Maria Forsyth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4441951/publications.pdf

Version: 2024-02-01

676 papers 40,230 citations

94 h-index 164 g-index

701 all docs

701 docs citations

701 times ranked

23938 citing authors

#	Article	IF	Citations
1	Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes. Nature Materials, 2022, 21, 228-236.	13.3	55
2	Modelling cetrimonium micelles as 4-OH cinnamate carriers targeting a hydrated iron oxide surface. Journal of Colloid and Interface Science, 2022, 610, 785-795.	5 . O	4
3	Proton transport of porous triazole-grafted polysulfone membranes for high temperature polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 2022, 47, 8492-8501.	3 . 8	13
4	Incorporation of a Coumarate Based Corrosion Inhibitor in Waterborne Polymeric Binders for Corrosion Protection Applications. Macromolecular Materials and Engineering, 2022, 307, .	1.7	4
5	Factors controlling the physical properties of an organic ionic plastic crystal. Materials Today Physics, 2022, 22, 100603.	2.9	9
6	Unveiling the Impact of the Cations and Anions in Ionic Liquid/Glyme Hybrid Electrolytes for Na–O ₂ Batteries. ACS Applied Materials & Interfaces, 2022, 14, 4022-4034.	4.0	9
7	Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity. Materials Advances, 2022, 3, 1139-1151.	2.6	8
8	Efficiency of a Novel Multifunctional Corrosion Inhibitor Against Biofilms Developed on Carbon Steel. Frontiers in Bioengineering and Biotechnology, 2022, 10, 803559.	2.0	8
9	Highly Selective and Tunable CO ₂ /N ₂ Separation Performance in Ammonium-Based Organic Ionic Plastic Crystal Composite Membranes with Self-Healing Properties. ACS Applied Polymer Materials, 2022, 4, 1487-1496.	2.0	5
10	Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy and Environmental Science, 2022, 15, 1907-1919.	15.6	62
11	Mixed Ionic-Electronic Conductors Based on Polymer Composites. Engineering Materials, 2022, , 493-532.	0.3	4
12	Ion Transport in Li-Doped Triethyl(methyl)phosphonium Tetrafluoroborate (Li-[P ₁₂₂₂][BF ₄]) Impregnated with PVDF Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 3839-3852.	1.5	9
13	Engineering Advanced Environmentally Friendly Corrosion Inhibitors, Their Mechanisms, and Biological Effects in Live Zebrafish Embryos. ACS Sustainable Chemistry and Engineering, 2022, 10, 2960-2970.	3.2	13
14	High-Performance Cycling of Na Metal Anodes in Phosphonium and Pyrrolidinium Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 15784-15798.	4.0	24
15	Morphological Evolution and Solid–Electrolyte Interphase Formation on LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathodes Using Highly Concentrated Ionic Liquid Electrolytes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13196-13205.	4.0	9
16	Fast Charge and High Stability of Solidâ€State Graphite Organic Ionic Plastic Crystal Composite Anodes. Batteries and Supercaps, 2022, 5, .	2.4	5
17	Toward High-Voltage Solid-State Li-Metal Batteries with Double-Layer Polymer Electrolytes. ACS Energy Letters, 2022, 7, 1473-1480.	8.8	55
18	Stable and Efficient Lithium Metal Anode Cycling through Understanding the Effects of Electrolyte Composition and Electrode Preconditioning. Chemistry of Materials, 2022, 34, 165-177.	3.2	22

#	Article	IF	CITATIONS
19	Mixed ionic and electronic conducting binders containing PEDOT:PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes. Journal of Materials Chemistry A, 2022, 10, 19777-19786.	5.2	18
20	Thermal, structural and dynamic properties of ionic liquids and organic ionic plastic crystals with a small ether-functionalised cation. Materials Chemistry Frontiers, 2022, 6, 1437-1455.	3.2	8
21	Anion π–π Stacking for Improved Lithium Transport in Polymer Electrolytes. Journal of the American Chemical Society, 2022, 144, 9806-9816.	6.6	28
22	Enhancing Biocide Efficacy: Targeting Extracellular DNA for Marine Biofilm Disruption. Microorganisms, 2022, 10, 1227.	1.6	2
23	Sustainable Freeâ€Standing Electrode from Biomass Waste for Sodiumâ€ion Batteries. ChemElectroChem, 2022, 9, .	1.7	10
24	Cover Picture: Fast Charge and High Stability of Solid‧tate Graphite Organic Ionic Plastic Crystal Composite Anodes (Batteries & Samp; Supercaps 7/2022). Batteries and Supercaps, 2022, 5, .	2.4	1
25	Extracellular DNA: A Critical Aspect of Marine Biofilms. Microorganisms, 2022, 10, 1285.	1.6	2
26	Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nature Materials, 2022, 21, 1057-1065.	13.3	92
27	Study of Ion Transport in Novel Protic Polymerized Ionic Liquids and Composites. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	5
28	Unravelling the Role of Speciation in Glyme:lonic Liquid Hybrid Electrolytes for Naâ^'O ₂ Batteries. Batteries and Supercaps, 2021, 4, 513-521.	2.4	8
29	Anion-cation interactions in novel ionic liquids based on an asymmetric sulfonimide anion observed by NMR and MD simulations. Journal of Molecular Liquids, 2021, 327, 114879.	2.3	6
30	Electrochemical and Surface Characterization Study on the Corrosion Inhibition of Mild Steel 1030 by the Cationic Surfactant Cetrimonium Trans-4-hydroxy-cinnamate. ACS Omega, 2021, 6, 1941-1952.	1.6	9
31	Approach to Increase the Utilization of Active Material in a High Sulfur-Loaded Cathode for High Areal Capacity Room-Temperature Sodium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 384-393.	2.5	11
32	SEI Formation on Sodium Metal Electrodes in Superconcentrated Ionic Liquid Electrolytes and the Effect of Additive Water. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5706-5720.	4.0	34
33	Fluorine-free ionic liquid electrolytes for sustainable neodymium recovery using an electrochemical approach. Green Chemistry, 2021, 23, 3410-3419.	4.6	22
34	Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries. Polymer Chemistry, 2021, 12, 3441-3450.	1.9	23
35	Functional Binders Based on Polymeric Ionic Liquids for Sodium Oxygen Batteries Using Ionic Liquid Electrolytes. ACS Applied Energy Materials, 2021, 4, 434-444.	2.5	11
36	A novel approach to improve the oil miscibility and incorporate multifunctionality in ionic liquids as lubricant additives. Physical Chemistry Chemical Physics, 2021, 23, 3429-3440.	1.3	9

#	Article	IF	Citations
37	Tuning Electronic and Ionic Conductivities in Composite Materials for Electrochemical Devices. ACS Applied Polymer Materials, 2021, 3, 1777-1784.	2.0	12
38	Design of Polymeric Corrosion Inhibitors Based on Ionic Coumarate Groups. ACS Applied Polymer Materials, 2021, 3, 1739-1746.	2.0	10
39	Composite electrolytes based on electrospun PVDF and ionic plastic crystal matrices for Na-metal battery applications. JPhys Materials, 2021, 4, 034003.	1.8	9
40	Phase behavior and electrochemical properties of solid lithium electrolytes based on N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide and PVdF composites. Solid State Ionics, 2021, 363, 115588.	1.3	7
41	Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nature Materials, 2021, 20, 1255-1263.	13.3	110
42	Understanding the Role of Separator and Electrolyte Compatibility on Lithium Metal Anode Performance Using Ionic Liquid-Based Electrolytes. ACS Applied Energy Materials, 2021, 4, 6310-6323.	2.5	12
43	Highly conductive ionogel electrolytes based on N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide FSI and NaFSI mixtures and their applications in sodium batteries. JPhys Materials, 2021, 4, 044005.	1.8	12
44	Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids. ACS Applied Materials & Superconcentrated Ionic Liquids.	4.0	21
45	Short Chain Imidazolium Ionic Liquids: Synthesis and Oil Miscibility in Various Base Oil by use of Surfactant as High Performance Friction and Antiwear Lubricant Additive. Tribology Letters, 2021, 69, 1.	1.2	6
46	Unraveling Ion Dynamics and Interactions in an Ionic Liquid Electrolyte with a Protonated Anion for Lithium Batteries. Journal of Physical Chemistry C, 2021, 125, 14818-14826.	1.5	2
47	Tuning Proton Exchange and Transport in Protic Ionic Liquid Solution through Anion Chemistry. Journal of Physical Chemistry Letters, 2021, 12, 5552-5557.	2.1	9
48	Stabilisation of the superoxide anion in bis(fluorosulfonyl)imide (FSI) ionic liquid by small chain length phosphonium cations: Voltammetric, DFT modelling and spectroscopic perspectives. Electrochemistry Communications, 2021, 127, 107029.	2.3	4
49	Anion-Derived Solid-Electrolyte Interphase Enables Long Life Na-Ion Batteries Using Superconcentrated Ionic Liquid Electrolytes. ACS Energy Letters, 2021, 6, 2481-2490.	8.8	52
50	Investigation of Unusual Conductivity Behavior and Ion Dynamics in Hexamethylguanidinium Bis(fluorosulfonyl)imide-Based Electrolytes for Sodium Batteries. Journal of Physical Chemistry C, 2021, 125, 12518-12530.	1.5	15
51	Improving Cycle Life through Fast Formation Using a Superconcentrated Phosphonium Based Ionic Liquid Electrolyte for Anode-Free and Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 6399-6407.	2.5	16
52	An Al-Cu Multielectrode Model for Studying Corrosion Inhibition with Praseodymium Mercaptoacetate at Intermetallic Particles in AA2024. Journal of the Electrochemical Society, 2021, 168, 071501.	1.3	3
53	Evaluation of a novel, multi-functional inhibitor compound for prevention of biofilm formation on carbon steel in marine environments. Scientific Reports, 2021, 11, 15697.	1.6	15
54	Lithium Borate Ester Salts for Electrolyte Application in Nextâ€Generation High Voltage Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101422.	10.2	34

#	Article	IF	Citations
55	Study of phosphonium based ionic liquid/dispersant additive interactions using spectroscopic technique for lubricant applications. Journal of Molecular Liquids, 2021, 338, 116665.	2.3	8
56	Properties of hybrid sol-gel coatings with the incorporation of lanthanum 4-hydroxy cinnamate as corrosion inhibitor on carbon steel with different surface finishes. Applied Surface Science, 2021, 561, 149881.	3.1	33
57	Study of Proton Transport in Diethylmethylammonium Poly [4-styrenesulfonyl (trifluoromethylsulfonyl) limide]-Based Composite Membranes with Triflic Acid and Diethylmethylamine-Rich Compositions. Journal of Physical Chemistry B, 2021, 125, 11005-11016.	1.2	2
58	Influence of Counteranion on the Properties of Polymerized Ionic Liquids/Ionic Liquids Proton-Exchange Membranes. ACS Applied Energy Materials, 2021, 4, 10593-10602.	2.5	9
59	Sub-zero and room-temperature sodium–sulfur battery cell operations: A rational current collector, catalyst and sulphur-host design and study. Energy Storage Materials, 2021, 42, 608-617.	9.5	14
60	Anion effects on the properties of OIPC/PVDF composites. Materials Advances, 2021, 2, 1683-1694.	2.6	17
61	Predicting gas selectivity in organic ionic plastic crystals by free energy calculations. RSC Advances, 2021, 11, 19623-19629.	1.7	1
62	Application of super-concentrated phosphonium based ionic liquid electrolyte for anode-free lithium metal batteries. Sustainable Energy and Fuels, 2021, 5, 4141-4152.	2.5	11
63	Emerging iongel materials towards applications in energy and bioelectronics. Materials Horizons, 2021, 8, 3239-3265.	6.4	25
64	New Insights into Decoupled Cation and Anion Transport and Dynamic Heterogeneity in a Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate Organic Ionic Plastic Crystal. Journal of Physical Chemistry Letters, 2021, 12, 9853-9858.	2.1	10
65	Single-Ion Conducting Polymer Nanoparticles as Functional Fillers for Solid Electrolytes in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54354-54362.	4.0	38
66	Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry. Polymers, 2021, 13, 4127.	2.0	23
67	Ternary Poly(ethylene oxide)/Poly(<scp>l</scp> , <scp>l</scp> -lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2021, 3, 6326-6337.	2.0	19
68	Exploring the influence of the cation type and polymer support in bis(fluorosulfonyl)imide-based plastic crystal composite membranes for CO2/N2 separation. Journal of Materials Chemistry A, 2021, 9, 26330-26344.	5.2	5
69	In Situ Investigation of Under-Deposit Microbial Corrosion and its Inhibition Using a Multi-Electrode Array System. Frontiers in Bioengineering and Biotechnology, 2021, 9, 803610.	2.0	6
70	Singleâ€ion Conducting Poly(Ethylene Oxide Carbonate) as Solid Polymer Electrolyte for Lithium Batteries. Batteries and Supercaps, 2020, 3, 68-75.	2.4	37
71	Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries. Journal of Power Sources, 2020, 448, 227424.	4.0	34
72	Towards high rate Li metal anodes: enhanced performance at high current density in a superconcentrated ionic liquid. Journal of Materials Chemistry A, 2020, 8, 3574-3579.	5.2	25

