Brandon C Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438832/publications.pdf

Version: 2024-02-01

201674 254184 2,071 62 27 43 citations h-index g-index papers 62 62 62 1900 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Impact plumeâ€formed and protoplanetary disk highâ€ŧemperature components in CB and CH metalâ€rich carbonaceous chondrites. Meteoritics and Planetary Science, 2022, 57, 352-380.	1.6	3
2	The role of target strength on the ejection of martian meteorites. Icarus, 2022, 375, 114869.	2.5	2
3	Porosity Evolution in Metallic Asteroids: Implications for the Origin and Thermal History of Asteroid 16 Psyche. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
4	Methane-saturated Layers Limit the Observability of Impact Craters on Titan. Planetary Science Journal, 2022, 3, 50.	3.6	2
5	A Late Paleocene age for Greenland's Hiawatha impact structure. Science Advances, 2022, 8, eabm2434.	10.3	4
6	Ice Shell Structure of Ganymede and Callisto Based on Impact Crater Morphology. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
7	RW Aur A: SpeX Spectral Evidence for Differentiated Planetesimal Formation, Migration, and Destruction in an â^1⁄43 Myr Old Excited CTTS System. Astrophysical Journal, 2022, 928, 189.	4.5	3
8	A South Pole–Aitken impact origin of the lunar compositional asymmetry. Science Advances, 2022, 8, eabm8475.	10.3	11
9	Chondrule formation via impact jetting in the icy outer solar system. Icarus, 2022, 384, 115110.	2.5	1
10	Estimating Venusian thermal conditions using multiring basin morphology. Nature Astronomy, 2021, 5, 498-502.	10.1	9
11	Jetting during oblique impacts of spherical impactors. Icarus, 2021, 360, 114365.	2.5	9
12	How Sublimation Delays the Onset of Dusty Debris Disk Formation around White Dwarf Stars. Astrophysical Journal Letters, 2021, 913, L31.	8.3	14
13	Effect of ice sheet thickness on formation of the Hiawatha impact crater. Earth and Planetary Science Letters, 2021, 566, 116972.	4.4	5
14	Impact generated porosity in Gale crater and implications for the density of sedimentary rocks in lower Aeolis Mons. Icarus, 2021, 366, 114539.	2.5	6
15	Modeling the formation of Menrva impact crater on Titan: Implications for habitability. Icarus, 2021, 370, 114679.	2.5	10
16	Pluto's Antipodal Terrains Imply a Thick Subsurface Ocean and Hydrated Core. Geophysical Research Letters, 2021, 48, e2020GL091596.	4.0	9
17	Impactor material records the ancient lunar magnetic field in antipodal anomalies. Nature Communications, 2021, 12, 6543.	12.8	4
18	Lunar Megaregolith Structure Revealed by GRAIL Gravity Data. Geophysical Research Letters, 2021, 48, e2021GL095978.	4.0	6

#	Article	IF	CITATIONS
19	Ferrovolcanism on metal worlds and the origin of pallasites. Nature Astronomy, 2020, 4, 41-44.	10.1	37
20	Why the lunar South Pole-Aitken Basin is not a mascon. Icarus, 2020, 352, 113995.	2.5	16
21	Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 2020, 4, 741-747.	10.1	50
22	Landslide Morphology and Mobility on Ceres Controlled by Topography. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006640.	3.6	7
23	HD 145263: Spectral Observations of Silica Debris Disk Formation via Extreme Space Weathering?. Astrophysical Journal, 2020, 894, 116.	4.5	10
24	Dwell time at high pressure of meteorites during impact ejection from Mars. Icarus, 2020, 343, 113689.	2.5	18
25	An endogenic origin of cerean organics. Earth and Planetary Science Letters, 2020, 534, 116069.	4.4	12
26	Impact Fragmentation and the Development of the Deep Lunar Megaregolith. Journal of Geophysical Research E: Planets, 2019, 124, 941-957.	3.6	27
27	Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 2019, 320, 110-118.	2.5	44
28	Isostatic Compensation of the Lunar Highlands. Journal of Geophysical Research E: Planets, 2018, 123, 646-665.	3.6	10
29	Ring faults and ring dikes around the Orientale basin on the Moon. Icarus, 2018, 310, 1-20.	2.5	31
30	Controls on the Formation of Lunar Multiring Basins. Journal of Geophysical Research E: Planets, 2018, 123, 3035-3050.	3.6	19
31	Effect of impact velocity and acoustic fluidization on the simpleâ€toâ€complex transition of lunar craters. Journal of Geophysical Research E: Planets, 2017, 122, 800-821.	3.6	23
32	Drop Height and Volume Control the Mobility of Longâ€Runout Landslides on the Earth and Mars. Geophysical Research Letters, 2017, 44, 12,091.	4.0	31
33	Porosity and Salt Content Determine if Subduction Can Occur in Europa's Ice Shell. Journal of Geophysical Research E: Planets, 2017, 122, 2765-2778.	3.6	48
34	Impact Crater Morphology and the Structure of Europa's Ice Shell. Journal of Geophysical Research E: Planets, 2017, 122, 2685-2701.	3.6	29
35	South Pole–Aitken basin ejecta reveal the Moon's upper mantle. Geology, 2017, 45, 1063-1066.	4.4	101
36	The reduction of friction in long runout landslides as an emergent phenomenon. Journal of Geophysical Research F: Earth Surface, 2016, 121, 881-889.	2.8	71

