Anne I Sperling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438285/publications.pdf

Version: 2024-02-01

109	7,538	41 h-index	83
papers	citations		g-index
114	114	114	12409
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity. Cancer Cell, 2014, 26, 638-652.	16.8	911
2	Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1517-1536.	5.6	866
3	Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. New England Journal of Medicine, 2016, 375, 411-421.	27.0	745
4	Absence of B7-dependent responses in CD28-deficient mice. Immunity, 1994, 1, 501-508.	14.3	359
5	Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nature Communications, 2013, 4, 2990.	12.8	328
6	ERM-Dependent Movement of CD43 Defines a Novel Protein Complex Distal to the Immunological Synapse. Immunity, 2001, 15, 739-750.	14.3	239
7	The Complexities of T-Cell Co-stimulation: CD28 and Beyond. Immunological Reviews, 1996, 153, 155-182.	6.0	142
8	Dynamic migration of $\hat{l}^3\hat{l}'$ intraepithelial lymphocytes requires occludin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7097-7102.	7.1	142
9	CD43 is a murine T cell costimulatory receptor that functions independently of CD28 Journal of Experimental Medicine, 1995, 182, 139-146.	8.5	139
10	DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight, 2016, 1, e90151.	5.0	133
11	Modeling human adaptive immune responses with tonsil organoids. Nature Medicine, 2021, 27, 125-135.	30.7	133
12	Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. Journal of Allergy and Clinical Immunology, 2016, 137, 1398-1405.e3.	2.9	128
13	Inducible Costimulator Regulates Th2-Mediated Inflammation, but Not Th2 Differentiation, in a Model of Allergic Airway Disease. Journal of Immunology, 2001, 167, 1996-2003.	0.8	116
14	$\hat{l}^3\hat{l}'$ Intraepithelial Lymphocyte Migration Limits Transepithelial Pathogen Invasion and Systemic Disease in Mice. Gastroenterology, 2015, 148, 1417-1426.	1.3	112
15	CTLA4lg Inhibits Airway Eosinophilia and Hyperresponsiveness by Regulating the Development of Th1/Th2 Subsets in a Murine Model of Asthma. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 453-462.	2.9	102
16	Associations between fungal and bacterial microbiota of airways and asthma endotypes. Journal of Allergy and Clinical Immunology, 2019, 144, 1214-1227.e7.	2.9	96
17	Ribp, a Novel Rlk/Txk- and Itk-Binding Adaptor Protein That Regulates T Cell Activation. Journal of Experimental Medicine, 1999, 190, 1657-1668.	8.5	93
18	Genome-Wide Methylation Study Identifies an IL-13–induced Epigenetic Signature in Asthmatic Airways. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 376-385.	5.6	90