#	Article	IF	Citations
73	lon Vacancies and Transport in 1-Methylimidazolium Triflate Organic Ionic Plastic Crystal. Journal of Physical Chemistry Letters, 2020, 11, 510-515.	2.1	17
74	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie, 2020, 132, 542-546.	1.6	28
75	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie - International Edition, 2020, 59, 534-538.	7.2	124
76	lon interactions and dynamics in pseudohalide based ionic liquid electrolytes containing sodium solutes. Journal of Molecular Liquids, 2020, 303, 112597.	2.3	4
77	Solid (cyanomethyl)trimethylammonium salts for electrochemically stable electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 14721-14735.	5.2	9
78	Stable performance of an all-solid-state Li metal cell coupled with a high-voltage NCA cathode and ultra-high lithium content poly(ionic liquid)s-based polymer electrolyte. Journal of Solid State Electrochemistry, 2020, 24, 2479-2485.	1.2	13
79	Strongly Correlated Ion Dynamics in Plastic Ionic Crystals and Polymerized Ionic Liquids. Journal of Physical Chemistry C, 2020, 124, 17889-17896.	1.5	22
80	Electrochemistry of Neodymium in Phosphonium Ionic Liquids: The Influence of Cation, Water Content, and Mixed Anions. Australian Journal of Chemistry, 2020, 73, 1080.	0.5	11
81	Mixed Ionic-Electronic Conductors Based on PEDOT:PolyDADMA and Organic Ionic Plastic Crystals. Polymers, 2020, 12, 1981.	2.0	15
82	Proton transport in crystalline, porous covalent organic frameworks: a NMR study. Journal of Materials Chemistry A, 2020, 8, 20939-20945.	5.2	2
83	Correlating Electrochemical Behavior and Speciation in Neodymium Ionic Liquid Electrolyte Mixtures in the Presence of Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 14047-14057.	3.2	21
84	Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications. Journal of Materials Chemistry A, 2020, 8, 18826-18839.	5.2	40
85	Corrosion Inhibition of Mild Steel by Cetrimonium trans-4-Hydroxy Cinnamate: Entrapment and Delivery of the Anion Inhibitor through Speciation and Micellar Formation. Journal of Physical Chemistry Letters, 2020, 11, 9886-9892.	2.1	13
86	Decoupled ion mobility in nano-confined ionic plastic crystal. Materials Advances, 2020, 1, 3398-3405.	2.6	4
87	Cation Effect in the Corrosion Inhibition Properties of Coumarate Ionic Liquids and Acrylic UV-Coatings. Polymers, 2020, 12, 2611.	2.0	9
88	Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nature Materials, 2020, 19, 1096-1101.	13.3	156
89	Evolution of structural dimensions in mesoporous template precursor from hexagonal lyotropic liquid crystals. Journal of Physics Condensed Matter, 2020, 32, 075101.	0.7	3
90	An investigation of commercial carbon air cathode structure in ionic liquid based sodium oxygen batteries. Scientific Reports, 2020, 10, 7123.	1.6	17

#	Article	IF	CITATIONS
91	Free-Radical Catalysis and Enhancement of the Redox Kinetics for Room-Temperature Sodium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 2112-2121.	8.8	45
92	Multifunctional Inhibitor Mixtures for Abating Corrosion on HY80 Steel under Marine Environments. Journal of the Electrochemical Society, 2020, 167, 021503.	1.3	5
93	Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 070525.	1.3	22
94	Effect of lanthanum 4-hydroxy cinnamate on the polymerisation, condensation and thermal stability of hybrid sol–gel formulations. Journal of Sol-Gel Science and Technology, 2020, 96, 91-107.	1.1	9
95	A safe Li–Se battery in an ionic liquid-based electrolyte operating at 25–70 °C by using a N,S,O tri-doped mesoporous carbon host material. Sustainable Energy and Fuels, 2020, 4, 2322-2332.	2.5	15
96	Stable High-Temperature Cycling of Na Metal Batteries on Na ₃ V ₂ (PO ₄) ₃ and Na ₂ FeP ₂ O ₇ Cathodes in NaFSI-Rich Organic Ionic Plastic Crystal Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 2092-2100.	2.1	27
97	Highly Homogeneous Sodium Superoxide Growth in Na–O ₂ Batteries Enabled by a Hybrid Electrolyte. ACS Energy Letters, 2020, 5, 903-909.	8.8	16
98	Unprecedented Improvement of Single Liâ€lon Conductive Solid Polymer Electrolyte Through Salt Additive. Advanced Functional Materials, 2020, 30, 2000455.	7.8	63
99	The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes. Journal of Materials Chemistry A, 2020, 8, 5350-5362.	5.2	26
100	Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO ₂ -Sourced Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2020, 2, 922-931.	2.0	36
101	Toward Highâ€Energyâ€Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. Advanced Materials, 2020, 32, e1905219.	11.1	154
102	Macrophase-Separated Organic Ionic Plastic Crystals/PAMPS-Based Ionomer Electrolyte: A New Design Perspective for Flexible and Highly Conductive Solid-State Electrolytes. ACS Omega, 2020, 5, 2931-2938.	1.6	4
103	Advances in the development of rare earth metal and carboxylate compounds as corrosion inhibitors for steel. Corrosion Engineering Science and Technology, 2020, 55, 311-321.	0.7	24
104	Prefaceâ€"JES Focus Issue on Challenges in Novel Electrolytes, Organic Materials, and Innovative Chemistries for Batteries in Honor of Michel Armand. Journal of the Electrochemical Society, 2020, 167, 070001.	1.3	0
105	Electrolytes and Interphases in Sodiumâ€Based Rechargeable Batteries: Recent Advances and Perspectives. Advanced Energy Materials, 2020, 10, 2000093.	10.2	254
106	Synthesis and Characteristics of Pyrrolidiniumâ∈Based Organic Ionic Plastic Crystals with Various Sulfonylamide Anions. Batteries and Supercaps, 2020, 3, 884-891.	2.4	10
107	Weakly Coordinating Fluorineâ€Free Polysalt for Single Lithiumâ€Ion Conductive Solid Polymer Electrolytes. Batteries and Supercaps, 2020, 3, 738-746.	2.4	14
108	A novel proton conducting ionogel electrolyte based on poly(ionic liquids) and protic ionic liquid. Electrochimica Acta, 2020, 346, 136224.	2.6	24

#	Article	IF	CITATIONS
109	Organic Ionic Plastic Crystalâ€Based Composite Membranes for Light Gas Separation: The Impact of Varying Ion Type and Casting Method. ChemSusChem, 2020, 13, 5740-5748.	3.6	7
110	Metal-free coumarate based ionic liquids and poly(ionic liquid)s as corrosion inhibitors. Materials Advances, 2020, 1, 584-589.	2.6	8
111	Water as a catalyst for ion transport across the electrical double layer in ionic liquids. Physical Review Materials, 2020, 4, .	0.9	5
112	Editors' Choice—Understanding the Superior Cycling Performance of Si Anode in Highly Concentrated Phosphonium-Based Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2020, 167, 120520.	1.3	23
113	Electrochemical Formation in Super-Concentrated Phosphonium Based Ionic Liquid Electrolyte Using Symmetric Li-Metal Coin Cells. Journal of the Electrochemical Society, 2020, 167, 120526.	1.3	16
114	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
115	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
116	Controlling the Threeâ€Phase Boundary in Na–Oxygen Batteries: The Synergy of Carbon Nanofibers and Ionic Liquid. ChemSusChem, 2019, 12, 4054-4063.	3.6	12
117	Poly(ionic liquid)s/Electrospun Nanofiber Composite Polymer Electrolytes for High Energy Density and Safe Li Metal Batteries. ACS Applied Energy Materials, 2019, 2, 6237-6245.	2.5	63
118	Monovalent Cation–Phenolic Crystals with pHâ€Driven Reversible Crystal Transformation. Chemistry - A European Journal, 2019, 25, 12281-12287.	1.7	11
119	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
120	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
121	Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Etherâ€Functionalized Anion. Angewandte Chemie - International Edition, 2019, 58, 12070-12075.	7.2	61
122	Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Etherâ€Functionalized Anion. Angewandte Chemie, 2019, 131, 12198-12203.	1.6	22
123	High Coulombic Efficiency Na–O ₂ Batteries Enabled by a Bilayer Ionogel/Ionic Liquid. Journal of Physical Chemistry Letters, 2019, 10, 7050-7055.	2.1	11
124	Tuning Sodium Interfacial Chemistry with Mixed-Anion Ionic Liquid Electrolytes. ACS Applied Materials & Liquid Electrolytes.	4.0	36
125	Biodegradable Conducting Polymer Coating to Mitigate Early Stage Degradation of Magnesium in Simulated Biological Fluid: An Electrochemical Mechanistic Study. ChemElectroChem, 2019, 6, 4893-4901.	1.7	3
126	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, 17084-17091.	1.6	31

#	Article	IF	Citations
127	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie - International Edition, 2019, 58, 16928-16935.	7.2	141
128	Toward Practical Li Metal Batteries: Importance of Separator Compatibility Using Ionic Liquid Electrolytes. ACS Applied Energy Materials, 2019, 2, 6655-6663.	2.5	29
129	Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries. Joule, 2019, 3, 2687-2702.	11.7	108
130	Leaching Behavior and Corrosion Inhibition of a Rare Earth Carboxylate Incorporated Epoxy Coating System. ACS Applied Materials & System. ACS Applied Material	4.0	26
131	UV-Cross-Linked lonogels for All-Solid-State Rechargeable Sodium Batteries. ACS Applied Energy Materials, 2019, 2, 6960-6966.	2.5	25
132	Polymeric ionic liquids for lithium-based rechargeable batteries. Molecular Systems Design and Engineering, 2019, 4, 294-309.	1.7	114
133	Supported Ionic Liquid Gel Membrane Electrolytes for a Safe and Flexible Sodium Metal Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 3722-3726.	3.2	56
134	Self-assembled structure and dynamics of imidazolium-based protic salts in water solution. Physical Chemistry Chemical Physics, 2019, 21, 2691-2696.	1.3	6
135	The effect of ageing on cathodic protection shielding by fusion bonded epoxy coatings. Progress in Organic Coatings, 2019, 134, 58-65.	1.9	16
136	Organic Ionic Plastic Crystals as Solid-State Electrolytes. Trends in Chemistry, 2019, 1, 126-140.	4.4	102
137	A New Emerging Technology: Na″on Batteries. Small Methods, 2019, 3, 1900184.	4.6	37
138	Poly(ionic liquid) iongel membranes for all solid-state rechargeable sodium battery. Journal of Membrane Science, 2019, 582, 435-441.	4.1	49
139	Sustainable, Dendrite Free Lithiumâ€Metal Electrode Cycling Achieved with Polymer Composite Electrolytes Based on a Poly(Ionic Liquid) Host. Batteries and Supercaps, 2019, 2, 229-239.	2.4	35
140	Water as an Effective Additive for Highâ€Energyâ€Density Na Metal Batteries? Studies in a Superconcentrated Ionic Liquid Electrolyte. ChemSusChem, 2019, 12, 1700-1711.	3.6	36
141	Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. Accounts of Chemical Research, 2019, 52, 686-694.	7.6	276
142	UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries. Electrochimica Acta, 2019, 302, 414-421.	2.6	50
143	Computational Investigation of Mixed Anion Effect on Lithium Coordination and Transport in Salt Concentrated Ionic Liquid Electrolytes. Journal of Physical Chemistry Letters, 2019, 10, 7414-7420.	2.1	31
144	Artificial SEI Transplantation: A Pathway to Enabling Lithium Metal Cycling in Water-Containing Electrolytes. ACS Applied Energy Materials, 2019, 2, 8912-8918.	2.5	6

#	Article	IF	CITATIONS
145	Enabling High Lithium Conductivity in Polymerized Ionic Liquid Block Copolymer Electrolytes. Batteries and Supercaps, 2019, 2, 132-138.	2.4	28
146	JPCL: A Dynamic Journal with a Global Reach. Journal of Physical Chemistry Letters, 2019, 10, 113-114.	2.1	0
147	Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials, 2019, 19, 197-205.	9.5	54
148	Enhanced Lithiumâ€ion Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Angewandte Chemie - International Edition, 2019, 58, 7829-7834.	7.2	59
149	Water-Facilitated Electrodeposition of Neodymium in a Phosphonium-Based Ionic Liquid. Journal of Physical Chemistry Letters, 2019, 10, 289-294.	2.1	37
150	Enhanced Lithiumâ€lon Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Angewandte Chemie, 2019, 131, 7911-7916.	1.6	51
151	Investigating Intermolecular Interactions in a DME-Based Hybrid Ionic Liquid Electrolyte by HOESY NMR. Frontiers in Chemistry, 2019, 7, 4.	1.8	5
152	Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable MgÂbatteries. Green Energy and Environment, 2019, 4, 146-153.	4.7	33
153	Time–Temperature Scaling and Dielectric Modeling of Conductivity Spectra of Single-Ion Conducting Liquid Dendrimer Electrolytes. Journal of Physical Chemistry B, 2019, 123, 207-215.	1.2	4
154	High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays. Energy Storage Materials, 2019, 20, 196-202.	9.5	82
155	Overscreening and crowding in electrochemical ionic liquid systems. Physical Review Materials, 2019, 3, .	0.9	14
156	Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes. Journal of Power Sources, 2018, 379, 344-349.	4.0	29
157	Self-validating electrochemical methodology for quantifying ionic currents through pipeline coatings. Progress in Organic Coatings, 2018, 120, 153-159.	1.9	5
158	Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochimica Acta, 2018, 264, 367-375.	2.6	90
159	The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performance. Electrochimica Acta, 2018, 268, 94-100.	2.6	31
160	Probing Ionic Liquid Electrolyte Structure via the Glassy State by Dynamic Nuclear Polarization NMR Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1007-1011.	2.1	17
161	The influence of the size and symmetry of cations and anions on the physicochemical behavior of organic ionic plastic crystal electrolytes mixed with sodium salts. Physical Chemistry Chemical Physics, 2018, 20, 4721-4731.	1.3	26
162	Spectroscopic Characterization of the SEI Layer Formed on Lithium Metal Electrodes in Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolytes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6719-6729.	4.0	77

