor regulates epithelial and cancer cell migration through β-arrestin2-mediated activation of Cdc42. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8221-8226.	3.3	129
22	Functional Roles for the Cytoplasmic Domain of the Type III Transforming Growth Factor Î ² Receptor in Regulating Transforming Growth Factor Î ² Signaling. Journal of Biological Chemistry, 2001, 276, 24627-24637.	1.6	123
23	Proteoglycan signaling co-receptors: Roles in cell adhesion, migration and invasion. Cellular Signalling, 2009, 21, 1548-1558.	1.7	123
24	Loss of type III transforming growth factor Î ² receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis, 2008, 29, 252-262.	1.3	119
25	Protein Kinase C βII Specifically Binds to and Is Activated by F-actin. Journal of Biological Chemistry, 1996, 271, 15823-15830.	1.6	116
26	TβRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis, 2008, 29, 528-535.	1.3	110
27	Loss of Betaglycan Expression in Ovarian Cancer: Role in Motility and Invasion. Cancer Research, 2007, 67, 5231-5238.	0.4	108
28	Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis, 2009, 30, 238-248.	1.3	108
29	Endoglin Promotes Transforming Growth Factor β-mediated Smad 1/5/8 Signaling and Inhibits Endothelial Cell Migration through Its Association with GIPC. Journal of Biological Chemistry, 2008, 283, 32527-32533.	1.6	104
30	Type III TGF-Î ² receptor downregulation generates an immunotolerant tumor microenvironment. Journal of Clinical Investigation, 2013, 123, 3925-3940.	3.9	94
31	Dichotomous roles of TGF-Î ² in human cancer. Biochemical Society Transactions, 2016, 44, 1441-1454.	1.6	91
32	The Interaction of Endoglin with β-Arrestin2 Regulates Transforming Growth Factor-β-mediated ERK Activation and Migration in Endothelial Cells. Journal of Biological Chemistry, 2007, 282, 21507-21517.	1.6	83
33	Stromal Fibroblasts Mediate Anti–PD-1 Resistance via MMP-9 and Dictate TGFβ Inhibitor Sequencing in Melanoma. Cancer Immunology Research, 2018, 6, 1459-1471.	1.6	81
34	Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. FASEB Journal, 2014, 28, 1248-1267.	0.2	80
35	Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-Î ² signaling at the bipotent erythro-megakaryocytic progenitor stage. Blood, 2010, 115, 2784-2795.	0.6	73
36	Endoglin mediates fibronectin/α5β1 integrin and TGF-β pathway crosstalk in endothelial cells. EMBO Journal, 2012, 31, 3885-3900.	3.5	73

#	Article	IF	CITATIONS
37	Cell-surface co-receptors: emerging roles in signaling and human disease. Trends in Biochemical Sciences, 2005, 30, 611-621.	3.7	68
38	TGF-Î ² -induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis, 2016, 37, 1041-1051.	1.3	67
39	ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis, 2010, 31, 435-441.	1.3	63
40	A Phase II Trial of Bevacizumab plus Everolimus for Patients with Refractory Metastatic Colorectal Cancer. Oncologist, 2011, 16, 1131-1137.	1.9	58
41	Endocytosis of the Type III Transforming Growth Factor-β (TGF-β) Receptor through the Clathrin-independent/Lipid Raft Pathway Regulates TGF-β Signaling and Receptor Down-regulation. Journal of Biological Chemistry, 2008, 283, 34808-34818.	1.6	57
42	The type III TGF-Î ² receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-Î ² signaling. Carcinogenesis, 2010, 31, 175-183.	1.3	57
43	Type III TGF-Î ² Receptor Enhances Colon Cancer Cell Migration and Anchorage-Independent Growth. Neoplasia, 2011, 13, 758-IN28.	2.3	56
44	Endoglin interacts with VEGFR2 to promote angiogenesis. FASEB Journal, 2018, 32, 2934-2949.	0.2	56
45	The type III TGF- receptor signals through both Smad3 and the p38 MAP kinase pathways to contribute to inhibition of cell proliferation. Carcinogenesis, 2007, 28, 2491-2500.	1.3	55
46	Molecular Characterization of the Tumor-Suppressive Function of Nischarin in Breast Cancer. Journal of the National Cancer Institute, 2011, 103, 1513-1528.	3.0	54
47	TGF-β regulates LARC and GEF-H1 during EMT to affect stiffening response to force and cell invasion. Molecular Biology of the Cell, 2014, 25, 3528-3540.	0.9	53
