Brian M M Ahmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4439111/publications.pdf

Version: 2024-02-01

58 papers

4,277 citations

34 h-index 56 g-index

58 all docs 58 docs citations

58 times ranked 4223 citing authors

#	Article	IF	Citations
1	Regulation of Bacterial Virulence by Csr (Rsm) Systems. Microbiology and Molecular Biology Reviews, 2015, 79, 193-224.	6.6	309
2	Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Molecular Microbiology, 2004, 52, 933-945.	2.5	295
3	Regulation of Enteric Endophytic Bacterial Colonization by Plant Defenses. Molecular Plant-Microbe Interactions, 2005, 18, 169-178.	2.6	282
4	SdiA of <i>Salmonella enterica</i> Is a LuxR Homolog That Detects Mixed Microbial Communities. Journal of Bacteriology, 2001, 183, 5733-5742.	2.2	274
5	<i>Salmonella typhimurium</i> Encodes an SdiA Homolog, a Putative Quorum Sensor of the LuxR Family, That Regulates Genes on the Virulence Plasmid. Journal of Bacteriology, 1998, 180, 1185-1193.	2.2	212
6	Kinetics and Strain Specificity of Rhizosphere and Endophytic Colonization by Enteric Bacteria on Seedlings of Medicago sativa and Medicago truncatula. Applied and Environmental Microbiology, 2003, 69, 1783-1790.	3.1	196
7	Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Molecular Microbiology, 1999, 31, 971-982.	2.5	180
8	Detection of Other Microbial Species by <i>Salmonella</i> Expression of the SdiA Regulon. Journal of Bacteriology, 2003, 185, 1357-1366.	2.2	146
9	Pathways Leading from BarA/SirA to Motility and Virulence Gene Expression in <i>Salmonella </i> Journal of Bacteriology, 2003, 185, 7257-7265.	2.2	144
10	The intestinal fatty acid propionate inhibits <i>><scp>S</scp>almonella</i> invasion through the postâ€translational control of <scp><scp>HilD</scp></scp> . Molecular Microbiology, 2013, 87, 1045-1060.	2.5	134
11	Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. Microbiome, 2017, 5, 47.	11.1	125
12	Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. Journal of Bacteriology, 1997, 179, 317-322.	2.2	116
13	The Virulence Plasmid of <i>Salmonella typhimurium</i> Is Self-Transmissible. Journal of Bacteriology, 1999, 181, 1364-1368.	2.2	106
14	Characterization of the exbBD operon of Escherichia coli and the role of ExbB and ExbD in TonB function and stability. Journal of Bacteriology, 1995, 177, 4742-4747.	2.2	100
15	SirA Orthologs Affect both Motility and Virulence. Journal of Bacteriology, 2001, 183, 2249-2258.	2.2	98
16	Effect of sdiA on Biosensors of N -Acylhomoserine Lactones. Journal of Bacteriology, 2005, 187, 5054-5058.	2.2	95
17	Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems. PLoS ONE, 2015, 10, e0145035.	2.5	92
18	<i>Salmonella enterica</i> Serovar Typhimurium Can Detect Acyl Homoserine Lactone Production by <i>Yersinia enterocolitica</i> in Mice. Journal of Bacteriology, 2010, 192, 29-37.	2.2	90

#	Article	IF	Citations
19	Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiology (United Kingdom), 2006, 152, 3411-3424.	1.8	84
20	SdiA, an N-Acylhomoserine Lactone Receptor, Becomes Active during the Transit of Salmonella enterica through the Gastrointestinal Tract of Turtles. PLoS ONE, 2008, 3, e2826.	2.5	82
21	Detection of acyl-homoserine lactones by Escherichia and Salmonella. Current Opinion in Microbiology, 2011, 14, 188-193.	5.1	71
22	E. coli K-12 and EHEC Genes Regulated by SdiA. PLoS ONE, 2010, 5, e8946.	2.5	69
23	Fructose-Asparagine Is a Primary Nutrient during Growth of Salmonella in the Inflamed Intestine. PLoS Pathogens, 2014, 10, e1004209.	4.7	65
24	Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection. Scientific Reports, 2015, 5, 14603.	3.3	65
25	Interaction of Salmonella spp. with the Intestinal Microbiota. Frontiers in Microbiology, 2011, 2, 101.	3.5	60
26	The intestinal microbiota are necessary for stressor-induced enhancement of splenic macrophage microbicidal activity. Brain, Behavior, and Immunity, 2012, 26, 371-382.	4.1	59
27	Global effects of the <scp>DEAD</scp> â€box <scp>RNA</scp> helicase <scp>DeaD</scp> (<scp>CsdA</scp>) on gene expression over a broad range of temperatures. Molecular Microbiology, 2014, 92, 945-958.	2.5	58
28	Catabolite repression of the SirA regulatory cascade in Salmonella enterica. International Journal of Medical Microbiology, 2006, 296, 449-466.	3.6	55
29	Are There Acyl-Homoserine Lactones within Mammalian Intestines?. Journal of Bacteriology, 2013, 195, 173-179.	2.2	55
30	Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS ONE, 2019, 14, e0211430.	2.5	55
31	The Acyl Homoserine Lactone Receptor, SdiA, of Escherichia coli and Salmonella enterica Serovar Typhimurium Does Not Respond to Indole. Applied and Environmental Microbiology, 2012, 78, 5424-5431.	3.1	50
32	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst, The, 2017, 142, 442-448.	3.5	43
33	The commensal microbiota exacerbate infectious colitis in stressor-exposed mice. Brain, Behavior, and Immunity, 2017, 60, 44-50.	4.1	42
34	Salmonella SdiA Recognizes N-acyl Homoserine Lactone Signals from Pectobacterium carotovorum in Vitro, but Not in a Bacterial Soft Rot. Molecular Plant-Microbe Interactions, 2010, 23, 273-282.	2.6	38
35	STAT-1-mediated repression of monocyte interleukin-10 gene expressionin vivo. European Journal of Immunology, 2006, 36, 623-630.	2.9	31
36	Distinct Populations of Innate CD8+ T Cells Revealed in a CXCR3 Reporter Mouse. Journal of Immunology, 2013, 190, 2229-2240.	0.8	29