#	Article	IF	Citations
163	Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt. Journal of Chemical Physics, 2018, 148, 193813.	1.2	17
164	Stability enhancing ionic liquid hybrid electrolyte for NVP@C cathode based sodium batteries. Sustainable Energy and Fuels, 2018, 2, 566-576.	2.5	37
165	An Interaction between Praseodymium 4-Hydroxycinnamate with AS1020 and X65 Steel Microstructures in Carbon Dioxide Environment. Journal of the Electrochemical Society, 2018, 165, C50-C59.	1.3	21
166	The influence of anion chemistry on the ionic conductivity and molecular dynamics in protic organic ionic plastic crystals. Physical Chemistry Chemical Physics, 2018, 20, 4579-4586.	1.3	7
167	An ionic liquid based sodium metal-hybrid supercapacitor-battery. Sustainable Energy and Fuels, 2018, 2, 763-771.	2.5	20
168	Molecular dynamics study of ammonium based co-cation plasticizer effect on lithium ion dynamics in ionomer electrolytes. Solid State Ionics, 2018, 316, 47-52.	1.3	10
169	Editorial: 2017 in Perspective. Journal of Physical Chemistry Letters, 2018, 9, 138-140.	2.1	0
170	Poly(ionic liquid) iongels for all-solid rechargeable zinc/PEDOT batteries. Electrochimica Acta, 2018, 278, 271-278.	2.6	47
171	Ionic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies. Advanced Energy Materials, 2018, 8, 1703491.	10.2	109
172	On the measurement of intermolecular heteronuclear cross relaxation rates in ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 13357-13364.	1.3	16
173	Passivation behaviour of aluminium current collector in ionic liquid alkyl carbonate (hybrid) electrolytes. Npj Materials Degradation, 2018, 2, .	2.6	37
174	lonic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate composites. Chemical Communications, 2018, 54, 3500-3503.	2.2	31
175	In the lab: New ethical and supply chain protocols for battery and solar alternative energy laboratory research policy and practice. Journal of Cleaner Production, 2018, 187, 485-495.	4.6	15
176	Enhancing the localised corrosion resistance of 316L stainless steel via FBR-CVD chromising treatment. Corrosion Engineering Science and Technology, 2018, 53, 114-121.	0.7	7
177	Proton Conducting Membranes Based on Poly(Ionic Liquids) Having Phosphonium Counterâ€Cations. Macromolecular Rapid Communications, 2018, 39, 1700627.	2.0	20
178	Na-Ion Solvation and High Transference Number in Superconcentrated Ionic Liquid Electrolytes: A Theoretical Approach. Journal of Physical Chemistry C, 2018, 122, 105-114.	1.5	74
179	Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation. Angewandte Chemie, 2018, 130, 17376-17380.	1.6	36
180	Correlating Intermolecular Cross-Relaxation Rates with Distances and Coordination Numbers in Ionic Liquids. Journal of Physical Chemistry Letters, 2018, 9, 7072-7078.	2.1	19

#	Article	IF	CITATIONS
181	DNP NMR Studies of Crystalline Polymer Domains by Copolymerization with Nitroxide Radical Monomers. Macromolecules, 2018, 51, 8046-8053.	2.2	10
182	A study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions. Corrosion Science, 2018, 145, 199-211.	3.0	65
183	The anion effect in ternary electrolyte systems using poly(diallyldimethylammonium) and phosphonium-based ionic liquid with high lithium salt concentration. Solid State Ionics, 2018, 327, 83-92.	1.3	27
184	Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation. Angewandte Chemie - International Edition, 2018, 57, 17130-17134.	7.2	113
185	Impact of Comonomer Chemistry on Phase Behavior of Polymerizable Lyotropic Ionic Liquid Crystals: A Pre―and Postâ€Polymerization Study. Macromolecular Chemistry and Physics, 2018, 219, 1800307.	1.1	3
186	Stable cycling of NaFePO4 cathodes in high salt concentration ionic liquid electrolytes. Journal of Power Sources, 2018, 406, 70-80.	4.0	28
187	Role of Nâ€Propylâ€Nâ€Methyl Pyrrolidinium bis(trifluoromethanesulfonyl)imide as an Electrolyte Additive in Sodium Battery Electrochemistry. Energy Technology, 2018, 6, 2232-2237.	1.8	13
188	High Zn Concentration Pyrrolidinium-Dicyanamide-Based Ionic Liquid Electrolytes for Zn ²⁺ /Zn ^O Electrochemistry in a Flow Environment. ACS Applied Energy Materials, 2018, 1, 4580-4590.	2.5	16
189	Role of microstructure in corrosion initiation of a highly-deformed AA2024 wire. Corrosion Science, 2018, 144, 184-197.	3.0	10
190	New, environmentally friendly, rare earth carboxylate corrosion inhibitors for mild steel. Corrosion Science, 2018, 139, 430-437.	3.0	78
191	Elucidating the Impact of Sodium Salt Concentration on the Cathode–Electrolyte Interface of Na–Air Batteries. Journal of Physical Chemistry C, 2018, 122, 15276-15286.	1.5	25
192	Visualizing the impact of mechanical strain and the environment on pipeline coatings from a three dimensional perspective. Progress in Organic Coatings, 2018, 122, 45-55.	1.9	9
193	Structure and Ion Dynamics in Imidazolium-Based Protic Organic Ionic Plastic Crystals. Journal of Physical Chemistry Letters, 2018, 9, 3904-3909.	2.1	20
194	Water-tolerant lithium metal cycling in high lithium concentration phosphonium-based ionic liquid electrolytes. Sustainable Energy and Fuels, 2018, 2, 2276-2283.	2.5	27
195	Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries. Energy Storage Materials, 2018, 15, 407-414.	9.5	45
196	Understanding the electrochemical processes at the interface of cathodically protected steel pipeline and soil during anodic transients. Corrosion Engineering Science and Technology, 2018, 53, 517-523.	0.7	1
197	Atomistic Simulation of Gas Uptake and Interface-Induced Disordering in Solid Phases of an Organic Ionic Plastic Crystal. Journal of Physical Chemistry B, 2018, 122, 8274-8283.	1,2	7
198	Improved Li-Ion Transport by DME Chelation in a Novel Ionic Liquid-Based Hybrid Electrolyte for Li–S Battery Application. Journal of Physical Chemistry C, 2018, 122, 14373-14382.	1.5	33

#	Article	IF	CITATIONS
199	Influence of Electrospun Poly(vinylidene difluoride) Nanofiber Matrix on the Ion Dynamics of a Protic Organic Ionic Plastic Crystal. Journal of Physical Chemistry C, 2018, 122, 14546-14553.	1.5	10
200	Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1800880.	10.2	56
201	Techniques for testing and monitoring the cathodic disbondment of organic coatings: An overview of major obstacles and innovations. Progress in Organic Coatings, 2017, 105, 163-175.	1.9	43
202	Towards Higher Energy Density Redoxâ€Flow Batteries: Imidazolium Ionic Liquid for Zn Electrochemistry in Flow Environment. ChemElectroChem, 2017, 4, 1051-1058.	1.7	17
203	Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material. Journal of Power Sources, 2017, 349, 45-51.	4.0	40
204	Phosphonium plastic crystal salt alloyed with a sodium salt as a solid-state electrolyte for sodium devices: phase behaviour and electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 5770-5780.	5.2	40
205	Extensive Sodium Metal Plating and Stripping in a Highly Concentrated Inorganicâ^'Organic Ionic Liquid Electrolyte through Surface Pretreatment. ChemElectroChem, 2017, 4, 986-991.	1.7	25
206	Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries. ChemSusChem, 2017, 10, 1783-1791.	3.6	43
207	Organic Ionic Plastic Crystalâ€Based Composite Electrolyte with Surface Enhanced Ion Transport and Its Use in Allâ€Solidâ€State Lithium Batteries. Advanced Materials Technologies, 2017, 2, 1700046.	3.0	49
208	Conformational Dynamics in an Organic Ionic Plastic Crystal. Journal of Physical Chemistry B, 2017, 121, 5439-5446.	1.2	38
209	Highly reversible oxygen to superoxide redox reaction in a sodium-containing ionic liquid. Electrochemistry Communications, 2017, 74, 14-18.	2.3	24
210	Synthesis and evaluation of a novel pyrrolidinium-based zwitterionic additive with an ether side chain for ionic liquid electrolytes in high-voltage lithium-ion batteries. Electrochimica Acta, 2017, 241, 272-280.	2.6	24
211	Extensive Sodium Metal Plating and Stripping in a Highly Concentrated Inorganicâ^'Organic Ionic Liquid Electrolyte through Surface Pretreatment. ChemElectroChem, 2017, 4, 976-976.	1.7	2
212	Molecular dynamics study of the effect of tetraglyme plasticizer on dual-cation ionomer electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 16426-16432.	1.3	10
213	The initiation and propagation of coating morphological and structural defects under mechanical strain and their effects on the electrochemical behaviour of pipeline coatings. Progress in Organic Coatings, 2017, 110, 62-77.	1.9	15
214	Solidâ€State Lithium Conductors for Lithium Metal Batteries Based on Electrospun Nanofiber/Plastic Crystal Composites. ChemSusChem, 2017, 10, 3135-3145.	3.6	58
215	Electrochemical cycling of Mg in Mg[TFSI] 2 /tetraglyme electrolytes. Electrochemistry Communications, 2017, 78, 29-32.	2.3	64
216	Investigating discharge performance and Mg interphase properties of an Ionic Liquid electrolyte based Mg-air battery. Electrochimica Acta, 2017, 235, 270-279.	2.6	27

#	Article	IF	Citations
217	A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin–Ionic Liquid Polymer Electrolyte. ACS Energy Letters, 2017, 2, 831-836.	8.8	134
218	Probing corrosion initiation at interfacial nanostructures of AA2024-T3. Corrosion Science, 2017, 116, 98-109.	3.0	39
219	Understanding the effects of applied cathodic protection potential and environmental conditions on the rate of cathodic disbondment of coatings by means of local electrochemical measurements on a multi-electrode array. Progress in Organic Coatings, 2017, 103, 83-92.	1.9	25
220	N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: characterization and lithium cell studies. Physical Chemistry Chemical Physics, 2017, 19, 2225-2234.	1.3	61
221	Comparison of the physicochemical and electrochemical behaviour of mixed anion phosphonium based OIPCs electrolytes for sodium batteries. Solid State Ionics, 2017, 312, 44-52.	1.3	25
222	Molecular simulation study of CO2 and N2 absorption in a phosphonium based organic ionic plastic crystal. Journal of Chemical Physics, 2017, 147, 124703.	1.2	9
223	Understanding of the Electrogenerated Bulk Electrolyte Species in Sodium-Containing Ionic Liquid Electrolytes During the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 23307-23316.	1.5	17
224	Role of Li Concentration and the SEI Layer in Enabling High Performance Li Metal Electrodes Using a Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid. Journal of Physical Chemistry C, 2017, 121, 21087-21095.	1.5	87
225	Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. Journal of Materials Chemistry A, 2017, 5, 23844-23852.	5.2	109
226	Molecular dynamics simulations of pyrrolidinium and imidazolium ionic liquids at graphene interfaces. Physical Chemistry Chemical Physics, 2017, 19, 30010-30020.	1.3	42
227	Proton-Exchange-Induced Configuration Rearrangement in a Poly(ionic liquid) Solution: A NMR Study. Journal of Physical Chemistry Letters, 2017, 8, 5355-5359.	2.1	9
228	lon-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells. ACS Applied Materials & Diterfaces, 2017, 9, 31922-31930.	4.0	22
229	Proton Transport in Hierarchical-Structured Nafion Membranes: A NMR Study. Journal of Physical Chemistry Letters, 2017, 8, 3624-3629.	2.1	12
230	Protic plastic crystal/PVDF composite membranes for Proton Exchange Membrane Fuel Cells under non-humidified conditions. Electrochimica Acta, 2017, 247, 970-976.	2.6	33
231	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3718-3719.	2.1	0
232	Interphase engineering of reactive metal surfaces using ionic liquids and deep eutectic solventsâ€"from corrosion control to next-generation batteries. Npj Materials Degradation, 2017, 1, .	2.6	16
233	Effect of secondary phase on thermal behaviour and solid-state ion conduction in lithium doped <i>N</i> -ethyl- <i>N</i> -methylpyrrolidinium tetrafluoroborate organic ionic plastic crystal. Journal of Materials Chemistry A, 2017, 5, 24909-24919.	5.2	28
234	Atom Probe Tomography Studies of the Initiation of Localized Corrosion in Aluminum Alloy 2024. Microscopy and Microanalysis, 2017, 23, 696-697.	0.2	1

