Dong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anemochore Seeds Harbor Distinct Fungal and Bacterial Abundance, Composition, and Functional Profiles. Journal of Fungi (Basel, Switzerland), 2022, 8, 89.	3.5	6
2	Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the Southern Himalayas, China. Applied Soil Ecology, 2022, 178, 104563.	4.3	16
3	Decoupled diversity patterns in microbial geographic distributions on the arid area (the Loess) Tj ETQq1 1 0.784	314 rgBT	/Overlock 10
4	Microbiome Community Structure and Functional Gene Partitioning in Different Micro-Niches Within a Sporocarp-Forming Fungus. Frontiers in Microbiology, 2021, 12, 629352.	3.5	9
5	Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake. Journal of Fungi (Basel, Switzerland), 2021, 7, 586.	3.5	4
6	Tuber pseudohimalayense ascomata-compartments strongly select their associated bacterial microbiome from nearby pine forest soils independently of their maturation stage. Pedobiologia, 2021, 87-88, 150743.	1.2	9
7	Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages. Forest Ecology and Management, 2021, 494, 119328.	3.2	28
8	Long-Term Nitrogen Deposition Alters Ectomycorrhizal Community Composition and Function in a Poplar Plantation. Journal of Fungi (Basel, Switzerland), 2021, 7, 791.	3.5	15
9	Macrofungi Cultivation in Shady Forest Areas Significantly Increases Microbiome Diversity, Abundance and Functional Capacity in Soil Furrows. Journal of Fungi (Basel, Switzerland), 2021, 7, 775.	3.5	7
10	Truffle species strongly shape their surrounding soil mycobiota in a Pinus armandii forest. Archives of Microbiology, 2021, 203, 6303-6314.	2.2	1
11	Soil Rehabilitation Promotes Resilient Microbiome with Enriched Keystone Taxa than Agricultural Infestation in Barren Soils on the Loess Plateau. Biology, 2021, 10, 1261.	2.8	4
12	Amino acid substitutions in antigenic region B of hemagglutinin play a critical role in the antigenic drift of subclade 2.3.4.4 highly pathogenic H5NX influenza viruses. Transboundary and Emerging Diseases, 2020, 67, 263-275.	3.0	9
13	Passive and active ecological restoration strategies for abandoned farmland leads to shifts in potential soil nitrogen loss by denitrification and soil denitrifying microbes. Land Degradation and Development, 2020, 31, 1086-1098.	3.9	20
14	Provenances originate morphological and microbiome variation of Tuber pseudobrumale in southwestern China despite strong genetic consistency. Mycological Progress, 2020, 19, 1545-1558.	1.4	5
15	Land rehabilitation improves edaphic conditions and increases soil microbial biomass and abundance. Soil Ecology Letters, 2020, 2, 145-156.	4.5	6
16	Taxonomic Study of Hypotrachyna Subg. Everniastrum (Hale Ex Sipman) Divakar, A.Crespo, Sipman, Elix & Lumbsch (Ascomycota) from China. Cryptogamie, Mycologie, 2020, 41, .	1.0	0
17	Response of Microbial Communities and Their Metabolic Functions to Drying–Rewetting Stress in a Temperate Forest Soil. Microorganisms, 2019, 7, 129	3.6	35
18	Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Science of the Total Environment, 2019, 660, 1058-1069.	8.0	36

Dong Liu

#	Article	IF	CITATIONS
19	New species and records of Pyxine (Caliciaceae) in China. MycoKeys, 2019, 45, 93-109.	1.9	5
20	The restoration age of Robinia pseudoacacia plantation impacts soil microbial biomass and microbial community structure in the Loess Plateau. Catena, 2018, 165, 192-200.	5.0	56
21	New species and new records of Ophioparmaceae (lichenized Ascomycota) from China. Lichenologist, 2018, 50, 89-99.	0.8	1
22	Three new species and one new combination of Gypsoplaca (lichenized Ascomycota) from the Hengduan Mountains in China. Mycological Progress, 2018, 17, 781-790.	1.4	2
23	Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 2018, 162, 345-353.	5.0	67
24	Relationship between maturity and microbial communities during pig manure composting by phospholipid fatty acid (PLFA) and correlation analysis. Journal of Environmental Management, 2018, 206, 532-539.	7.8	20
25	The Biogeographical Distribution of Soil Bacterial Communities in the Loess Plateau as Revealed by High-Throughput Sequencing. Frontiers in Microbiology, 2018, 9, 2456.	3.5	35
26	Dynamics of soil nitrogen fractions and their relationship with soil microbial communities in two forest species of northern China. PLoS ONE, 2018, 13, e0196567.	2.5	12
27	Microbial functionality as affected by experimental warming of a temperate mountain forest soil—A metaproteomics survey. Applied Soil Ecology, 2017, 117-118, 196-202.	4.3	48
28	Circumscription and phylogeny of the Lepidostromatales (<i>Lichenized Basidiomycota</i>) following discovery of new species from China and Africa. Mycologia, 2017, 109, 730-748.	1.9	10
29	The genus Bulbothrix (Parmeliaceae) in China. Lichenologist, 2016, 48, 121-133.	0.8	2
30	Is there a convergence of deciduous leaf litter stoichiometry, biochemistry and microbial population during decay?. Geoderma, 2016, 272, 93-100.	5.1	33
31	The Genus <i>Letrouitia</i> (Letrouitiaceae: Lichenized Ascomycota) New to Cambodia. Mycobiology, 2015, 43, 163-165.	1.7	2
32	Taxonomic study of the genus <i>Anzia</i> (<i>Lecanorales</i> , lichenized Ascomycota) from Hengduan Mountains, China. Lichenologist, 2015, 47, 99-115.	0.8	8
33	Variability in Soil Microbial Biomass and Diversity Among Different Aggregate-Size Fractions of Different Land Use Types. Soil Science, 2014, 179, 242-249.	0.9	13
34	Effects of Revegetation on Soil Microbial Biomass, Enzyme Activities, and Nutrient Cycling on the Loess Plateau in China. Restoration Ecology, 2013, 21, 600-607.	2.9	38
35	A design of self-service speech explaining system based on RFID. , 2012, , .		1