David Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440051/publications.pdf

Version: 2024-02-01

43973 56606 8,979 85 48 83 citations h-index g-index papers 97 97 97 6724 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Expression of maize <i>KNOTTED1</i> related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development (Cambridge), 1994, 120, 405-413.	1.2	635
2	A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006, 441, 227-230.	13.7	401
3	CLAVATA-WUSCHEL signaling in the shoot meristem. Development (Cambridge), 2016, 143, 3238-3248.	1.2	361
4	<i>Setaria viridis</i> : A Model for C4 Photosynthesis Â. Plant Cell, 2010, 22, 2537-2544.	3.1	320
5	The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes and Development, 2001, 15, 2755-2766.	2.7	299
6	thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development (Cambridge), 2005, 132, 1235-1245.	1.2	264
7	Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature, 2004, 430, 1031-1034.	13.7	261
8	<i>sparse inflorescence1</i> encodes a monocot-specific <i>YUCCA</i> -like gene required for vegetative and reproductive development in maize. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15196-15201.	3.3	242
9	Control of <i>Arabidopsis</i> meristem development by thioredoxin-dependent regulation of intercellular transport. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3615-3620.	3.3	238
10	The maize $\widehat{Gl}\pm$ gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature, 2013, 502, 555-558.	13.7	229
11	Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics, 2013, 45, 334-337.	9.4	220
12	The maize SBP-box transcription factor encoded by <i>tasselsheath4</i> regulates bract development and the establishment of meristem boundaries. Development (Cambridge), 2010, 137, 1243-1250.	1.2	217
13	<i>grassy tillers1</i> promotes apical dominance in maize and responds to shade signals in the grasses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E506-12.	3.3	215
14	Genetics and Evolution of Inflorescence and Flower Development in Grasses. Plant and Cell Physiology, 2005, 46, 69-78.	1.5	203
15	Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 2019, 51, 1052-1059.	9.4	202
16	Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nature Plants, 2021, 7, 287-294.	4.7	199
17	Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development (Cambridge), 2003, 130, 4351-4362.	1.2	196
18	The Relationship between Auxin Transport and Maize Branching Â. Plant Physiology, 2008, 147, 1913-1923.	2.3	188

#	Article	IF	CITATIONS
19	Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics, 2016, 48, 785-791.	9.4	180
20	Intercellular trafficking of aKNOTTED1green fluorescent protein fusion in the leaf and shoot meristem ofArabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4103-4108.	3.3	177
21	Regulatory modules controlling maize inflorescence architecture. Genome Research, 2014, 24, 431-443.	2.4	160
22	Grass Meristems II: Inflorescence Architecture, Flower Development and Meristem Fate. Plant and Cell Physiology, 2013, 54, 313-324.	1.5	159
23	The control of axillary meristem fate in the maize <i>ramosa</i> pathway. Development (Cambridge), 2010, 137, 2849-2856.	1.2	157
24	A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes and Development, 2005, 19, 788-793.	2.7	155
25	Chaperonins Facilitate KNOTTED1 Cell-to-Cell Trafficking and Stem Cell Function. Science, 2011, 333, 1141-1144.	6.0	154
26	High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. Plant Cell, 2020, 32, 1397-1413.	3.1	148
27	<i>FASCIATED EAR4</i> Encodes a bZIP Transcription Factor That Regulates Shoot Meristem Size in Maize. Plant Cell, 2015, 27, 104-120.	3.1	136
28	Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nature Genetics, 2019, 51, 786-792.	9.4	129
29	Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell, 2021, 56, 557-568.e6.	3.1	129
30	Studies of <i>aberrant phyllotaxy1 </i> Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem Â. Plant Physiology, 2009, 150, 205-216.	2.3	124
31	Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375, eabg7985.	6.0	110
32	Grass Meristems I: Shoot Apical Meristem Maintenance, Axillary Meristem Determinacy and the Floral Transition. Plant and Cell Physiology, 2013, 54, 302-312.	1.5	109
33	Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nature Communications, 2017, 8, 1874.	5.8	102
34	A Conserved Mechanism of Bract Suppression in the Grass Family Â. Plant Cell, 2010, 22, 565-578.	3.1	97
35	Advancing Cell Biology and Functional Genomics in Maize Using Fluorescent Protein-Tagged Lines. Plant Physiology, 2009, 149, 601-605.	2.3	85
36	A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11, 988.	5.8	82