#	Article	IF	Citations
235	High-Capacity Retention of Si Anodes Using a Mixed Lithium/Phosphonium Bis(fluorosulfonyl)imide lonic Liquid Electrolyte. ACS Energy Letters, 2017, 2, 1804-1809.	8.8	38
236	Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytes. Electrochimica Acta, 2017, 247, 983-993.	2.6	26
237	Effect of mixed anions on the physicochemical properties of a sodium containing alkoxyammonium ionic liquid electrolyte. Physical Chemistry Chemical Physics, 2017, 19, 17461-17468.	1.3	45
238	Molecular Dynamics Study of a Dual ation Ionomer Electrolyte. ChemPhysChem, 2017, 18, 230-237.	1.0	9
239	Mixed Phase Solidâ€State Plastic Crystal Electrolytes Based on a Phosphonium Cation for Sodium Devices. Advanced Energy Materials, 2017, 7, 1601272.	10.2	46
240	Enhancing Solid-State Conductivity through Acid or Base Doping of Protic Imidazolium and Imidazolinium Triflate Salts. Journal of Physical Chemistry C, 2017, 121, 27849-27859.	1.5	14
241	New dimensions in salt–solvent mixtures: a 4th evolution of ionic liquids. Faraday Discussions, 2017, 206, 9-28.	1.6	96
242	Towards Phosphorus Free Ionic Liquid Anti-Wear Lubricant Additives. Lubricants, 2016, 4, 22.	1.2	18
243	Highly Conductive and Thermally Stable Ion Gels with Tunable Anisotropy and Modulus. Advanced Materials, 2016, 28, 2571-2578.	11.1	70
244	Stable Deep Doping of Vaporâ€Phase Polymerized Poly(3,4â€ethylenedioxythiophene)/Ionic Liquid Supercapacitors. ChemSusChem, 2016, 9, 2112-2121.	3.6	30
245	Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts. Physical Chemistry Chemical Physics, 2016, 18, 19336-19344.	1.3	72
246	Visualising dynamic passivation and localised corrosion processes occurring on buried steel surfaces under the effect of anodic transients. Electrochemistry Communications, 2016, 66, 21-24.	2.3	31
247	Investigating effects of potential excursions and pH variations on cathodic protection using new electrochemical testing cells. Corrosion Engineering Science and Technology, 2016, 51, 171-178.	0.7	16
248	Communication—An Approach to Measuring Local Electrochemical Impedance for Monitoring Cathodic Disbondment of Coatings. Journal of the Electrochemical Society, 2016, 163, C228-C231.	1.3	15
249	Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids. Electrochimica Acta, 2016, 202, 100-109.	2.6	36
250	In Situ MRI of Operating Solid-State Lithium Metal Cells Based on Ionic Plastic Crystal Electrolytes. Chemistry of Materials, 2016, 28, 2844-2851.	3.2	54
251	The effect of treatment time on the ionic liquid surface film formation: Promising surface coating for Mg alloy AZ31. Surface and Coatings Technology, 2016, 296, 192-202.	2.2	17
252	Amino-functionalized mesoporous silica based polyethersulfone–polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells. RSC Advances, 2016, 6, 86575-86585.	1.7	34

#	Article	IF	Citations
253	A novel class of gas separation membrane based on organic ionic plastic crystals. Chemical Communications, 2016, 52, 12940-12943.	2.2	11
254	Amino-Functionalized Mesoporous Silica Based Polyethersuflone-Polyvinylpyrrolidone Composite Membrane for Elevated Temperature Fuel Cells. ECS Transactions, 2016, 75, 581-588.	0.3	1
255	Study of lithium conducting single ion conductor based on polystyrene sulfonate for lithium battery application. Polymer, 2016, 99, 748-755.	1.8	28
256	Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids. Electrochemistry Communications, 2016, 71, 48-51.	2.3	32
257	Ion Dynamics in a Mixedâ€Cation Alkoxyâ€Ammonium Ionic Liquid Electrolyte for Sodium Device Applications. ChemPhysChem, 2016, 17, 3187-3195.	1.0	43
258	A Cytocompatible Robust Hybrid Conducting Polymer Hydrogel for Use in a Magnesium Battery. Advanced Materials, 2016, 28, 9349-9355.	11.1	67
259	In situ measurement of pipeline coating integrity and corrosion resistance losses under simulated mechanical strains and cathodic protection. Progress in Organic Coatings, 2016, 101, 111-121.	1.9	25
260	Unexpected effect of tetraglyme plasticizer on lithium ion dynamics in PAMPS based ionomers. Physical Chemistry Chemical Physics, 2016, 18, 19011-19019.	1.3	16
261	lonic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials, $2016,1,$	23.3	511
262	N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte. Scientific Reports, 2016, 6, 24499.	1.6	7
263	Inorganic-Organic Ionic Liquid Electrolytes Enabling High Energy-Density Metal Electrodes for Energy Storage. Electrochimica Acta, 2016, 220, 609-617.	2.6	90
264	Protic organic ionic plastic crystals based on a difunctional cation and the triflate anion: a new solid-state proton conductor. Chemical Communications, 2016, 52, 14097-14100.	2.2	17
265	Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning. Journal of Materials Chemistry A, 2016, 4, 9873-9880.	5.2	49
266	Occurrence of Anodic Current and Corrosion of Steel in Aqueous Media Under Fluctuating Cathodic Protection Potentials. Corrosion, 2016, 72, 1243-1251.	0.5	12
267	Polymer architecture effect on sodium ion transport in PSTFSI-based ionomers: A molecular dynamics study. Solid State Ionics, 2016, 288, 271-276.	1.3	16
268	Synergistic Corrosion Inhibition of Mild Steel in Aqueous Chloride Solutions by an Imidazolinium Carboxylate Salt. ACS Sustainable Chemistry and Engineering, 2016, 4, 1746-1755.	3.2	123
269	Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes. Electrochimica Acta, 2016, 188, 461-471.	2.6	48
270	Enhancement of †dry†proton conductivity by self-assembled nanochannels in all-solid polyelectrolytes. Journal of Materials Chemistry A, 2016, 4, 7615-7623.	5.2	21

#	Article	IF	CITATIONS
271	Ionic liquid electrolytes for reversible magnesium electrochemistry. Chemical Communications, 2016, 52, 4033-4036.	2.2	61
272	Novel Na ⁺ Ion Diffusion Mechanism in Mixed Organic–Inorganic Ionic Liquid Electrolyte Leading to High Na ⁺ Transference Number and Stable, High Rate Electrochemical Cycling of Sodium Cells Journal of Physical Chemistry C, 2016, 120, 4276-4286.	1.5	209
273	Addition of low concentrations of an ionic liquid to a base oil reduces friction over multiple length scales: a combined nano- and macrotribology investigation. Physical Chemistry Chemical Physics, 2016, 18, 6541-6547.	1.3	46
274	A single cation or anion dendrimer-based liquid electrolyte. Chemical Science, 2016, 7, 3390-3398.	3.7	9
275	Film formation in trihexyl(tetradecyl)phosphonium diphenylphosphate ([P6,6,6,14][dpp]) ionic liquid on AA5083 aluminium alloy. Surface and Coatings Technology, 2016, 303, 385-395.	2.2	9
276	Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of water. Electrochimica Acta, 2016, 196, 727-734.	2.6	8
277	Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. Journal of Materials Chemistry A, 2016, 4, 4019-4024.	5.2	93
278	New insights into ordering and dynamics in organic ionic plastic crystal electrolytes. Solid State lonics, 2016, 288, 160-166.	1.3	26
279	An Overview of New Progresses in Understanding Pipeline Corrosion. Corrosion Science and Technology, 2016, 15, 271-280.	0.2	2
280	Rechargeable Zn/PEDOT Battery with an Imidazoliumâ€Based Ionic Liquid as the Electrolyte. ChemElectroChem, 2015, 2, 2071-2078.	1.7	41
281	Gelled ionic liquid sodium ion conductors for sodium batteries. Electrochimica Acta, 2015, 169, 376-381.	2.6	44
282	Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Physical Chemistry Chemical Physics, 2015, 17, 8706-8713.	1.3	123
283	Microstructure and corrosion of AA2024. Corrosion Reviews, 2015, 33, 1-30.	1.0	78
284	Understanding the effectiveness of cathodic protection under disbonded coatings. Electrochimica Acta, 2015, 186, 377-390.	2.6	43
285	The Restoration of the Passivity of Stainless Steel Weldments in Pickling Solutions Observed Using Electrochemical and Surface Analytical Methods. Corrosion, 2015, 71, 1248-1256.	0.5	4
286	Improvement of charge/discharge properties of oligoether electrolytes by zwitterions with an attached cyano group for use in lithium-ion secondary batteries. Electrochimica Acta, 2015, 186, 471-477.	2.6	29
287	The Reduction of Oxygen on Iron(II) Oxide/Poly(3,4-ethylenedioxythiophene) Composite Thin Film Electrodes. Electrochimica Acta, 2015, 154, 142-148.	2.6	24
288	A study of phase behavior and conductivity of mixtures of the organic ionic plastic crystal N-methyl-N-methyl-pyrrolidinium dicyanamide with sodium dicyanamide. Solid State Ionics, 2015, 272, 74-83.	1.3	23

#	Article	IF	Citations
289	Novel imidazolinium ionic liquids and organic salts. Electrochimica Acta, 2015, 159, 219-226.	2.6	33
290	Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 4656-4663.	1.3	159
291	Evaluation of corrosion behaviour of biodegradable base oils using electrochemical techniques. Corrosion Engineering Science and Technology, 2015, 50, 108-117.	0.7	1
292	Sodium ion dynamics in a sulfonate based ionomer system studied by 23Na solid-state nuclear magnetic resonance and impedance spectroscopy. Electrochimica Acta, 2015, 175, 62-67.	2.6	21
293	Electrochemical impedance spectroscopy as a tool to measure cathodic disbondment on coated steel surfaces: Capabilities and limitations. Progress in Organic Coatings, 2015, 88, 23-31.	1.9	22
294	The Influence of Water and Metal Salt on the Transport and Structural Properties of 1-Octyl-3-methylimidazolium Chloride. Australian Journal of Chemistry, 2015, 68, 420.	0.5	4
295	An overview of major methods for inspecting and monitoring external corrosion of on-shore transportation pipelines. Corrosion Engineering Science and Technology, 2015, 50, 226-235.	0.7	61
296	Insights into the Transport of Alkali Metal Ions Doped into a Plastic Crystal Electrolyte. Chemistry of Materials, 2015, 27, 2666-2672.	3.2	34
297	Characterisation of ion transport in sulfonate based ionomer systems containing lithium and quaternary ammonium cations. Electrochimica Acta, 2015, 175, 80-86.	2.6	20
298	Synthesis of Sodium Poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]-co-ethylacrylate] Solid Polymer Electrolytes. Electrochimica Acta, 2015, 175, 232-239.	2.6	27
299	The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part II: The influence of intermetallic compositions within heavily attacked sites. Corrosion Science, 2015, 95, 40-50.	3.0	11
300	The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part I: Average statistics of each intermetallic composition. Corrosion Science, 2015, 95, 22-39.	3.0	17
301	Enhanced ionic mobility in Organic Ionic Plastic Crystal – Dendrimer solid electrolytes. Electrochimica Acta, 2015, 175, 214-223.	2.6	20
302	Ionic conductivity and molecular dynamic behavior in supramolecular ionic networks; the effect of lithium salt addition. Electrochimica Acta, 2015, 175, 74-79.	2.6	13
303	lonic transport through a composite structure of N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystals reinforced with polymer nanofibres. Journal of Materials Chemistry A, 2015, 3, 6038-6052.	5.2	47
304	Effect of zwitterions on electrochemical properties of oligoether-based electrolytes. Electrochimica Acta, 2015, 175, 209-213.	2.6	27
305	Electrochemical Method for Studying Localized Corrosion beneath Disbonded Coatings under Cathodic Protection. Journal of the Electrochemical Society, 2015, 162, C515-C527.	1.3	24
306	Rare earth 3-(4′-hydroxyphenyl)propionate complexes. New Journal of Chemistry, 2015, 39, 7688-7695.	1.4	20

#	Article	IF	Citations
307	New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid–solid phase transitions. Physical Chemistry Chemical Physics, 2015, 17, 18991-19000.	1.3	25
308	Increased ion conduction in dual cation [sodium] [tetraalkylammonium] poly [4-styrenesulfonyl (trifluoromethylsulfonyl) imide-co-ethylacrylate] ionomers. Journal of Materials Chemistry A, 2015, 3, 19989-19995.	5.2	19
309	Characterization of the phase behaviour of a novel polymerizable lyotropic ionic liquid crystal. Physical Chemistry Chemical Physics, 2015, 17, 23059-23068.	1.3	22
310	Corrosion protection afforded by praseodymium conversion film on Mg alloy AZNd in simulated biological fluid studied by scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2015, 739, 211-217.	1.9	35
311	Evaluating the corrosion behaviour of Magnesium alloy in simulated biological fluid by using SECM to detect hydrogen evolution. Electrochimica Acta, 2015, 152, 294-301.	2.6	43
312	Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. Journal of Materials Chemistry A, 2015, 3, 2338-2343.	5.2	22
313	The influence of organic structure and rare earth metal cation on the corrosion efficiency observed on AS1020 steel compared with La(4OHCin)3. AIMS Materials Science, 2015, 2, 1-15.	0.7	20
314	Insight into Local Structure and Molecular Dynamics in Organic Solidâ€State Ionic Conductors. ChemPhysChem, 2014, 15, 3720-3724.	1.0	28
315	A Novel Approach for Monitoring Pipeline Corrosion Under Disbonded Coatings. , 2014, , .		4
316	An Electrochemical Method for Measuring Localized Corrosion under Cathodic Protection. ECS Electrochemistry Letters, 2014, 4, C1-C4.	1.9	21
317	Probing Ion Exchange in the Triflic Acid–Guanidinium Triflate System: A Solid-State Nuclear Magnetic Resonance Study. Journal of Physical Chemistry C, 2014, 118, 28520-28526.	1.5	18
318	lonic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Physical Chemistry Chemical Physics, 2014, 16, 18658-18674.	1.3	128
319	Biocompatible Ionic Liquid–Biopolymer Electrolyte-Enabled Thin and Compact Magnesium–Air Batteries. ACS Applied Materials & Interfaces, 2014, 6, 21110-21117.	4.0	99
320	Ionic Liquid Adsorption and Nanotribology at the Silica–Oil Interface: Hundred-Fold Dilution in Oil Lubricates as Effectively as the Pure Ionic Liquid. Journal of Physical Chemistry Letters, 2014, 5, 4095-4099.	2.1	48
321	Modelling Ion-Pair Geometries and Dynamics in a 1-Ethyl-1-methylpyrrolidinium-Based Ion-Conductive Crystal. ChemPhysChem, 2014, 15, 3530-3535.	1.0	7
322	Roles of Additives in the Trihexyl(tetradecyl) Phosphonium Chloride Ionic Liquid Electrolyte for Primary Mg-Air Cells. Journal of the Electrochemical Society, 2014, 161, A974-A980.	1.3	17
323	Recent developments in corrosion inhibitors based on rare earth metal compounds. Corrosion Engineering Science and Technology, 2014, 49, 130-135.	0.7	28
324	Energy applications of ionic liquids. Energy and Environmental Science, 2014, 7, 232-250.	15.6	1,455