#	Article	IF	Citations
37	Timing of the formation and migration of giant planets as constrained by CB chondrites. Science Advances, 2016, 2, e1601658.	10.3	38
38	Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus, 2016, 271, 350-359.	2.5	74
39	Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean. Geophysical Research Letters, 2016, 43, 10,068.	4.0	42
40	Reply to comment by Iverson on "The reduction of friction in long runout landslides as an emergent phenomenon― Journal of Geophysical Research F: Earth Surface, 2016, 121, 2243-2246.	2.8	5
41	Subsurface morphology and scaling of lunar impact basins. Journal of Geophysical Research E: Planets, 2016, 121, 1695-1712.	3.6	37
42	Formation of the Orientale lunar multiring basin. Science, 2016, 354, 441-444.	12.6	78
43	Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 2016, 354, 438-441.	12.6	38
44	Reply to comment by Davies and McSaveney on "The reduction of friction in long runout landslides as an emergent phenomenon― Journal of Geophysical Research F: Earth Surface, 2016, 121, 1721-1723.	2.8	3
45	NOxproduction and rainout from Chicxulub impact ejecta reentry. Journal of Geophysical Research E: Planets, 2015, 120, 2152-2168.	3.6	19
46	Preimpact porosity controls the gravity signature of lunar craters. Geophysical Research Letters, 2015, 42, 9711-9716.	4.0	50
47	The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering. Geophysical Research Letters, 2015, 42, 6939-6944.	4.0	63
48	Impact jetting as the origin of chondrules. Nature, 2015, 517, 339-341.	27.8	145
49	Dynamic sublimation pressure and the catastrophic breakup of Comet ISON. Icarus, 2015, 258, 430-437.	2.5	41
50	Formation of melt droplets, melt fragments, and accretionary impact lapilli during a hypervelocity impact. Icarus, 2014, 228, 347-363.	2.5	65
51	Where have all the craters gone? Earth's bombardment history and the expected terrestrial cratering record. Geology, 2014, 42, 587-590.	4.4	22
52	Jetting during vertical impacts of spherical projectiles. Icarus, 2014, 238, 13-22.	2.5	58
53	The formation of lunar mascon basins from impact to contemporary form. Journal of Geophysical Research E: Planets, 2014, 119, 2378-2397.	3.6	57
54	Projectile remnants in central peaks of lunar impact craters. Nature Geoscience, 2013, 6, 435-437.	12.9	60

#	Article	IF	Citations
55	The Origin of Lunar Mascon Basins. Science, 2013, 340, 1552-1555.	12.6	174
56	Antipodal terrains created by the Rheasilvia basin forming impact on asteroid 4 Vesta. Journal of Geophysical Research E: Planets, 2013, 118, 1821-1834.	3.6	22
57	A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM. Astrophysical Journal, 2012, 761, 45.	4.5	77
58	Climatic effects of the Chicxulub impact ejecta. AIP Conference Proceedings, 2012, , .	0.4	2
59	Impact spherules as a record of an ancient heavy bombardment of Earth. Nature, 2012, 485, 75-77.	27.8	114
60	Formation of spherules in impact produced vapor plumes. Icarus, 2012, 217, 416-430.	2.5	87
61	Records of Magnetic Fields in the Chondrule Formation Environment. , 0, , 324-340.		3
62	Formation of Chondrules by Planetesimal Collisions. , 0, , 343-360.		8