
Samveg Saxena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438520/publications.pdf Version: 2024-02-01

SAMVEC SAVENA

#	Article	IF	CITATIONS
1	Flexible grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions. Applied Energy, 2020, 278, 115651.	10.1	74
2	Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States. Applied Energy, 2020, 270, 115174.	10.1	42
3	The Influence of Intake Pressure and Ethanol Addition to Gasoline on Single- and Dual-Stage Autoignition in an HCCI Engine. Energy & Fuels, 2018, 32, 9822-9837.	5.1	5
4	Clean vehicles as an enabler for a clean electricity grid. Environmental Research Letters, 2018, 13, 054031.	5.2	49
5	Quantifying the flexibility of hydrogen production systems to support large-scale renewable energy integration. Journal of Power Sources, 2018, 399, 383-391.	7.8	55
6	Modeling of plug-in electric vehicle travel patterns and charging load based on trip chain generation. Journal of Power Sources, 2017, 359, 468-479.	7.8	65
7	Optimal bidding strategy for V2G regulation services under uncertainty. , 2017, , .		1
8	Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles. Energies, 2016, 9, 903.	3.1	15
9	Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. Journal of Power Sources, 2016, 332, 193-203.	7.8	198
10	Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine. Energy, 2016, 115, 180-193.	8.8	33
11	Quantifying electric vehicle battery degradation from driving vs. V2G services. , 2016, , .		1
12	Multi-level computational exploration of advanced combustion engine operating strategies. Applied Energy, 2016, 184, 1273-1283.	10.1	8
13	Quantifying the Flexibility for Electric Vehicles to Offer Demand Response to Reduce Grid Impacts without Compromising Individual Driver Mobility Needs. , 2015, , .		10
14	Distributed optimal charging of electric vehicles for demand response and load shaping. , 2015, , .		19
15	Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. Journal of Power Sources, 2015, 282, 265-276.	7.8	250
16	Charging ahead on the transition to electric vehicles with standard 120 V wall outlets. Applied Energy, 2015, 157, 720-728.	10.1	41
17	Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-dutyÂvehicles. Nature Climate Change, 2015, 5, 860-863.	18.8	303
18	Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India. Applied Energy, 2014, 115, 582-590.	10.1	66

SAMVEG SAXENA

#	Article	IF	CITATIONS
19	Understanding optimal engine operating strategies for gasoline-fueled HCCI engines using crank-angle resolved exergy analysis. Applied Energy, 2014, 114, 155-163.	10.1	64
20	Experimental and Theoretical Study of the Energy Savings from Wet Ethanol Production and Utilization. Energy Technology, 2014, 2, 440-445.	3.8	17
21	Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study. Combustion and Flame, 2014, 161, 680-695.	5.2	83
22	Optimal operating conditions for wet ethanol in a HCCI engine using exhaust gas heat recovery. Applied Energy, 2014, 116, 269-277.	10.1	53
23	Understanding the fuel savings potential from deploying hybrid cars in China. Applied Energy, 2014, 113, 1127-1133.	10.1	42
24	Analysis of benefits of using internal exhaust gas recirculation in biogas-fueled HCCI engines. Energy Conversion and Management, 2014, 87, 1186-1194.	9.2	38
25	Understanding fuel savings mechanisms from hybrid vehicles to guide optimal battery sizing for India. International Journal of Powertrains, 2014, 3, 259.	0.3	3
26	Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Progress in Energy and Combustion Science, 2013, 39, 457-488.	31.2	486
27	Numerical Analysis of Biogas Composition Effects on Combustion Parameters and Emissions in Biogas Fueled HCCI Engines for Power Generation. Journal of Engineering for Gas Turbines and Power, 2013, 135, .	1.1	14
28	Understanding Loss Mechanisms and Identifying Areas of Improvement for HCCI Engines Using Detailed Exergy Analysis. Journal of Engineering for Gas Turbines and Power, 2013, 135, .	1.1	24
29	Extending Lean Operating Limit and Reducing Emissions of Methane Spark-Ignited Engines Using a Microwave-Assisted Spark Plug. Journal of Combustion, 2012, 2012, 1-8.	1.0	24
30	Exploring Strategies for Reducing High Intake Temperature Requirements and Allowing Optimal Operational Conditions in a Biogas Fueled HCCI Engine for Power Generation. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	1.1	20
31	Understanding Loss Mechanisms and Identifying Areas of Improvement for HCCI Engines Using Detailed Exergy Analysis. , 2012, , .		3
32	Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation. Applied Energy, 2012, 97, 618-629.	10.1	51
33	Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels. Applied Energy, 2012, 98, 448-457.	10.1	86
34	A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions. , 2012, , .		9
35	Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions. Energy Conversion and Management, 2012, 53, 154-162.	9.2	87
36	Numerical Analysis of Biogas Composition Effects on Combustion Parameters and Emissions in Biogas Fueled HCCI Engines for Power Generation. , 2011, , .		2

#	Article	IF	CITATIONS
37	Increasing the signal-to-noise ratio of sparkplug ion sensors through the addition of a potassium acetate fuel additive. Proceedings of the Combustion Institute, 2011, 33, 3081-3088.	3.9	13
38	Extending the Lean Stability Limits of Gasoline Using a Microwave-Assisted Spark Plug. , 0, , .		35
39	Maximizing Power Output in an Automotive Scale Multi-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine. , 0, , .		27
40	Characterization of Ion Signals under Ringing Conditions in an HCCI Engine. , 0, , .		8
41	Simulating a Complete Performance Map of an Ethanol-Fueled Boosted HCCI Engine. , 0, , .		7