#	Article	IF	Citations
325	Electrochemical etching of AA5083 aluminium alloy in trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)amide ionic liquid. Corrosion Science, 2014, 80, 120-127.	3.0	17
326	Applications of scanning electrochemical microscopy (SECM) for local characterization of AZ31 surface during corrosion in a buffered media. Corrosion Science, 2014, 86, 93-100.	3.0	75
327	Proton transport behaviour and molecular dynamics in the guanidinium triflate solid and its mixtures with triflic acid. Journal of Materials Chemistry A, 2014, 2, 681-691.	5.2	51
328	Enhancement of monobasal solid-state dye-sensitized solar cells with polymer electrolyte assembling imidazolium iodide-functionalized silica nanoparticles. Journal of Power Sources, 2014, 248, 283-288.	4.0	28
329	Atom Probe Tomography Study of the Nanoscale Heterostructure around an Al ₂₀ Mn ₃ Cu ₂ Dispersoid in Aluminum Alloy 2024. Langmuir, 2014, 30, 14817-14823.	1.6	17
330	Anisotropic MRI Contrast Reveals Enhanced Ionic Transport in Plastic Crystals. Journal of the American Chemical Society, 2014, 136, 15638-15645.	6.6	31
331	Insights into the reversible oxygen reduction reaction in a series of phosphonium-based ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 25062-25070.	1.3	27
332	Exploring zinc coordination in novel zinc battery electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 10816.	1.3	27
333	Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Physical Chemistry Chemical Physics, 2014, 16, 12350-12355.	1.3	87
334	An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries. Energy and Environmental Science, 2014, 7, 3352-3361.	15.6	122
335	Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid–sodium cation mixtures. Journal of Materials Chemistry A, 2014, 2, 365-374.	5.2	29
336	Multifunctional rare earth organic corrosion inhibitors. , 2014, , 117-142.		3
337	The Effect of Treatment Temperature on Corrosion Resistance and Hydrophilicity of an Ionic Liquid Coating for Mg-Based Stents. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18989-18997.	4.0	19
338	Structure and dynamics in an organic ionic plastic crystal, N-ethyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl) amide, mixed with a sodium salt. Journal of Materials Chemistry A, 2014, 2, 3993-4003.	5.2	56
339	Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers. Journal of Materials Chemistry A, 2014, 2, 17934-17943.	5.2	29
340	Zn Electrochemistry in 1â€Ethylâ€3â€Methylimidazolium and <i>N</i> â€Butylâ€ <i>N</i> â€Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes. ChemElectroChem, 2014, 1, 1688-1697.	1.7	49
341	Influence of Zn ²⁺ and Water on the Transport Properties of a Pyrrolidinium Dicyanamide Ionic Liquid. Journal of Physical Chemistry B, 2014, 118, 4895-4905.	1.2	62
342	Rare Earth 4-Hydroxycinnamate Compounds as Carbon Dioxide Corrosion Inhibitors for Steel in Sodium Chloride Solution. Journal of the Electrochemical Society, 2014, 161, C527-C534.	1.3	38

#	Article	IF	Citations
343	New opportunities for quantitative and time efficient 3D MRI of liquid and solid electrochemical cell components: Sectoral Fast Spin Echo and SPRITE. Journal of Magnetic Resonance, 2014, 248, 96-104.	1.2	37
344	The behaviour of praseodymium 4-hydroxycinnamate as an inhibitor for carbon dioxide corrosion and oxygen corrosion of steel in NaCl solutions. Corrosion Science, 2014, 80, 128-138.	3.0	83
345	The use of cerium and praseodymium mercaptoacetate as thiol-containing inhibitors for AA2024-T3. Corrosion Science, 2014, 81, 45-53.	3.0	54
346	A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants. Tribology International, 2014, 77, 171-177.	3.0	71
347	Enhanced performance of phosphonium based ionic liquids towards 4 electrons oxygen reduction reaction upon addition of a weak proton source. Electrochemistry Communications, 2014, 38, 24-27.	2.3	41
348	Mixture of safflower oil and synthetic ester as a base stock for biodegradable lubricants. Lubrication Science, 2014, 26, 67-80.	0.9	17
349	Inducing alignment of cyclic peptide nanotubes through the use of structured ionic liquids. Chemical Communications, 2013, 49, 7729.	2.2	14
350	A study of 4-carboxyphenylboronic acid as a corrosion inhibitor for steel in carbon dioxide containing environments. Corrosion Science, 2013, 76, 257-266.	3.0	97
351	Atomistic simulation of structure and dynamics of the plastic crystal diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. Journal of Chemical Physics, 2013, 138, 244503.	1.2	36
352	LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte. Electrochimica Acta, 2013, 101, 151-157.	2.6	37
353	lonic Liquids as Antiwear Additives in Base Oils: Influence of Structure on Miscibility and Antiwear Performance for Steel on Aluminum. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11544-11553.	4.0	154
354	Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications. Electrochimica Acta, 2013, 114, 766-771.	2.6	119
355	Dynamic Heterogeneity and Ionic Conduction in an Organic Ionic Plastic Crystal and the Role of Vacancies. Journal of Physical Chemistry Letters, 2013, 4, 4085-4089.	2.1	32
356	The corrosion behaviors of stainless steel weldments in sodium chloride solution observed using a novel electrochemical measurement approach. Desalination, 2013, 327, 39-45.	4.0	47
357	Proton transport in acid containing choline dihydrogen phosphate membranes for fuel cell. Electrochimica Acta, 2013, 111, 41-48.	2.6	7
358	Cetrimonium Nalidixate as a Multifunctional Inhibitor to Combat Biofilm Formation and Microbiologically Influenced Corrosion. Australian Journal of Chemistry, 2013, 66, 921.	0.5	20
359	Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2013, 160, A1629-A1637.	1.3	208
360	Influence of the Polymerization Method on the Oxygen Reduction Reaction Pathway on PEDOT. ECS Electrochemistry Letters, 2013, 2, F29-F31.	1.9	31

#	Article	IF	Citations
361	Assessment of permethylated transition-metal sandwich complexes as internal reference redox systems in ionic liquids. Physical Chemistry Chemical Physics, 2013, 15, 2547.	1.3	10
362	Molecular insights: structure and dynamics of a Li ion doped organic ionic plastic crystal. Physical Chemistry Chemical Physics, 2013, 15, 19570.	1.3	11
363	Electrochemical, Transport, and Spectroscopic Properties of 1-Ethyl-3-methylimidazolium Ionic Liquid Electrolytes Containing Zinc Dicyanamide. Journal of Physical Chemistry C, 2013, 117, 2662-2669.	1.5	69
364	Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl (tetradecyl) phosphonium based ionic liquid electrolytes. Electrochimica Acta, 2013, 87, 701-708.	2.6	44
365	A review of ionic liquid surface film formation on Mg and its alloys for improved corrosion performance. Electrochimica Acta, 2013, 110, 501-510.	2.6	82
366	Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO ₂ Composites. Journal of the Electrochemical Society, 2013, 160, H74-H79.	1.3	19
367	Ionogels based on ionic liquids as potential highly conductive solid state electrolytes. Electrochimica Acta, 2013, 91, 219-226.	2.6	87
368	Chelating ionic liquids for reversible zinc electrochemistry. Physical Chemistry Chemical Physics, 2013, 15, 7191.	1.3	76
369	Redox Chemistry of the Superoxide Ion in a Phosphonium-Based Ionic Liquid in the Presence of Water. Journal of Physical Chemistry Letters, 2013, 4, 1834-1837.	2.1	43
370	Nanoporous transition metal oxynitrides as catalysts for the oxygen reduction reaction. Electrochimica Acta, 2013, 103, 151-160.	2.6	22
371	Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions. Energy and Environmental Science, 2013, 6, 979.	15.6	146
372	In Situ, Real-Time Visualization of Electrochemistry Using Magnetic Resonance Imaging. Journal of Physical Chemistry Letters, 2013, 4, 3019-3023.	2.1	46
373	Role of Defects in the High Ionic Conductivity of Choline Triflate Plastic Crystal and Its Acid-Containing Compositions. Journal of Physical Chemistry C, 2013, 117, 5532-5543.	1.5	26
374	A Review of Ionic Liquid Lubricants. Lubricants, 2013, 1, 3-21.	1.2	510
375	On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments. Corrosion Engineering Science and Technology, 2012, 47, 374-382.	0.7	22
376	Anodising AZ31 in a Phosphonium Ionic Liquid: Corrosion Protection through Composite Film Deposition. Journal of the Electrochemical Society, 2012, 159, C539-C545.	1.3	16
377	Understanding Speciation of Lanthanum 4-Hydroxy Cinnamate and its Impact on the Corrosion Inhibition Mechanism for AS1020 Steel. Journal of the Electrochemical Society, 2012, 159, C181-C189.	1.3	36
378	Bi-functional oxygen electrocatalysts based on Palladium oxide-Ruthenium oxide composites. Materials Research Society Symposia Proceedings, 2012, 1491, 13.	0.1	1

#	Article	IF	Citations
379	Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells. Electrochimica Acta, 2012, 84, 213-222.	2.6	123
380	The Influence of Water and Metal Ions on the Transport Properties of Trihexyl(tetradecyl)phosphonium Chloride. Australian Journal of Chemistry, 2012, 65, 1542.	0.5	10
381	Dual active ionic liquids and organic salts for inhibition of microbially influenced corrosion. Chemical Communications, 2012, 48, 5983.	2.2	41
382	Effect of manganese additions on the corrosion behavior of an extruded Mg–5Al based alloy. Journal of Alloys and Compounds, 2012, 542, 199-206.	2.8	52
383	Plastic crystal phases with high proton conductivity. Journal of Materials Chemistry, 2012, 22, 2965-2974.	6.7	38
384	Structure and Transport Properties of a Plastic Crystal Ion Conductor: Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate. Journal of the American Chemical Society, 2012, 134, 9688-9697.	6.6	154
385	A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Physical Chemistry Chemical Physics, 2012, 14, 8224.	1.3	89
386	Effect of calcium oxide on the corrosion behaviour of AZ91 magnesium alloy. Corrosion Science, 2012, 64, 263-271.	3.0	63
387	Conversion coatings of Mg-alloy AZ91D using trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl)amide ionic liquid. Science China Chemistry, 2012, 55, 1598-1607.	4.2	17
388	Ionic Liquid Mixturesâ€"Variations in Physical Properties and Their Origins in Molecular Structure. Journal of Physical Chemistry B, 2012, 116, 8251-8258.	1.2	121
389	Halogen-free chelated orthoborate ionic liquids and organic ionic plastic crystals. Journal of Materials Chemistry, 2012, 22, 6928.	6.7	38
390	Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study. Journal of Physical Chemistry C, 2012, 116, 5827-5834.	1.5	253
391	Preparation of silicalite–polyamide composite membranes for desalination. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 434-441.	0.8	19
392	The Inhibition of Hydrogen Embrittlement in SAE 4340 Steel in an Aqueous Environment with the Rare Earth Compound Lanthanum 4 Hydroxy Cinnamate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2251-2259.	1.1	14
393	Optimising organic ionic plastic crystal electrolyte for all solid-state and higher than ambient temperature lithium batteries. Journal of Solid State Electrochemistry, 2012, 16, 1841-1848.	1.2	59
394	High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration. Electrochemistry Communications, 2012, 18, 119-122.	2.3	136
395	Passive film formation in dilute ionic liquid solutions on magnesium Alloy AZ31. Electrochemistry Communications, 2012, 19, 90-92.	2.3	18
396	Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte. Chemical Communications, 2011, 47, 9327.	2.2	20

#	Article	IF	Citations
397	Novel halogen-free chelated orthoborate–phosphonium ionic liquids: synthesis and tribophysical properties. Physical Chemistry Chemical Physics, 2011, 13, 12865.	1.3	147
398	Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2234.	15.6	99
399	An organic ionic plastic crystal electrolyte based on the triflate anion exhibiting high proton transport. Chemical Communications, 2011, 47, 6401.	2.2	35
400	Protic ionic liquids based on phosphonium cations: comparison with ammonium analogues. Chemical Communications, 2011, 47, 11612.	2.2	55
401	Ionic liquids and organic ionic plastic crystals utilizing small phosphonium cations. Journal of Materials Chemistry, 2011, 21, 7640.	6.7	99
402	Lithium doped N,N-dimethyl pyrrolidinium tetrafluoroborate organic ionic plastic crystal electrolytes for solid state lithium batteries. Journal of Materials Chemistry, 2011, 21, 10171.	6.7	69
403	The effect of coordinating and non-coordinating additives on the transport properties in ionic liquid electrolytes for lithium batteries. Physical Chemistry Chemical Physics, 2011, 13, 4632.	1.3	46
404	New 'Green' Corrosion Inhibitors Based on Rare Earth Compounds. Australian Journal of Chemistry, 2011, 64, 812.	0.5	72
405	Corrosion of heat treated magnesium alloy ZE41. Corrosion Science, 2011, 53, 3299-3308.	3.0	73
406	Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate. Journal of Alloys and Compounds, 2011, 509, 1683-1690.	2.8	102
407	Effects of Corrosion Inhibiting Pigment Lanthanum 4-Hydroxy Cinnamate on the Filiform Corrosion of Coated Steel. Journal of the Electrochemical Society, 2011, 158, C353.	1.3	26
408	On the use of organic ionic plastic crystals in all solid-state lithium metal batteries. Solid State lonics, 2011, 204-205, 73-79.	1.3	51
409	The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries. Electrochimica Acta, 2011, 58, 583-588.	2.6	66
410	Direct electro-deposition of graphene from aqueous suspensions. Physical Chemistry Chemical Physics, 2011, 13, 9187.	1.3	197
411	Chromate replacement in coatings for corrosion protection of aerospace aluminium alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 836-840.	0.8	20
412	Transport Properties and Phase Behaviour in Binary and Ternary Ionic Liquid Electrolyte Systems of Interest in Lithium Batteries. ChemPhysChem, 2011, 12, 823-827.	1.0	78
413	Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloy. Electrochimica Acta, 2011, 56, 5328-5334.	2.6	18
414	The electrochemistry of lithium in ionic liquid/organic diluent mixtures. Electrochimica Acta, 2010, 55, 8947-8952.	2.6	62

