Juan R Cubillos-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4439013/publications.pdf

Version: 2024-02-01

49 papers 9,794 citations

28 h-index 214800 47 g-index

52 all docs 52 docs citations

times ranked

52

16298 citing authors

#	Article	IF	Citations
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
2	Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature Cell Biology, 2018, 20, 332-343.	10.3	1,101
3	ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis. Cell, 2015, 161, 1527-1538.	28.9	639
4	Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell, 2017, 168, 692-706.	28.9	606
5	Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nature Reviews Cancer, 2021, 21, 71-88.	28.4	499
6	Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. Journal of Experimental Medicine, 2012, 209, 495-506.	8.5	273
7	IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature, 2018, 562, 423-428.	27.8	252
8	Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature, 2019, 571, 355-360.	27.8	206
9	Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. Journal of Clinical Investigation, 2009, 119, 2231-44.	8.2	177
10	Reprogramming Tumor-Associated Dendritic Cells <i>In Vivo</i> Using miRNA Mimetics Triggers Protective Immunity against Ovarian Cancer. Cancer Research, 2012, 72, 1683-1693.	0.9	137
11	Antifungal mechanisms by which a novel <i>Pseudomonas aeruginosa</i> phenazine toxin kills <i>Candida albicans</i> in biofilms. Molecular Microbiology, 2010, 78, 1379-1392.	2.5	132
12	Dendritic Cell Metabolism and Function in Tumors. Trends in Immunology, 2019, 40, 699-718.	6.8	131
13	<i>In situ</i> Stimulation of CD40 and Toll-like Receptor 3 Transforms Ovarian Cancer–Infiltrating Dendritic Cells from Immunosuppressive to Immunostimulatory Cells. Cancer Research, 2009, 69, 7329-7337.	0.9	124
14	The Unfolded Protein Response Mediator PERK Governs Myeloid Cell-Driven Immunosuppression in Tumors through Inhibition of STING Signaling. Immunity, 2020, 52, 668-682.e7.	14.3	107
15	Depletion of Dendritic Cells Delays Ovarian Cancer Progression by Boosting Antitumor Immunity. Cancer Research, 2008, 68, 7684-7691.	0.9	105
16	BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1 $\hat{1}$ ±. EMBO Journal, 2012, 31, 2322-2335.	7.8	99
17	IRE1α–XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science, 2019, 365, .	12.6	91
18	Avirulent <i>Toxoplasma gondii</i> Generates Therapeutic Antitumor Immunity by Reversing Immunosuppression in the Ovarian Cancer Microenvironment. Cancer Research, 2013, 73, 3842-3851.	0.9	86

#	Article	IF	Citations
19	ER stress-induced mediator C/EBP homologous protein thwarts effector Tâcell activity in tumors through T-bet repression. Nature Communications, 2019, 10, 1280.	12.8	83
20	BTN3A1 governs antitumor responses by coordinating $\hat{l} \pm \hat{l}^2$ and $\hat{l}^3\hat{l}$ T cells. Science, 2020, 369, 942-949.	12.6	83
21	CD4+ T Cells Elicit Host Immune Responses to MHC Class Ilâ^' Ovarian Cancer through CCL5 Secretion and CD40-Mediated Licensing of Dendritic Cells. Journal of Immunology, 2010, 184, 5654-5662.	0.8	75
22	Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. , 2017, 5, 5.		67
23	CD277 is a Negative Co-stimulatory Molecule Universally Expressed by Ovarian Cancer Microenvironmental Cells. Oncotarget, 2010, 1, 329-338.	1.8	62
24	IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nature Communications, 2015, 6, 7562.	12.8	58
25	Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 525-550.	4.5	58
26	CCL5-Mediated Endogenous Antitumor Immunity Elicited by Adoptively Transferred Lymphocytes and Dendritic Cell Depletion. Cancer Research, 2009, 69, 6331-6338.	0.9	56
27	Endoplasmic Reticulum Stress Responses in Intratumoral Immune Cells: Implications for Cancer Immunotherapy. Trends in Immunology, 2019, 40, 128-141.	6.8	49
28	State-of-the-art of regulatory dendritic cells in cancer. , 2016, 164, 97-104.		43
29	Blocking ovarian cancer progression by targeting tumor microenvironmental leukocytes. Cell Cycle, 2010, 9, 260-268.	2.6	41
30	Endoplasmic Reticulum Stress Sensor IRE1 \hat{l}_{\pm} Enhances IL-23 Expression by Human Dendritic Cells. Frontiers in Immunology, 2017, 8, 639.	4.8	33
31	Senescence induction dictates response to chemo- and immunotherapy in preclinical models of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
32	Tricarboxylic Acid Cycle Activity and Remodeling of Glycerophosphocholine Lipids Support Cytokine Induction in Response to Fungal Patterns. Cell Reports, 2019, 27, 525-536.e4.	6.4	31
33	Molecular Pathways: Immunosuppressive Roles of IRE1α-XBP1 Signaling in Dendritic Cells of the Tumor Microenvironment. Clinical Cancer Research, 2016, 22, 2121-2126.	7.0	30
34	Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends in Cancer, 2022, 8, 930-943.	7.4	27
35	Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer. Cancer Discovery, 2022, 12, 1904-1921.	9.4	25
36	PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis. PLoS Pathogens, 2019, 15, e1007571.	4.7	24

#	Article	IF	CITATIONS
37	Dendritic cell rehab: new strategies to unleash therapeutic immunity in ovarian cancer. Cancer Immunology, Immunotherapy, 2017, 66, 969-977.	4.2	22
38	Nanomolecular targeting of dendritic cells for ovarian cancer therapy. Future Oncology, 2009, 5, 1189-1192.	2.4	19
39	Targeting abnormal ER stress responses in tumors: A new approach to cancer immunotherapy. Oncolmmunology, 2016, 5, e1098802.	4.6	15
40	The impact of endoplasmic reticulum stress responses in dendritic cell immunobiology. International Review of Cell and Molecular Biology, 2019, 349, 153-176.	3.2	15
41	Good things come in small packages. Oncolmmunology, 2012, 1, 968-970.	4.6	11
42	High-Fat Diet–Induced Obesity Alters Dendritic Cell Homeostasis by Enhancing Mitochondrial Fatty Acid Oxidation. Journal of Immunology, 2022, 209, 69-76.	0.8	11
43	Reprogramming immune responses via microRNA modulation. MicroRNA Diagnostics and Therapeutics, 2014, 1, .	0.0	5
44	Engineered bacteria recycle tumor metabolic waste to boost immunotherapy. Cell Host and Microbe, 2021, 29, 1725-1727.	11.0	5
45	Fungal Patterns Induce Cytokine Expression through Fluxes of Metabolic Intermediates That Support Glycolysis and Oxidative Phosphorylation. Journal of Immunology, 2022, 208, 2779-2794.	0.8	4
46	Methods and protocols for chemotherapy-induced peripheral neuropathy (CIPN) mouse models using paclitaxel. Methods in Cell Biology, 2022, 168, 277-298.	1.1	2
47	IREα-XBP1s activation in leukocytes is associated with the level of exposure to paclitaxel in CIPN patients. Journal of Pain, 2021, 22, 581-582.	1.4	1
48	Optineurin Guards IFNÎ ³ Signaling in Cancer Cells. Cancer Discovery, 2021, 11, 1623-1625.	9.4	1
49	Effects of paclitaxel in mitochondrial function and cellular phenotype in human peripheral blood mononuclear cells and monocytes. Journal of Pain, 2021, 22, 580.	1.4	O