48	The type III transforming growth factor-Â receptor negatively regulates nuclear factor kappa B signaling through its interaction with Â-arrestin2. Carcinogenesis, 2009, 30, 1281-1287.	1.3	52
49	Safety, Pharmacokinetics, Pharmacodynamics, and Antitumor Activity of Dalantercept, an Activin Receptor–like Kinase-1 Ligand Trap, in Patients with Advanced Cancer. Clinical Cancer Research, 2014, 20, 480-489.	3.2	52
50	The type III transforming growth factor-Î ² receptor inhibits proliferation, migration, and adhesion in human myeloma cells. Molecular Biology of the Cell, 2011, 22, 1463-1472.	0.9	48
51	Expression of the type III TGF-β receptor is negatively regulated by TGF-β. Carcinogenesis, 2008, 29, 905-912.	1.3	47
52	Angiotensin II stimulates canonical TGF-β signaling pathway through angiotensin type 1 receptor to induce granulation tissue contraction. Journal of Molecular Medicine, 2015, 93, 289-302.	1.7	42
53	Loss of type III transforming growth factor-Î ² receptor expression is due to methylation silencing of the transcription factor GATA3 in renal cell carcinoma. Oncogene, 2010, 29, 2905-2915.	2.6	41
54	Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis. Molecular Biology of the Cell, 2012, 23, 2412-2423.	0.9	41

#	Article	IF	CITATIONS
55	Fibulin-3 is a novel TGF-Î ² pathway inhibitor in the breast cancer microenvironment. Oncogene, 2015, 34, 5635-5647.	2.6	41
56	A phase I study of bevacizumab, everolimus and panitumumab in advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2012, 70, 95-102.	1.1	40
57	Effects of the combination of TRC105 and bevacizumab on endothelial cell biology. Investigational New Drugs, 2014, 32, 851-859.	1.2	40
58	Ectodomain shedding of TβRIII is required for TβRIII-mediated suppression of TGF-β signaling and breast cancer migration and invasion. Molecular Biology of the Cell, 2014, 25, 2320-2332.	0.9	39
59	A Phase II Study of Capecitabine, Oxaliplatin, and Bevacizumab in the Treatment of Metastatic Esophagogastric Adenocarcinomas. Oncologist, 2013, 18, 271-272.	1.9	38
60	The role of the extracellular matrix protein TGFBI in cancer. Cellular Signalling, 2021, 84, 110028.	1.7	38
61	Effect of the vaccine Ad5 [E1-, E2b-]-CEA(6D) on CEA-directed CMI responses in patients with advanced CEA-expressing malignancies in a phase I/II clinical trial Journal of Clinical Oncology, 2012, 30, 2585-2585.	0.8	38
62	The Transforming Growth Factor-Î ² Type III Receptor Mediates Distinct Subcellular Trafficking and Downstream Signaling of Activin-like Kinase (ALK)3 and ALK6 Receptors. Molecular Biology of the Cell, 2009, 20, 4362-4370.	0.9	37
63	Type III TGF-β receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma. Journal of Clinical Investigation, 2013, 123, 4786-4798.	3.9	36
64	Regulation of TGF-Î ² receptor hetero-oligomerization and signaling by endoglin. Molecular Biology of the Cell, 2015, 26, 3117-3127.	0.9	35
65	Endocardial cell epithelial-mesenchymal transformation requires Type III TGFÎ ² receptor interaction with GIPC. Cellular Signalling, 2012, 24, 247-256.	1.7	34
66	<scp>TGF</scp> â€Î² superfamily coâ€receptors in cancer. Developmental Dynamics, 2022, 251, 117-143.	0.8	33
67	A phase I study of ABT â€510 plus bevacizumab in advanced solid tumors. Cancer Medicine, 2013, 2, 316-324.	1.3	31
68	A phase I study of bevacizumab (B) in combination with everolimus (E) and erlotinib (E) in advanced cancer (BEE). Cancer Chemotherapy and Pharmacology, 2011, 67, 465-474.	1.1	30
69	BMP-2 and TGFÎ ² 2 Shared Pathways Regulate Endocardial Cell Transformation. Cells Tissues Organs, 2011, 194, 1-12.	1.3	30
70	TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling. Molecular Biology of the Cell, 2015, 26, 3535-3545.	0.9	28
71	Stromal heparan sulfate differentiates neuroblasts to suppress neuroblastoma growth. Journal of Clinical Investigation, 2014, 124, 3016-3031.	3.9	28
72	Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1115-1126.	1.1	27