#	Article	IF	Citations
415	Transition in Wear Performance for Ionic Liquid Lubricants under Increasing Load. Tribology Letters, 2010, 40, 279-284.	1.2	49
416	Conducting Polymer Composite Materials for Hydrogen Generation. Advanced Materials, 2010, 22, 1727-1730.	11.1	105
417	In situ Photopolymerization of a Gel Ionic Liquid Electrolyte in the Presence of Iodine and Its Use in Dye Sensitized Solar Cells. Macromolecular Rapid Communications, 2010, 31, 479-483.	2.0	47
418	Visualisation of chemical processes during corrosion of zinc using magnetic resonance imaging. Electrochemistry Communications, 2010, 12, 44-47.	2.3	21
419	On the role of cyclic unsaturated additives on the behaviour of lithium metal electrodes in ionic liquid electrolytes. Electrochimica Acta, 2010, 55, 2210-2215.	2.6	44
420	The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys. Electrochimica Acta, 2010, 55, 2377-2383.	2.6	56
421	Ion effects in REDOX cycling of conducting polymer based electrochromic materials. Electrochemistry Communications, 2010, 12, 1505-1508.	2.3	22
422	The influence of different nanoparticles on a range of organic ionic plastic crystals. Electrochimica Acta, 2010, 55, 8847-8854.	2.6	30
423	Characterization of the Magnesium Alloy AZ31 Surface in the Ionic Liquid Trihexyl(tetradecyl)phosphonium Bis(trifluoromethanesulfonyl)amide. Journal of the Electrochemical Society, 2010, 157, C392.	1.3	31
424	Undoing Lithium Ion Association in Ionic Liquids through the Complexation by Oligoethers. Journal of Physical Chemistry C, 2010, 114, 20569-20576.	1.5	28
425	Potentiostatic Control of Ionic Liquid Surface Film Formation on ZE41 Magnesium Alloy. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1317-1323.	4.0	38
426	Ionic liquid electrolyte porphyrin dye sensitised solar cells. Chemical Communications, 2010, 46, 3146.	2.2	92
427	lonic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of $<$ i> $>$ N $<$ Methyl- $<$ i> $>$ N $<$ butylmorpholinium Bis(fluorosulfonyl)imide. Journal of Physical Chemistry C, 2010, 114, 21775-21785.	1.5	92
428	Unusual phase behaviour of the organic ionic plastic crystal N,N-dimethylpyrrolidinium tetrafluoroborate. Physical Chemistry Chemical Physics, 2010, 12, 7234.	1.3	38
429	Proton Transport Properties in Zwitterion Blends with Brønsted Acids. Journal of Physical Chemistry B, 2010, 114, 16373-16380.	1.2	33
430	Aggregation, ageing and transport properties of surface modified fumed silica dispersions. Soft Matter, 2010, 6, 2293.	1.2	41
431	lonic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 2010, 12, 1659.	1.3	155
432	Proton transport in choline dihydrogen phosphate/H3PO4 mixtures. Physical Chemistry Chemical Physics, 2010, 12, 11291.	1.3	55

#	Article	IF	CITATIONS
433	Investigation of proton dynamics and the proton transport pathway in choline dihydrogen phosphate using solid-state NMR. Physical Chemistry Chemical Physics, 2010, 12, 5431.	1.3	22
434	Lithium-functionalised silicananoparticles for enhanced ionic conductivity in an organic ionic plastic crystal. Journal of Materials Chemistry, 2010, 20, 338-344.	6.7	24
435	Organic ionic plastic crystals: recent advances. Journal of Materials Chemistry, 2010, 20, 2056.	6.7	247
436	An Azo-Spiro Mixed Ionic Liquid Electrolyte for Lithium Metal–LiFePO[sub 4] Batteries. Journal of the Electrochemical Society, 2010, 157, A876.	1.3	25
437	PEDOT-Coated Counter Electrodes for Dye-Sensitized Solar Cells. Australian Journal of Chemistry, 2009, 62, 348.	0.5	13
438	Structural Characterization of Novel Ionic Salts Incorporating Trihalide Anions. Australian Journal of Chemistry, 2009, 62, 334.	0.5	21
439	Interaction of Ce(dbp) ₃ with surface of aluminium alloy 2024-T3 using macroscopic models of intermetallic phases. Corrosion Engineering Science and Technology, 2009, 44, 416-424.	0.7	24
440	Liâ∈Metal Symmetrical Cell Studies Using Ionic Organic Plastic Crystal Electrolyte. Advanced Engineering Materials, 2009, 11, 1044-1048.	1.6	69
441	Aluminium Speciation in 1â€Butylâ€1â€Methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide/AlCl ₃ Mixtures. Chemistry - A European Journal, 2009, 15, 3435-3447.	1.7	69
442	Polyterthiophene/CNT composite as a cathode material for lithium batteries employing an ionic liquid electrolyte. Electrochimica Acta, 2009, 54, 6844-6849.	2.6	41
443	Synthesis and Characterisation of Rare Earth Complexes Supported by <i>para ⟨i⟩â€Substituted Cinnamate Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 833-839.</i>	0.6	41
444	Nanoelectrodes: energy conversion and storage. Materials Today, 2009, 12, 20-27.	8.3	61
445	New Insights into the Fundamental Chemical Nature of Ionic Liquid Film Formation on Magnesium Alloy Surfaces. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1045-1052.	4.0	80
446	Transport properties of ionic liquid electrolytes with organic diluents. Physical Chemistry Chemical Physics, 2009, 11, 7202.	1.3	93
447	Localized Relaxational Dynamics of Succinonitrile. Journal of Physical Chemistry C, 2009, 113, 15007-15013.	1.5	9
448	Corrosion of magnesium alloy ZE41 – The role of microstructural features. Corrosion Science, 2009, 51, 387-394.	3.0	162
449	On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 4962.	1.3	645
450	On the components of the dielectric constants of ionic liquids: ionic polarization?. Physical Chemistry Chemical Physics, 2009, 11, 2452.	1.3	171

#	Article	IF	Citations
451	Surprising effect of nanoparticle inclusion on ion conductivity in a lithium doped organic ionic plastic crystal. Journal of Materials Chemistry, 2009, 19, 1635.	6.7	33
452	The effect of alkyl chain length in a series of novel N-alkyl-3-benzylimidazolium iodide salts. CrystEngComm, 2009, 11, 2456.	1.3	13
453	Effect of organic additives on the cycling performances of lithium metal polymer cells. Journal of Power Sources, 2008, 178, 832-836.	4.0	34
454	Control of magnesium interfacial reactions in aqueous electrolytes towards a biocompatible battery. Electrochimica Acta, 2008, 53, 5881-5884.	2.6	41
455	Lithium-polymer battery based on an ionic liquid–polymer electrolyte composite for room temperature applications. Electrochimica Acta, 2008, 53, 6460-6463.	2.6	38
456	Order–disorder transitions in poly(3,4-ethylenedioxythiophene). Polymer, 2008, 49, 481-487.	1.8	67
457	Enhanced properties in chemically polymerized poly(terthiophene) using vapour phase techniques. Reactive and Functional Polymers, 2008, 68, 1119-1126.	2.0	19
458	Oneâ€Step Synthesis of Conducting Polymer–Noble Metal Nanoparticle Composites using an Ionic Liquid. Advanced Functional Materials, 2008, 18, 2031-2040.	7.8	64
459	Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl) Tj ETQq1 1 0	.784314 rş	gBT/Overlock
460	Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes. Journal of Power Sources, 2008, 184, 288-296.	4.0	45
461	Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2â° and P(O)2(R)2â° anions with potential application for corrosion mitigation of magnesium alloys. Electrochimica Acta, 2008, 54, 254-260.	2.6	89
462	Rotational and translational mobility of a highly plastic salt: Dimethylpyrrolidinium thiocyanate. Solid State Ionics, 2008, 178, 1798-1803.	1.3	33
463	Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries. Solid State Ionics, 2008, 179, 2379-2382.	1.3	71
464	High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V ₂ O ₅ Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte. Chemistry of Materials, 2008, 20, 7044-7051.	3.2	205
465	Photo- and solvatochromic properties of nitrobenzospiropyran in ionic liquids containing the [NTf2]â°' anion. Physical Chemistry Chemical Physics, 2008, 10, 5919.	1.3	46
466	An Electrochemical Impedance Study of Ionic Liquid Film Formation and Aqueous Corrosion of Magnesium Alloy ZE41. Israel Journal of Chemistry, 2008, 48, 313-318.	1.0	17
467	High Rates of Oxygen Reduction over a Vapor Phase–Polymerized PEDOT Electrode. Science, 2008, 321, 671-674.	6.0	493
468	Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xHxâ^1]â^1. Physical Chemistry Chemical Physics, 2008, 10, 2972.	1.3	129

#	Article	IF	Citations
469	Inhibition of Corrosion on AA2024-T3 by New Environmentally Friendly Rare Earth Organophosphate Compounds. Corrosion, 2008, 64, 191-197.	0.5	71
470	Purification or contamination? The effect of sorbents on ionic liquids. Chemical Communications, 2008, , 2689.	2.2	47
471	A Potential Novel Rapid Screening NMR Approach to Boundary Film Formation at Solid Interfaces in Contact with Ionic Liquids. Journal of Physical Chemistry C, 2008, 112, 13801-13804.	1.5	26
472	An Investigation of a Phosphinate-Based Ionic Liquid for Corrosion Protection of Magnesium Alloy AZ31. Australian Journal of Chemistry, 2007, 60, 43.	0.5	44
473	Towards a Better Understanding of 'Delocalized Charge' in Ionic Liquid Anions. Australian Journal of Chemistry, 2007, 60, 15.	0.5	79
474	TOWARDS REPLACEMENT OF CHROMATE INHIBITORS BY RARE EARTH SYSTEMS. Corrosion Reviews, 2007, 25, 591-606.	1.0	23
475	N-Methyl-N-Alkylpyrrolidinium Bis(perfluoroethylsulfonyl)amide ([NPf2]–) and Tris(trifluoromethanesulfonyl)methide ([CTf3]–) Salts: Synthesis and Characterization. Australian Journal of Chemistry, 2007, 60, 57.	0.5	21
476	Solubility and Stability of Cytochromecin Hydrated Ionic Liquids:Â Effect of Oxo Acid Residues and Kosmotropicity. Biomacromolecules, 2007, 8, 2080-2086.	2.6	338
477	High Frequency Dielectric Response of the Ionic Liquid N-Methyl-N-ethylpyrrolidinium Dicyanamide. Australian Journal of Chemistry, 2007, 60, 6.	0.5	28
478	Conducting Polymers with Fibrillar Morphology Synthesized in a Biphasic Ionic Liquid/Water System. Macromolecules, 2007, 40, 2702-2711.	2.2	56
479	Influence of Praseodymium. Electrochemical and Solid-State Letters, 2007, 10, C72.	2.2	38
480	Ionic Liquid-Based Rechargeable Lithium Metal-Polymer Cells Assembled with Polyaniline/Carbon Nanotube Composite Cathode. Journal of the Electrochemical Society, 2007, 154, A834.	1.3	74
481	Nanoparticle Enhanced Conductivity in Organic Ionic Plastic Crystals:  Space Charge versus Strain Induced Defect Mechanism. Journal of Physical Chemistry C, 2007, 111, 11463-11468.	1.5	49
482	Liquids intermediate between "molecular―and "ionic―liquids: Liquid Ion Pairs?. Chemical Communications, 2007, , 3817.	2.2	231
483	lonic Liquids in Electrochemical Devices and Processes: Managing Interfacial Electrochemistry. Accounts of Chemical Research, 2007, 40, 1165-1173.	7.6	660
484	Gel electrolytes based on lithium macro-anion salt. Solid State Ionics, 2007, 178, 785-791.	1.3	2
485	Exploring corrosion protection of Mg via ionic liquid pretreatment. Surface and Coatings Technology, 2007, 201, 4496-4504.	2.2	79
486	High current density and drift velocity in templated conducting polymers. Organic Electronics, 2007, 8, 796-800.	1.4	22

