
## Dong Liu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440657/publications.pdf Version: 2024-02-01



DONCLU

2

| #  | Article                                                                                                                                                                                                | IF        | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| 1  | Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 2018, 162, 345-353.                                                               | 5.0       | 67          |
| 2  | The restoration age of Robinia pseudoacacia plantation impacts soil microbial biomass and microbial community structure in the Loess Plateau. Catena, 2018, 165, 192-200.                              | 5.0       | 56          |
| 3  | Microbial functionality as affected by experimental warming of a temperate mountain forest soil—A<br>metaproteomics survey. Applied Soil Ecology, 2017, 117-118, 196-202.                              | 4.3       | 48          |
| 4  | Effects of Revegetation on Soil Microbial Biomass, Enzyme Activities, and Nutrient Cycling on the<br>Loess Plateau in China. Restoration Ecology, 2013, 21, 600-607.                                   | 2.9       | 38          |
| 5  | Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Science of the Total Environment, 2019, 660, 1058-1069. | 8.0       | 36          |
| 6  | The Biogeographical Distribution of Soil Bacterial Communities in the Loess Plateau as Revealed by<br>High-Throughput Sequencing. Frontiers in Microbiology, 2018, 9, 2456.                            | 3.5       | 35          |
| 7  | Response of Microbial Communities and Their Metabolic Functions to Drying–Rewetting Stress in a<br>Temperate Forest Soil. Microorganisms, 2019, 7, 129.                                                | 3.6       | 35          |
| 8  | Is there a convergence of deciduous leaf litter stoichiometry, biochemistry and microbial population during decay?. Geoderma, 2016, 272, 93-100.                                                       | 5.1       | 33          |
| 9  | Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages. Forest Ecology and Management, 2021, 494, 119328.                                     | 3.2       | 28          |
| 10 | Decoupled diversity patterns in microbial geographic distributions on the arid area (the Loess) Tj ETQq0 0 0 rgBT                                                                                      | /Overlock | 10 Tf 50 38 |
|    | Relationship between maturity and microbial communities during pig manure composting by                                                                                                                |           |             |

| 11 | Relationship between maturity and microbial communities during pig manure composting by phospholipid fatty acid (PLFA) and correlation analysis. Journal of Environmental Management, 2018, 206, 532-539.                               | 7.8 | 20 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 12 | Passive and active ecological restoration strategies for abandoned farmland leads to shifts in potential soil nitrogen loss by denitrification and soil denitrifying microbes. Land Degradation and Development, 2020, 31, 1086-1098.   | 3.9 | 20 |
| 13 | Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the Southern Himalayas, China. Applied Soil Ecology, 2022, 178, 104563.                                                          | 4.3 | 16 |
| 14 | Long-Term Nitrogen Deposition Alters Ectomycorrhizal Community Composition and Function in a<br>Poplar Plantation. Journal of Fungi (Basel, Switzerland), 2021, 7, 791.                                                                 | 3.5 | 15 |
| 15 | Variability in Soil Microbial Biomass and Diversity Among Different Aggregate-Size Fractions of<br>Different Land Use Types. Soil Science, 2014, 179, 242-249.                                                                          | 0.9 | 13 |
| 16 | Dynamics of soil nitrogen fractions and their relationship with soil microbial communities in two forest species of northern China. PLoS ONE, 2018, 13, e0196567.                                                                       | 2.5 | 12 |
| 17 | Circumscription and phylogeny of the Lepidostromatales ( <i>Lichenized Basidiomycota</i> ) following discovery of new species from China and Africa. Mycologia, 2017, 109, 730-748.                                                     | 1.9 | 10 |
| 18 | Amino acid substitutions in antigenic region B of hemagglutinin play a critical role in the antigenic<br>drift of subclade 2.3.4.4 highly pathogenic H5NX influenza viruses. Transboundary and Emerging<br>Diseases, 2020, 67, 263-275. | 3.0 | 9  |

Dong Liu

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Microbiome Community Structure and Functional Gene Partitioning in Different Micro-Niches Within a Sporocarp-Forming Fungus. Frontiers in Microbiology, 2021, 12, 629352.                                           | 3.5 | 9         |
| 20 | Tuber pseudohimalayense ascomata-compartments strongly select their associated bacterial<br>microbiome from nearby pine forest soils independently of their maturation stage. Pedobiologia, 2021,<br>87-88, 150743. | 1.2 | 9         |
| 21 | Taxonomic study of the genus <i>Anzia</i> ( <i>Lecanorales</i> , lichenized Ascomycota) from<br>Hengduan Mountains, China. Lichenologist, 2015, 47, 99-115.                                                         | 0.8 | 8         |
| 22 | Macrofungi Cultivation in Shady Forest Areas Significantly Increases Microbiome Diversity,<br>Abundance and Functional Capacity in Soil Furrows. Journal of Fungi (Basel, Switzerland), 2021, 7, 775.               | 3.5 | 7         |
| 23 | Land rehabilitation improves edaphic conditions and increases soil microbial biomass and abundance.<br>Soil Ecology Letters, 2020, 2, 145-156.                                                                      | 4.5 | 6         |
| 24 | Anemochore Seeds Harbor Distinct Fungal and Bacterial Abundance, Composition, and Functional<br>Profiles. Journal of Fungi (Basel, Switzerland), 2022, 8, 89.                                                       | 3.5 | 6         |
| 25 | Provenances originate morphological and microbiome variation of Tuber pseudobrumale in southwestern China despite strong genetic consistency. Mycological Progress, 2020, 19, 1545-1558.                            | 1.4 | 5         |
| 26 | New species and records of Pyxine (Caliciaceae) in China. MycoKeys, 2019, 45, 93-109.                                                                                                                               | 1.9 | 5         |
| 27 | Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake. Journal of Fungi (Basel, Switzerland), 2021, 7, 586.                            | 3.5 | 4         |
| 28 | Soil Rehabilitation Promotes Resilient Microbiome with Enriched Keystone Taxa than Agricultural<br>Infestation in Barren Soils on the Loess Plateau. Biology, 2021, 10, 1261.                                       | 2.8 | 4         |
| 29 | The Genus <i>Letrouitia</i> (Letrouitiaceae: Lichenized Ascomycota) New to Cambodia. Mycobiology, 2015, 43, 163-165.                                                                                                | 1.7 | 2         |
| 30 | The genus Bulbothrix (Parmeliaceae) in China. Lichenologist, 2016, 48, 121-133.                                                                                                                                     | 0.8 | 2         |
| 31 | Three new species and one new combination of Gypsoplaca (lichenized Ascomycota) from the<br>Hengduan Mountains in China. Mycological Progress, 2018, 17, 781-790.                                                   | 1.4 | 2         |
| 32 | A design of self-service speech explaining system based on RFID. , 2012, , .                                                                                                                                        |     | 1         |
| 33 | New species and new records of Ophioparmaceae (lichenized Ascomycota) from China. Lichenologist, 2018, 50, 89-99.                                                                                                   | 0.8 | 1         |
| 34 | Truffle species strongly shape their surrounding soil mycobiota in a Pinus armandii forest. Archives of Microbiology, 2021, 203, 6303-6314.                                                                         | 2.2 | 1         |
| 35 | Taxonomic Study of Hypotrachyna Subg. Everniastrum (Hale Ex Sipman) Divakar, A.Crespo, Sipman, Elix<br>& Lumbsch (Ascomycota) from China. Cryptogamie, Mycologie, 2020, 41, .                                       | 1.0 | 0         |