#	Article	IF	CITATIONS
73	Casein kinase 2β as a novel enhancer of activinâ€like receptorâ€l signaling. FASEB Journal, 2009, 23, 3712-3721.	0.2	26
74	TβRIII/β-arrestin2 regulates integrin α5β1 trafficking, function, and localization in epithelial cells. Oncogene, 2013, 32, 1416-1427.	2.6	26
75	Regulation of ALK-1 Signaling by the Nuclear Receptor LXRβ. Journal of Biological Chemistry, 2002, 277, 50788-50794.	1.6	25
76	Combinatorial TGF-β signaling blockade and anti-CTLA-4 antibody immunotherapy in a murine BRAF ^{V600E} -PTEN-/- transgenic model of melanoma Journal of Clinical Oncology, 2014, 32, 3011-3011.	0.8	25
77	Inhibiting the TGF-beta signalling pathway as a means of cancer immunotherapy. Expert Opinion on Biological Therapy, 2003, 3, 251-261.	1.4	25
78	The Balance of Cell Surface and Soluble Type III TGF-β Receptor Regulates BMP Signaling in Normal and Cancerous Mammary Epithelial Cells. Neoplasia, 2014, 16, 489-500.	2.3	22
79	A phase II study of capecitabine, oxaliplatin, bevacizumab and cetuximab in the treatment of metastatic colorectal cancer. Anticancer Research, 2011, 31, 255-61.	0.5	22
80	Inhibiting the TGF-Î ² signalling pathway as a means of cancer immunotherapy. Expert Opinion on Biological Therapy, 2003, 3, 251-261.	1.4	19
81	The type III TGF-Î ² receptor regulates directional migration: New tricks for an old dog. Cell Cycle, 2009, 8, 3069-3070.	1.3	18
82	Phase I study of dasatinib in combination with capecitabine, oxaliplatin and bevacizumab followed by an expanded cohort in previously untreated metastatic colorectal cancer. Investigational New Drugs, 2014, 32, 330-339.	1.2	18
83	Role of TGF-Î ² receptor III localization in polarity and breast cancer progression. Molecular Biology of the Cell, 2014, 25, 2291-2304.	0.9	17
84	The typeÂIII TGFβ receptor regulates filopodia formation via a Cdc42-mediated IRSp53–N-WASP interaction in epithelial cells. Biochemical Journal, 2013, 454, 79-89.	1.7	16
85	Increased type III TGF-β receptor shedding decreases tumorigenesis through induction of epithelial-to-mesenchymal transition. Oncogene, 2019, 38, 3402-3414.	2.6	15
86	Initial results of a phase II study of oxaliplatin (OX), capecitabine (CAP), bevacizumab (BV), and cetuximab (CET) in the treatment of metastatic colorectal cancer (mCRC). Journal of Clinical Oncology, 2008, 26, 4063-4063.	0.8	15
87	Heparinâ€binding epidermal growth factorâ€like growth factor promotes neuroblastoma differentiation. FASEB Journal, 2017, 31, 1903-1915.	0.2	14
88	A phase lb study of the combination regorafenib with PF-03446962 in patients with refractory metastatic colorectal cancer (REGAL-1 trial). Cancer Chemotherapy and Pharmacology, 2019, 84, 909-917.	1.1	13
89	Cabozantinib and Panitumumab for RAS Wild-Type Metastatic Colorectal Cancer. Oncologist, 2021, 26, 465-e917.	1.9	13
90	A Phase I study of capecitabine, carboplatin, and paclitaxel with external beam radiation therapy for esophageal carcinoma. International Journal of Radiation Oncology Biology Physics, 2007, 67, 1002-1007.	0.4	11

#	Article	IF	CITATIONS
91	A Phase II Study of Oxaliplatin, Dose-intense Capecitabine, and High-dose Bevacizumab in the Treatment of Metastatic Colorectal Cancer. Clinical Colorectal Cancer, 2011, 10, 210-216.	1.0	10
92	Phase I study of pazopanib plus TH-302 in advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2017, 79, 611-619.	1.1	8
93	ALK1 regulates the internalization of endoglin and the type III TGF-β receptor. Molecular Biology of the Cell, 2021, 32, 605-621.	0.9	8
94	An Automated High-throughput Array Microscope for Cancer Cell Mechanics. Scientific Reports, 2016, 6, 27371.	1.6	5
95	Phase Ib study of cabozantinib plus panitumumab in KRAS wild-type (WT) metastatic colorectal cancer (mCRC) Journal of Clinical Oncology, 2016, 34, 3548-3548.	0.8	4
96	Abstract 1182: Heparin-binding epidermal growth factor-like growth factor is a pro-differentiating factor in neuroblastoma. , 2016, , .		3