#	Article	IF	Citations
487	A new class of proton-conducting ionic plastic crystals based on organic cations and dihydrogen phosphate. Electrochemistry Communications, 2007, 9, 1202-1205.	2.3	60
488	Corrosion protection of AA2024-T3 using rare earth diphenyl phosphates. Electrochimica Acta, 2007, 52, 4024-4031.	2.6	92
489	The corrosion inhibition mechanism of new rare earth cinnamate compounds — Electrochemical studies. Electrochimica Acta, 2007, 52, 6212-6220.	2.6	62
490	Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. Journal of Power Sources, 2007, 171, 1062-1068.	4.0	378
491	Transport Properties in Ionic Liquids and Ionic Liquid Mixtures:  The Challenges of NMR Pulsed Field Gradient Diffusion Measurements. Journal of Physical Chemistry B, 2007, 111, 9018-9024.	1.2	102
492	Gel electrolytes based on lithium modified silica nano-particles. Electrochimica Acta, 2007, 52, 7083-7090.	2.6	40
493	Plastic crystal behaviour in tetraethylammonium dicyanamide. Solid State Ionics, 2007, 178, 1065-1071.	1.3	30
494	N-methyl-N-alkylpyrrolidinium nonafluoro-1-butanesulfonate salts: lonic liquid properties and plastic crystal behaviour. Green Chemistry, 2006, 8, 256.	4.6	38
495	Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes. Journal of the Electrochemical Society, 2006, 153, A595.	1.3	325
496	Solutionâ^'Surface Electropolymerization:  A Route to Morphologically Novel Poly(pyrrole) Using an Ionic Liquid. Macromolecules, 2006, 39, 7193-7195.	2.2	36
497	Broadband dielectric response of the ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide. Chemical Communications, 2006, , 1748-1750.	2.2	80
498	Cerium Dibutylphosphate as a Corrosion Inhibitor for AA2024-T3 Aluminum Alloys. Journal of the Electrochemical Society, 2006, 153, B392.	1.3	107
499	Lewis base ionic liquids. Chemical Communications, 2006, , 1905.	2.2	399
500	Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1483-1498.	1.4	200
501	The nature of the surface film on steel treated with cerium and lanthanum cinnamate based corrosion inhibitors. Corrosion Science, 2006, 48, 404-419.	3.0	77
502	Conducting polymer nanoparticles synthesized in an ionic liquid by chemical polymerisation. Synthetic Metals, 2006, 156, 979-983.	2.1	50
503	Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes. Comptes Rendus Chimie, 2006, 9, 617-621.	0.2	51
504	A new Lewis-base ionic liquid comprising a mono-charged diamine structure: A highly stable electrolyte for lithium electrochemistry. Electrochemistry Communications, 2006, 8, 445-449.	2.3	55

#	Article	IF	CITATIONS
505	Zwitterion effect in polyelectrolyte gels based on lithium methacrylate-N,N-dimethyl acrylamide copolymer. Electrochimica Acta, 2006, 51, 4033-4038.	2.6	28
506	Synthesis and structural diversity of rare earth anthranilate complexes. Polyhedron, 2006, 25, 379-386.	1.0	31
507	Transport and phase dynamics of poly(vinyl pyrrolidone) doped plastically crystalline N-methyl-N-propylpyrrolidinium tetrafluoroborate. Solid State Ionics, 2006, 177, 95-104.	1.3	17
508	High mobility lâ [^] /l3â [^] redox couple in a molecular plastic crystal: A potential new generation of electrolyte for solid-state photoelectrochemical cells. Solid State Ionics, 2006, 177, 395-401.	1.3	23
509	The "filler-effect―in organic ionic plastic crystals: Enhanced conductivity by the addition of nano-sized TiO2. Solid State Ionics, 2006, 177, 827-831.	1.3	34
510	Novel Lewis-base ionic liquids replacing typical anions. Tetrahedron Letters, 2006, 47, 2755-2758.	0.7	59
511	Fast ion conduction in an acid doped pentaglycerine plastic crystal. Solid State Ionics, 2006, 177, 647-652.	1.3	29
512	Conduction in ionic organic plastic crystals: The role of defects. Solid State Ionics, 2006, 177, 2569-2573.	1.3	62
513	Structure and dynamics of the plastic crystal tetramethylammonium dicyanamide—a molecular dynamics studyâ⁻†. Solid State Ionics, 2006, 177, 2845-2850.	1.3	24
514	Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnology and Bioengineering, 2006, 94, 1209-1213.	1.7	169
515	An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31. Electrochemical and Solid-State Letters, 2006, 9, B52.	2.2	83
516	Developing fast ion conductors from nanostructured polymers. , 2006, , 97-114.		0
517	The additive effect of zwitterion and nano-particles on ion dissociation in polyelectrolytes. Electrochimica Acta, 2005, 50, 2733-2738.	2.6	29
518	Cation dynamics in dimethyl-pyrrolidinium-based solid-state ion conductors. Electrochimica Acta, 2005, 50, 3853-3858.	2.6	22
519	Composition effects on ion transport in a polyelectrolyte gel with the addition of ion dissociators. Electrochimica Acta, 2005, 50, 3917-3921.	2.6	20
520	Rapid I?/I3? Diffusion in a Molecular-Plastic-Crystal Electrolyte for Potential Application in Solid-State Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2005, 44, 313-316.	7.2	59
521	The Zwitterion Effect in Ionic Liquids: Towards Practical Rechargeable Lithium-Metal Batteries. Advanced Materials, 2005, 17, 2497-2501.	11.1	189
522	Ion Conduction in Plastic Crystals. , 2005, , 287-305.		0

#	Article	IF	CITATIONS
523	The Zwitterion Effect in Ionic Liquids: Towards Practical Rechargeable Lithium-Metal Batteries ChemInform, 2005, 36, no.	0.1	O
524	The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene. Polymer, 2005, 46, 2047-2058.	1.8	128
525	Lil-DopedN,N-Dimethyl-pyrrolidinium lodide, an Archetypal Rotator-Phase Ionic Conductor. Journal of Physical Chemistry B, 2005, 109, 20087-20092.	1.2	41
526	Thermal analysis, nuclear magnetic resonance spectroscopy, and impedance spectroscopy of N,N-dimethyl-pyrrolidinium iodide: An ionic solid exhibiting rotator phases. Journal of Applied Physics, 2005, 97, 093904.	1.1	23
527	Defect-assisted conductivity in organic ionic plastic crystals. Journal of Chemical Physics, 2005, 122, 064704.	1.2	67
528	Technical Note:Simulated Transient Loss of Cathodic Protection for Buried Pipelines. Corrosion, 2005, 61, 498-501.	0.5	12
529	Inhibition of AA2024-T3 on a Phase-by-Phase Basis Using an Environmentally Benign Inhibitor, Cerium Dibutyl Phosphate. Electrochemical and Solid-State Letters, 2005, 8, C180.	2.2	102
530	63Cu NMR investigation of effect of small additions of Sn to Al–1.7 at.% Cu in promoting accelerations on aging. Philosophical Magazine, 2005, 85, 2757-2766.	ated 0.7	8
531	Potential Application of Solid Electrolyte P11 OH in Ni/MH Batteries. Synthetic Metals, 2005, 152, 57-60.	2.1	9
532	Investigation of the electropolymerisation of EDOT in ionic liquids. Synthetic Metals, 2005, 153, 257-260.	2.1	69
533	Solid state NMR analysis of polypyrrole grown in a phosphonium ionic liquid. Synthetic Metals, 2005, 155, 684-689.	2.1	27
534	Protein solubilising and stabilising ionic liquids. Chemical Communications, 2005, , 4804.	2.2	427
535	The zwitterion effect in high-conductivity polyelectrolyte materials. Nature Materials, 2004, 3, 29-32.	13.3	276
536	Corrosion Mitigation of Mild Steel by New Rare Earth Cinnamate Compounds. Journal of Applied Electrochemistry, 2004, 34, 591-599.	1.5	70
537	On the electrochemical response and interfacial properties of steel–Ca(OH)2 and the steel–concrete system measured using galvanostatic pulses. Electrochimica Acta, 2004, 49, 4331-4339.	2.6	23
538	Ionic conduction in doped succinonitrile. Solid State Ionics, 2004, 175, 733-738.	1.3	44
539	Electrochemical synthesis of polypyrrole in ionic liquids. Polymer, 2004, 45, 1447-1453.	1.8	191
540	Concentration monitoring and performance of a migratory corrosion inhibitor in steel-reinforced concrete. Cement and Concrete Research, 2004, 34, 1435-1440.	4.6	44

#	Article	IF	CITATIONS
541	Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes. Electrochimica Acta, 2004, 49, 1797-1801.	2.6	67
542	lonic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer. Electrochimica Acta, 2004, 50, 335-338.	2.6	53
543	Supercritical CO2 modified organic ionic plastic crystals. Journal of Materials Chemistry, 2004, 14, 2603.	6.7	3
544	Thermal and physical properties of an archetypal organic ionic plastic crystal electrolyte. Physical Chemistry Chemical Physics, 2004, 6, 3721.	1.3	23
545	Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell. Journal of the American Chemical Society, 2004, 126, 13590-13591.	6.6	196
546	Transport properties in a family of dialkylimidazolium ionic liquids. Physical Chemistry Chemical Physics, 2004, 6, 1758-1765.	1.3	148
547	The enhancement of lithium ion dissociation in polyelectrolyte gels on the addition of ceramic nano-fillers. Journal of Materials Chemistry, 2004, 14, 127.	6.7	56
548	Title is missing!. Journal of Materials Science, 2003, 38, 3293-3301.	1.7	32
549	Polyelectrolyte-in-lonic-Liquid Electrolytes. Macromolecular Chemistry and Physics, 2003, 204, 2147-2154.	1.1	49
550	A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation. Electrochimica Acta, 2003, 48, 1707-1711.	2.6	61
551	Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles. Electrochimica Acta, 2003, 48, 2099-2103.	2.6	95
552	Ab initio calculations, Raman and NMR investigation of the plastic crystal di-methyl pyrrolidinium iodide. Electrochimica Acta, 2003, 48, 2283-2289.	2.6	21
553	Cerium acetylacetonates—new aspects, including the lamellar clathrate [Ce(acac)4]·10H2O. Inorganica Chimica Acta, 2003, 352, 229-237.	1.2	44
554	The zwitterion 1-butylimidazolium-3-(n-butanesulfonate). Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1759-o1761.	0.2	4
555	Crystal Structure of a CellI/FellI Heterobimetallic Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 1472-1474.	0.6	8
556	Fast ion conduction in molecular plastic crystals. Solid State Ionics, 2003, 161, 105-112.	1.3	139
557	Boroxine ring compounds as dissociation enhancers in gel polyelectrolytes. Electrochimica Acta, 2003, 48, 1749-1758.	2.6	29
558	Novel alkaline polymer electrolytes based on tetramethyl ammonium hydroxide. Electrochimica Acta, 2003, 48, 1971-1976.	2.6	28

#	Article	IF	Citations
559	Enhancement of ion dissociation in polyelectrolyte gels. Electrochimica Acta, 2003, 48, 2129-2136.	2.6	52
560	Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochimica Acta, 2003, 48, 2355-2359.	2.6	150
561	Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers. Chemistry of Materials, 2003, 15, 2392-2398.	3.2	274
562	Lithium coordination and mobility in gel electrolytes based on an acrylate polymer with ethylene oxide side chains. Journal of Materials Chemistry, 2003, 13, 814-817.	6.7	10
563	Ion transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology. Physical Chemistry Chemical Physics, 2003, 5, 720-725.	1.3	78
564	Transient response analysis of steel in concrete. Corrosion Science, 2003, 45, 1895-1902.	3.0	23
565	Conducting Polymer Electrochemistry in Ionic Liquids Synthetic Metals, 2003, 135-136, 31-32.	2.1	44
566	Conductivity, NMR and crystallographic study of N,N,N,N-tetramethylammonium dicyanamide plastic crystal phases: an archetypal ambient temperature plastic electrolyte material. Physical Chemistry Chemical Physics, 2003, 5, 2692.	1.3	74
567	Solid state ion transport and phase behaviour in composites of N,N-methyl propylpyrrolidinium tetrafluoroborate and amorphous polyethylene oxide. Physical Chemistry Chemical Physics, 2003, 5, 5558.	1.3	26
568	<title>Factors influencing performance of electrochemical actuators based on inherently conducting polymers (ICPs)</title> ., 2002, , .		0
569	Ion and Solvent Dynamics in Gel Electrolytes Based on Ethylene Oxide Grafted Acrylate Polymers. Journal of Physical Chemistry B, 2002, 106, 12119-12123.	1.2	14
570	Use of Ionic Liquids for pi -Conjugated Polymer Electrochemical Devices. Science, 2002, 297, 983-987.	6.0	1,155
571	Effectiveness of Rare-Earth Metal Compounds as Corrosion Inhibitors for Steel. Corrosion, 2002, 58, 953-960.	0.5	76
572	Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids. Green Chemistry, 2002, 4, 223-229.	4.6	109
573	Physical trends and structural features in organic salts of the thiocyanate anion. Journal of Materials Chemistry, 2002, 12, 3475-3480.	6.7	124
574	Structural Characterization of Novel Ionic Materials Incorporating the Bis(trifluoromethanesulfonyl)amide Anion. Chemistry of Materials, 2002, 14, 2103-2108.	3.2	90
575	Heterometallic Cell!???Fell!???salicylate networks: models for corrosion mitigation of steel surfaces by the ???Green??? inhibitor, Ce(salicylate)3. Chemical Communications, 2002, , 2820-2821.	2.2	50
576	ATR characterisation of synergistic corrosion inhibition of mild steel surfaces by cerium salicylate. Corrosion Science, 2002, 44, 2651-2656.	3.0	101