#	Article	IF	CITATIONS
37	High-throughput comparison of gene fitness among related bacteria. BMC Genomics, 2012, 13, 212.	2.8	26
38	Editorial: LuxR Solos are Becoming Major Players in Cell–Cell Communication in Bacteria. Frontiers in Cellular and Infection Microbiology, 2015, 5, 89.	3.9	21
39	A metabolic intermediate of the fructose-asparagine utilization pathway inhibits growth of a Salmonella fraB mutant. Scientific Reports, 2016, 6, 28117.	3.3	21
40	Expl and PhzI Are Descendants of the Long Lost Cognate Signal Synthase for SdiA. PLoS ONE, 2012, 7, e47720.	2.5	20
41	Sugar-Phosphate Toxicities. Microbiology and Molecular Biology Reviews, 2021, 85, e0012321.	6.6	19
42	Virulence of 32 Salmonella Strains in Mice. PLoS ONE, 2012, 7, e36043.	2.5	19
43	The SdiA-Regulated Gene <i>srgE</i> Encodes a Type III Secreted Effector. Journal of Bacteriology, 2014, 196, 2301-2312.	2.2	18
44	Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Frontiers in Cellular and Infection Microbiology, 2015, 5, 47.	3.9	15
45	Identification of Bacterial Species That Can Utilize Fructose-Asparagine. Applied and Environmental Microbiology, 2018, 84, .	3.1	15
46	Measurement of Fructose–Asparagine Concentrations in Human and Animal Foods. Journal of Agricultural and Food Chemistry, 2018, 66, 212-217.	5.2	15
47	Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infection and Immunity, 2016, 84, 2131-2140.	2.2	13
48	Salmonella-Mediated Inflammation Eliminates Competitors for Fructose-Asparagine in the Gut. Infection and Immunity, 2018, 86, .	2.2	12
49	Systematic analysis of the regulation of type three secreted effectors in Salmonella enterica serovar Typhimurium. BMC Microbiology, 2007, 7, 3.	3.3	10
50	Salmonella FraE, an Asparaginase Homolog, Contributes to Fructose-Asparagine but Not Asparagine Utilization. Journal of Bacteriology, 2017, 199, .	2.2	10
51	Methods in Cell-to-Cell Signaling in Salmonella. Methods in Molecular Biology, 2007, 394, 307-322.	0.9	10
52	Integrated Use of Biochemical, Native Mass Spectrometry, Computational, and Genome-Editing Methods to Elucidate the Mechanism of a deglycase. Journal of Molecular Biology, 2019, 431, 4497-4513.	4.2	9
53	Salmonella typhimurium recognition of intestinal environments: Response. Trends in Microbiology, 1999, 7, 222-223.	7.7	6
54	Methods to Study Solo/Orphan Quorum-Sensing Receptors. Methods in Molecular Biology, 2018, 1673, 145-159.	0.9	6

#	Article	IF	CITATIONS
55	Yersinia enterocolitica Inhibits Salmonella enterica Serovar Typhimurium and Listeria monocytogenes Cellular Uptake. Infection and Immunity, 2014, 82, 174-183.	2.2	4
56	Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces. Analytical and Bioanalytical Chemistry, 2022, 414, 2317.	3.7	3
57	More Evidence for Secretion Signals within the mRNA of Type 3 Secreted Effectors. Journal of Bacteriology, 2013, 195, 2117-2118.	2.2	0
58	In this issue of <i>Gut Microbes</i> . Gut Microbes, 2014, 5, 83-85.	9.8	0