97	Phase I study of dasatinib in combination with capecitabine, oxaliplatin, and bevacizumab followed by an expanded cohort in previously untreated metastatic colorectal cancer Journal of Clinical Oncology, 2011, 29, 3586-3586.	0.8	3
98	Effect of the loss of the type III TGFβ receptor during tumor progression on tumor microenvironment: Preclinical development of TGFβ inhibition and TGFI²-related biomarkers to enhance immunotherapy efficacy Journal of Clinical Oncology, 2012, 30, 10563-10563.	0.8	3
99	A phase II trial of neoadjuvant gemcitabine/nab-paclitaxel and SBRT for potentially resectable pancreas cancer: An evaluation of acute toxicity Journal of Clinical Oncology, 2018, 36, 4121-4121.	0.8	3
100	A phase I dose-escalation study of imatinib mesylate (Gleevec/STI571) plus capecitabine (Xeloda) in advanced solid tumors. Anticancer Research, 2010, 30, 1251-6.	0.5	3
101	KEYlargo: A phase II study of first-line pembrolizumab (P), capecitabine (C), and oxaliplatin (O) in HER2-negative gastroesophageal (GE) adenocarcinoma Journal of Clinical Oncology, 2021, 39, 228-228.	0.8	2
102	Phase Ib study of regorafenib (rego) and PF-03446962 (PF) in patients with refractory metastatic colorectal cancer (mCRC) (REGAL) Journal of Clinical Oncology, 2016, 34, e15013-e15013.	0.8	2
103	The p53 tumor suppressor gene in head and neck cancer. Current Opinion in Otolaryngology and Head and Neck Surgery, 1998, 6, 129-133.	0.8	1
104	Two Patients With Sarcoma. Journal of Clinical Oncology, 2000, 18, 2343-2344.	0.8	1
105	Escape of Tumors From the Immune System. , 2004, , 85-95.		1
106	Emerging Roles of TGF- $\hat{1}^2$ Co-receptors in Human Disease. , 2013, , 59-89.		1
107	Alk1. The AFCS-nature Molecule Pages, 0, , .	0.2	1
108	TGF-beta type II receptor. The AFCS-nature Molecule Pages, 0, , .	0.2	1

#	Article	IF	CITATIONS
109	Angiotensin II Stimulates Canonical TGFβ Signaling Pathway through Angiotensin Receptor 1 to Induce Granulation Tissue Contraction. Journal of the American College of Surgeons, 2014, 219, S84.	0.2	Ο
110	Surgical and Pathologic Outcomes in Patients on a Phase II Trial of Neoadjuvant Chemotherapy and Hypofractionated Image-Guided Intensity Modulated Radiation Therapy (HIGRT) in Resectable and Borderline Resectable Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, S180.	0.4	0
111	Imaging & Biomarker Correlates on Outcomes in a Phase II Trial of Neoadjuvant Gemcitabine/Nab-Paclitaxel and Hypofractionated Image-Guided Radiotherapy (HIGRT) in Potentially Resectable Pancreas Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, E238-E239.	0.4	0
112	281: The Role of the Type III TGF-BETA Receptor in Prostate Cancer. Journal of Urology, 2007, 177, 94-94.	0.2	0
113	TGF-beta type I receptor. The AFCS-nature Molecule Pages, 0, , .	0.2	0
114	The Type III Transforming Growth Factor (TGF)-Î ² Receptor Regulates Growth, Proliferation and Adhesion in Multiple Myeloma Cells. Blood, 2008, 112, 5158-5158.	0.6	0
115	TGF-Î ² Signaling. , 2009, , 137-149.		0
116	Abstract 3971: The type III tgf- \hat{l}^2 receptor mediates bmp signaling in normal and cancerous mammary epithelial cells. , 2010, , .		0
117	Abstract 3548: Loss of the type III TGF-Î ² receptor during cancer progression generates an immunotolerant tumor microenvironment: Translational implications for TGF-Î ² inhibition and immunotherapy biomarker development. , 2012, , .		0
118	Abstract 3035: Bone morphogenetic proteins signal through Smad2 and Smad3 to regulate cell migration and proliferation. , 2012, , .		0
119	Abstract 5041: The type III TGF-beta receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma , 2013, , .		0
120	Abstract C61: Phase I Study of pazopanib in combination with the investigational hypoxia-targeted drug TH-302 , 2013, , .		0
121	Abstract 2674: Stroma biology identifies heparins as differentiating agents in neuroblastoma. , 2014, , .		0
122	Dalantercept. ALK-1 ligand trap, Angiogenesis inhibitor, treatment of solid tumors. Drugs of the Future, 2015, 40, 0633.	0.0	0