#	Article	IF	Citations
577	Polymer-in-ionic-liquid electrolytes. Macromolecular Chemistry and Physics, 2002, 203, 1906-1911.	1.1	83
578	Towards a better understanding of the cathodic disbondment performance of polyethylene coatings on steel. Advances in Polymer Technology, 2002, 21, 44-58.	0.8	21
579	Lithium polyelectrolyte–ionic liquid systems. Solid State Ionics, 2002, 147, 333-339.	1.3	63
580	Conductive plastic crystal phases of the 1-alkyl-2-methyl pyrrolinium TFSA salts. Solid State Ionics, 2002, 148, 145-151.	1.3	25
581	Microstructural and molecular level characterisation of plastic crystal phases of pyrrolidinium trifluoromethanesulfonyl salts. Solid State Ionics, 2002, 154-155, 119-124.	1.3	66
582	Improved cathodic disbondment performance of polyethylene blends. Polymer Engineering and Science, 2002, 42, 781-789.	1.5	3
583	Modification of thermoplastic coatings for improved cathodic disbondment performance on a steel substrate: a study on failure mechanisms. International Journal of Adhesion and Adhesives, 2002, 22, 395-403.	1.4	14
584	7Li NMR measurements of polymer gel electrolytes. Solid State Ionics, 2002, 147, 303-307.	1.3	21
585	The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics, 2002, 147, 203-211.	1.3	140
586	Microscopic Interactions in Nanocomposite Electrolytes. Macromolecules, 2001, 34, 4549-4555.	2.2	121
587	Room temperature fast-ion conduction in imidazolium halide salts. Journal of Materials Chemistry, 2001, 11, 3031-3036.	6.7	52
588	Structural studies of ambient temperature plastic crystal ion conductors. Journal of Physics Condensed Matter, 2001, 13, 8257-8267.	0.7	120
589	Stability of oxide films formed on mild steel in turbulent flow conditions of alkaline solutions at elevated temperatures. Corrosion Science, 2001, 43, 1497-1517.	3.0	16
590	N,N-Dimethylpyrrolidinium hydroxide: a highly conductive solid material at ambient temperature. Journal of Materials Chemistry, 2001, 11, 2940-2942.	6.7	18
591	N-Methyl-N-alkylpyrrolidinium Hexafluorophosphate Salts:  Novel Molten Salts and Plastic Crystal Phases. Chemistry of Materials, 2001, 13, 558-564.	3.2	137
592	Composite cell components for elevated temperature all-solid-state Li-ion batteries. Solid State Ionics, 2001, 143, 57-66.	1.3	7
593	Blends of maleic-anhydride-grafted polyethylene with polyethylene for improved cathodic disbondment performance. Polymer International, 2001, 50, 1115-1123.	1.6	9
594	Effects of polymer matrix and processing on the conductivity of polymer blends. Polymer International, 2001, 50, 27-36.	1.6	27

#	Article	IF	Citations
595	Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics. Advanced Materials, 2001, 13, 957-966.	11.1	340
596	Platinum electrodeposition for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2001, 46, 1657-1663.	2.6	178
597	Characterization of a proton conductor based on silicotungstic acid. Electrochimica Acta, 2001, 46, 1673-1678.	2.6	17
598	Acid–Organic base swollen polymer membranes. Electrochimica Acta, 2001, 46, 1703-1708.	2.6	120
599	N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts: ionic solvents and solid electrolytes. Electrochimica Acta, 2001, 46, 1753-1757.	2.6	156
600	Platinum electrodeposition from H3Pt(SO3)2OH solutions. Journal of Electroanalytical Chemistry, 2001, 515, 61-70.	1.9	32
601	Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chemical Communications, 2001, , 1430-1431.	2.2	466
602	Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 341-350.	2.4	73
603	Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styrene co-acrylonitrile) and poly(styrene). Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3106-3119.	2.4	68
604	Novel high salt content polymer electrolytes based on high Tg polymers. Electrochimica Acta, 2000, 45, 1249-1254.	2.6	71
605	High conductivity molten salts based on the imide ion. Electrochimica Acta, 2000, 45, 1271-1278.	2.6	375
606	Ion diffusion in molten salt mixtures. Electrochimica Acta, 2000, 45, 1279-1284.	2.6	190
607	NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochimica Acta, 2000, 45, 1237-1242.	2.6	79
608	Glass transition and free volume behaviour of poly(acrylonitrile)/LiCF3SO3 polymer-in-salt electrolytes compared to poly(ether urethane)/LiClO4 solid polymer electrolytes. Electrochimica Acta, 2000, 45, 1243-1247.	2.6	74
609	Quantifying rubber degradation using NMR. Polymer Degradation and Stability, 2000, 70, 31-37.	2.7	67
610	Solid state lithium ion conduction in pyrrolidinium imide–lithium imide salt mixtures. Solid State Ionics, 2000, 136-137, 447-452.	1.3	40
611	Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2â^'x(PO4)3: impedance, X-ray and NMR studies. Solid State Ionics, 2000, 136-137, 339-344.	1.3	77
612	Diffusion layer parameters influencing optimal fuel cell performance. Journal of Power Sources, 2000, 86, 250-254.	4.0	281

#	Article	IF	Citations
613	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 641-646.	1.5	117
614	Lithium doped N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals. Journal of Materials Chemistry, 2000, 10, 2259-2265.	6.7	139
615	HYDROXIDE-DOPED PLASTICAL CRYSTAL ELECTROLYTES BASED ON PYRROLIDINIUM IMIDE SALTS. , 2000, , .		0
616	The use of Nuclear Magnetic Resonance to characterize and evaluate rubber degradation., 1999,,.		0
617	Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF3SO3. Journal of Applied Physics, 1999, 86, 2346-2348.	1.1	65
618	Ceramic-polymer interface in composite electrolytes of lithium aluminium titanium phosphate and polyetherurethane polymer electrolyte. Solid State Ionics, 1999, 121, 115-119.	1.3	44
619	Characterisation and impedance spectroscopy of substituted Li1.3Al0.3Ti1.7(PO4)3â^'x(ZO4)x (Z=V, Nb) ceramics. Solid State Ionics, 1999, 126, 191-196.	1.3	43
620	NMR studies of modified nasicon-like, lithium conducting solid electrolytes. Solid State Ionics, 1999, 124, 213-219.	1.3	58
621	Conductivity in amorphous polyether nanocomposite materials. Solid State Ionics, 1999, 126, 269-276.	1.3	103
622	Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature, 1999, 402, 792-794.	13.7	570
623	An XRD/XPS approach to structural change in conducting PPy. Synthetic Metals, 1999, 101, 19.	2.1	34
624	Conducting composite using an immiscible polymer blend matrix. Synthetic Metals, 1999, 102, 1232-1233.	2.1	20
625	Pyrrolidinium Imides:Â A New Family of Molten Salts and Conductive Plastic Crystal Phases. Journal of Physical Chemistry B, 1999, 103, 4164-4170.	1.2	1,021
626	Lithium-ion conducting ceramic/polyether composites. Electrochimica Acta, 1998, 43, 1333-1337.	2.6	50
627	A nuclear magnetic resonance study of 7Li dynamics in polyether-urethane based solid polymer electrolytes. Electrochimica Acta, 1998, 43, 1551-1556.	2.6	12
628	lon association and molar conductivity in polyether electrolytes. Electrochimica Acta, 1998, 43, 1453-1457.	2.6	13
629	Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy. Electrochimica Acta, 1998, 43, 1465-1469.	2.6	122
630	Plasticizer effects in polyether electrolytes studied by positron annihilation lifetime spectroscopy. Electrochimica Acta, 1998, 43, 1481-1484.	2.6	8

#	Article	IF	CITATIONS
631	Dynamic mechanical thermal analysis studies of factors influencing relaxation in polyetherurethane based solid electrolytes. Electrochimica Acta, 1998, 43, 1499-1503.	2.6	3
632	Composition effects in polyetherurethane-based solid polymer electrolytes. Polymer, 1998, 39, 6261-6268.	1.8	41
633	Ordering and stability in conducting polypyrrole. Synthetic Metals, 1998, 94, 215-219.	2.1	161
634	Effect of increased temperature on erosion-corrosion under turbulent conditions in Bayer liquor. Corrosion Science, 1998, 40, 839-842.	3.0	9
635	Towards elucidating microscopic structural changes in Li-ion conductors Li1+yTi2â^'yAly[PO4]3 and Li1+yTi2â^'yAly[PO4]3â^'x [MO4]x(M=V and Nb): X-ray and27Al and31P NMR studies. Journal of Materials Chemistry, 1998, 8, 2199-2203.	6.7	56
636	Weak intermolecular interactions in sulfonamide salts: structure of 1-ethyl-2-methyl-3-benzyl imidazolium bis[(trifluoromethyl)sulfonyl]amide. Chemical Communications, 1998, , 1593-1594.	2.2	91
637	Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. Journal of Physical Chemistry B, 1998, 102, 8858-8864.	1.2	481
638	Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion. lonics, 1997, 3, 356-362.	1.2	100
639	lonic conductivity in poly(diethylene glycol-carbonate)/sodium triflate complexes. Solid State Ionics, 1997, 99, 257-261.	1.3	43
640	The effect of solvent uptake on the relaxation behaviour, morphology and mechanical properties of a poly(ether ether ketone)/poly(etherimide) blend. Polymer, 1997, 38, 1285-1290.	1.8	13
641	Plasticized single conductung polyelectrolytes based on poly (AMPS). lonics, 1996, 2, 53-62.	1.2	14
642	Ion conductive poly(ethylene oxide-dimethyl siloxane) copolymers. Journal of Polymer Science Part A, 1996, 34, 3465-3470.	2.5	13
643	NMR determination of ionic structure in plasticized polyether-urethane polymer electrolytes. Solid State Ionics, 1996, 85, 209-218.	1.3	37
644	Polymer-ceramic ion-conducting composites. Solid State Ionics, 1996, 86-88, 589-593.	1.3	41
645	Polymer electrolytes for electrochromic window applications. Solid State Ionics, 1996, 86-88, 959-964.	1.3	14
646	Conductivity and NMR properties of plasticized polyethers complexed with lithium salts. Solid State lonics, 1996, 86-88, 1365-1370.	1.3	21
647	Solid state NMR characterization of lithium conducting ceramics. Solid State Ionics, 1996, 86-88, 1397-1402.	1.3	22
648	lon clustering in molecular dynamics simulations of sodium iodide solutions. Electrochimica Acta, 1995, 40, 2087-2091.	2.6	25

#	Article	IF	Citations
649	Structure-property relationships in plasticized solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2131-2136.	2.6	95
650	Poly methacrylate-plasticiser-salt blends as solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2301-2304.	2.6	21
651	Ftir study of ion-pairing effects in plasticized polymer electrolytes. Electrochimica Acta, 1995, 40, 2333-2337.	2.6	43
652	A 13C NMR study of the role of plasticizers in the conduction mechanism of solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2339-2342.	2.6	38
653	An nmr investigation of ionic structure and mobility in plasticized solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2343-2347.	2.6	29
654	Positron annihilation lifetime spectroscopy as a probe of free volume in plasticized solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2349-2351.	2.6	18
655	A 7Li and 19F NMR relaxation study of LiCF3SO3 in plasticised solid polyether electrolytes. Solid State Nuclear Magnetic Resonance, 1995, 5, 217-225.	1.5	15
656	Enhanced thermal properties and morphology of ion-exchanged polypyrrole films. Polymer, 1995, 36, 1933-1940.	1.8	33
657	Solvent diffusion in poly(ether ether ketone)/poly(ether imide) blends. Polymer, 1995, 36, 4359-4360.	1.8	5
658	A study of acid/base treatments of polypyrrole films using 13C n.m.r. spectroscopy. Polymer, 1995, 36, 725-730.	1.8	26
659	Simulations of structure and transport in polymer electrolytesâ~†. Solid State Ionics, 1995, 81, 171-181.	1.3	13
660	Molecular dynamics simulations of ion clustering and conductivity in Nal/ether solutions. II. Effect of ion concentration. Journal of Chemical Physics, 1995, 103, 8746-8755.	1.2	16
661	Molecular dynamics simulations of ion clustering and conductivity in NaI/ether solutions. I. Effect of ion charge. Journal of Chemical Physics, 1995, 103, 8734-8745.	1.2	19
662	Free volume and conductivity of plasticized polyether-urethane solid polymer electrolytes. Journal of Physics Condensed Matter, 1995, 7, 7601-7617.	0.7	61
663	Ion exchange, anisotropic structure and thermal stability of polypyrrole films. Synthetic Metals, 1995, 69, 479-480.	2.1	7
664	Highly concentrated salt solutions: Molecular dynamics simulations of structure and transport. Journal of Chemical Physics, 1994, 100, 5201-5210.	1.2	41
665	Dielectric properties of conducting polymer composites at microwave frequencies. Journal of Materials Science, 1994, 29, 4331-4338.	1.7	25
666	23Na NMR in urethane cross-linked polyether solid polymer electrolytes. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2077-2084.	2.4	15

#	Article	IF	CITATIONS
667	Structural characterization of conducting polypyrrole using 13C cross-polarization/magic-angle spinning solid-state nuclear magnetic resonance spectroscopy. Polymer, 1994, 35, 1593-1601.	1.8	32
668	Materials chemistry communications. 13C Nuclear magnetic resonance spectroscopic study of plasticization in solid polymer electrolytes. Journal of Materials Chemistry, 1994, 4, 1149.	6.7	15
669	Ion exchange, anisotropic structure and thermal stability of polypyrrole films. , 1994, , .		0
670	Characterization of Plasticized Polyether-Urethane Solid Polymer Electrolytes. Materials Research Society Symposia Proceedings, 1994, 369, 517.	0.1	0
671	Conductivity percolation in polyiodide/polymer complexes. Chemistry of Materials, 1993, 5, 1073-1077.	3.2	9
672	Solid state NMR characterization of polyrrole: The nature of the dopant in PF6∠doped films. Synthetic Metals, 1993, 55, 714-719.	2.1	10
673	Molecular dynamics simulations of highly concentrated salt solutions: Structural and transport effects in polymer electrolytes. Solid State Ionics, 1992, 53-56, 1011-1026.	1.3	49
674	Factors Controlling Ionic Conductivity of Plasticized and Non-Plasticized Crosslinked Polyether Electrolytes. Materials Research Society Symposia Proceedings, 1990, 210, 197.	0.1	4
675	Recent insights on the role of cryoprotective agents in vitrification. Cryobiology, 1990, 27, 345-358.	0.3	48
676	Conducting Polymers. , 0, , 167-211.		1