#	Article	IF	CITATIONS
37	Control of Meristem Size. Annual Review of Plant Biology, 2019, 70, 269-291.	8.6	81
38	A Maize Glutaredoxin Gene, <i>Abphyl2, </i> Regulates Shoot Meristem Size and Phyllotaxy. Plant Cell, 2015, 27, 121-131.	3.1	77
39	The maize heterotrimeric G protein \hat{l}^2 subunit controls shoot meristem development and immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1799-1805.	3.3	77
40	Saltational evolution of the heterotrimeric G protein signaling mechanisms in the plant kingdom. Science Signaling, 2016, 9, ra93.	1.6	71
41	Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity. Nature Plants, 2019, 5, 352-357.	4.7	70
42	The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. ELife, $2018, 7, \ldots$	2.8	69
43	BARREN INFLORESCENCE2 Interaction with ZmPIN1a Suggests a Role in Auxin Transport During Maize Inflorescence Development. Plant and Cell Physiology, 2009, 50, 652-657.	1.5	67
44	Lights at the end of the tunnel: new views of plasmodesmal structure and function. Current Opinion in Plant Biology, 2010, 13, 684-692.	3.5	64
45	Control of phyllotaxy in maize by the abphyl1 gene. Development (Cambridge), 1999, 126, 315-23.	1.2	64
46	3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology, 2020, 21, 143.	3.8	60
47	Double Labeling of KNOTTED1 mRNA and Protein Reveals Multiple Potential Sites of Protein Trafficking in the Shoot Apex. Plant Physiology, 2002, 129, 1423-1429.	2.3	58
48	SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ boundaries in Arabidopsis. Plant Journal, 2017, 90, 435-446.	2.8	56
49	Role of heterotrimeric $\hat{\text{Ol}}$ proteins in maize development and enhancement of agronomic traits. PLoS Genetics, 2018, 14, e1007374.	1.5	55
50	Ground tissue circuitry regulates organ complexity in maize and <i>Setaria</i> . Science, 2021, 374, 1247-1252.	6.0	55
51	Redox regulation of intercellular transport. Protoplasma, 2011, 248, 131-140.	1.0	50
52	FTIP-Dependent STM Trafficking Regulates Shoot Meristem Development in Arabidopsis. Cell Reports, 2018, 23, 1879-1890.	2.9	50
53	Plasmodesmata-Mediated Cell-to-Cell Communication in the Shoot Apical Meristem: How Stem Cells Talk. Plants, 2017, 6, 12.	1.6	49
54	Pod Corn Is Caused by Rearrangement at the <i>Tunicate1</i> Locus. Plant Cell, 2012, 24, 2733-2744.	3.1	47

#	Article	IF	Citations
55	The Maize <i>PI</i> /ci>GLO Ortholog <i>Zmm16</i> /ci>sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development. Plant Cell, 2015, 27, 3081-3098.	3.1	45
56	Analysis of the Competence to Respond to KNOTTED1 Activity in Arabidopsis Leaves Using a Steroid Induction System. Plant Physiology, 2003, 131, 1671-1680.	2.3	41
57	All together now, a magical mystery tour of the maize shoot meristem. Current Opinion in Plant Biology, 2018, 45, 26-35.	3.5	41
58	An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12, 5832.	5.8	41
59	Redox homeostasis regulates plasmodesmal communication in Arabidopsis meristems. Plant Signaling and Behavior, 2009, 4, 655-659.	1.2	39
60	A reactive oxygen species burst causes haploid induction in maize. Molecular Plant, 2022, 15, 943-955.	3.9	39
61	Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nature Plants, 2021, 7, 1589-1601.	4.7	32
62	An Efficient Cell Sorting Protocol for Maize Protoplasts. Current Protocols in Plant Biology, 2018, 3, e20072.	2.8	31
63	An RNA exosome subunit mediates cell-to-cell trafficking of a homeobox mRNA via plasmodesmata. Science, 2022, 375, 177-182.	6.0	31
64	The Kernel Size-Related Quantitative Trait Locus <i>qKW9</i> Encodes a Pentatricopeptide Repeat Protein That Aaffects Photosynthesis and Grain Filling. Plant Physiology, 2020, 183, 1696-1709.	2.3	29
65	An adaptive teosinte $<$ i>mexicana $<$ i $>$ introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
66	Illuminating plant biology: using fluorescent proteins for high-throughput analysis of protein localization and function in plants. Briefings in Functional Genomics, 2010, 9, 129-138.	1.3	19
67	Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
68	A non-cell-autonomous mechanism for the control of plant architecture and epidermal differentiation involves intercellular trafficking of BREVIPEDICELLUS protein. Functional Plant Biology, 2009, 36, 280.	1.1	16
69	Gene duplication at the $\langle i \rangle$ Fascicled ear $1 \langle i \rangle$ locus controls the fate of inflorescence meristem cells in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
70	Identification of evolutionarily conserved amino acid residues in homeodomain of KNOX proteins for intercellular trafficking. Plant Signaling and Behavior, 2014, 9, e28355.	1.2	11
71	The maize SBP-box transcription factor encoded by <i>tasselsheath4</i> regulates bract development and the establishment of meristem boundaries. Development (Cambridge), 2010, 137, 1585-1585.	1.2	10
72	Plasmodesmata spread their influence. F1000prime Reports, 2015, 7, 25.	5.9	10

#	Article	IF	CITATIONS
73	Intercellular Signaling: An Elusive Player Steps Forth. Current Biology, 2003, 13, R349-R350.	1.8	9
74	Detection of MAPK3/6 Phosphorylation During Hypersensitive Response (HR)-Associated Programmed Cell Death in Plants. Methods in Molecular Biology, 2018, 1743, 153-161.	0.4	8
75	An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in Arabidopsis. Plant and Cell Physiology, 2019, 60, 2597-2608.	1.5	8
76	The CLV3 Homolog in Setaria viridis Selectively Controls Inflorescence Meristem Size. Frontiers in Plant Science, 2021, 12, 636749.	1.7	8
77	Trafficking and localization of <i>KNOTTED1</i> related mRNAs in shoot meristems. Communicative and Integrative Biology, 2022, 15, 158-163.	0.6	7
78	Highâ€Throughput and Lowâ€Cost Genotyping Method for Plant Genome Editing. Current Protocols, 2021, 1, e100.	1.3	6
79	Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing. International Journal of Molecular Sciences, 2021, 22, 5167.	1.8	5
80	Maize genetics, genomics, and sustainable improvement. Molecular Breeding, 2022, 42, 1.	1.0	5
81	Management, Analyses, and Distribution of the MaizeCODE Data on the Cloud. Frontiers in Plant Science, 2020, 11, 289.	1.7	4
82	An Optimized Wholeâ€Mount Immunofluorescence Method for Shoot Apices. Current Protocols, 2021, 1, e101.	1.3	4
83	Learning from CIK plants. Nature Plants, 2018, 4, 195-196.	4.7	2
84	A Forward Genetic Approach to Identify Plasmodesmal Trafficking Regulators Based on Trichome Rescue. Methods in Molecular Biology, 2022, 2457, 393-407.	0.4	1
85	Intercellular Trafficking of Homeodomain Proteins. Plant Pathology Journal, 2005, 21, 21-26.	0.7	O