#	Article	IF	CITATIONS
19	Expression of Fas (CD95) and FasL (CD95L) in Human Airway Epithelium. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 537-542.	2.9	86
20	The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunological Reviews, 2002, 189, 111-122.	6.0	84
21	IL-33–dependent induction of allergic lung inflammation by FcγRIII signaling. Journal of Clinical Investigation, 2013, 123, 2287-2297.	8.2	78
22	TCRgammadelta Cells: A Specialized T-Cell Subset in the Immune System. Annual Review of Cell and Developmental Biology, 1995, 11, 307-353.	9.4	74
23	Immune development and environment: lessons from Amish and Hutterite children. Current Opinion in Immunology, 2017, 48, 51-60.	5.5	74
24	TRAF4 Deficiency Leads to Tracheal Malformation with Resulting Alterations in Air Flow to the Lungs. American Journal of Pathology, 2000, 157, 679-688.	3.8	72
25	Repertoire Development and Ligand Specificity of Murine TCRgammadelta Cells. Immunological Reviews, 1991, 120, 5-33.	6.0	68
26	ICOS costimulation: it's not just for TH2 cells anymore. Nature Immunology, 2001, 2, 573-574.	14.5	68
27	Decreased Percentage of CD4+FoxP3+ Cells in Bronchoalveolar Lavage From Lung Transplant Recipients Correlates With Development of Bronchiolitis Obliterans Syndrome. Transplantation, 2010, 90, 540-546.	1.0	68
28	Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma. Journal of Experimental Medicine, 2006, 203, 1173-1184.	8.5	66
29	Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFÎ ² signaling through TGFBR1 stabilization. Nature Communications, 2020, 11, 4254.	12.8	62
30	Signaling through $Fc^{3}RIII$ is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation. Journal of Experimental Medicine, 2007, 204, 1875-1889.	8.5	61
31	The gamma chain of the high-affinity receptor for IgE is a major functional subunit of the T-cell antigen receptor complex in gamma delta T lymphocytes Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11875-11879.	7.1	58
32	Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma. Respiratory Research, 2009, 10, 114.	3.6	57
33	NKG2D signaling on CD8+ T cells represses T-bet and rescues CD4-unhelped CD8+ T cell memory recall but not effector responses. Nature Medicine, 2012, 18, 422-428.	30.7	56
34	Signaling through FcRγ-associated receptors on dendritic cells drives IL-33–dependent TH2-type responses. Journal of Allergy and Clinical Immunology, 2014, 134, 706-713.e8.	2.9	49
35	Improving the Quality and Reproducibility of Flow Cytometry in the Lung. An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 150-161.	2.9	49
36	Cutting Edge: Polymorphisms in the <i>ICOS</i> Promoter Region Are Associated with Allergic Sensitization and Th2 Cytokine Production. Journal of Immunology, 2005, 175, 2061-2065.	0.8	45

3

#	Article	lF	Citations
37	The clinical and immunologic features of pulmonary fibrosis in sarcoidosis. Translational Research, 2012, 160, 321-331.	5.0	45
38	Maternal asthma and microRNA regulation of soluble HLA-G in the airway. Journal of Allergy and Clinical Immunology, 2013, 131, 1496-1503.e4.	2.9	44
39	Corticosteroid-induced apoptosis in mouse airway epithelium: Effect in normal airways and after allergen-induced airway inflammation. Journal of Allergy and Clinical Immunology, 2003, 111, 360-366.	2.9	43
40	CD43 Modulates Severity and Onset of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2003, 171, 6527-6533.	0.8	43
41	Lymphotoxin Is Required for Maintaining Physiological Levels of Serum IgE That Minimizes Th1-mediated Airway Inflammation. Journal of Experimental Medicine, 2003, 198, 1643-1652.	8.5	43
42	CD43 Regulation of T Cell Activation Is Not through Steric Inhibition of T Cell–APC Interactions but through an Intracellular Mechanism. Journal of Experimental Medicine, 2004, 199, 1277-1283.	8.5	42
43	Prognosticating Outcomes in Interstitial Lung Disease by Mediastinal Lymph Node Assessment. An Observational Cohort Study with Independent Validation. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 747-759.	5.6	36
44	Temperature Trajectory Subphenotypes Correlate With Immune Responses in Patients With Sepsis. Critical Care Medicine, 2020, 48, 1645-1653.	0.9	35
45	The Contribution of Allergen-Specific IgG to the Development of Th2-Mediated Airway Inflammation. Journal of Allergy, 2012, 2012, 1-9.	0.7	33
46	Adjuvant-free nanofiber vaccine induces in situ lung dendritic cell activation and T _H 17 responses. Science Advances, 2020, 6, eaba0995.	10.3	33
47	Distinct T-helper cell responses to Staphylococcus aureus bacteremia reflect immunologic comorbidities and correlate with mortality. Critical Care, 2018, 22, 107.	5.8	31
48	Circulating Plasma Biomarkers of Survival in Antifibrotic-Treated Patients With Idiopathic Pulmonary Fibrosis. Chest, 2020, 158, 1526-1534.	0.8	31
49	Protection against Staphylococcus aureus bacteremia-induced mortality depends on ILC2s and eosinophils. JCI Insight, 2019, 4, .	5.0	31
50	Distinct dendritic cell subsets actively induce Th2 polarization. Current Opinion in Immunology, 2014, 31, 44-50.	5.5	30
51	Circulating Plasma Biomarkers of Progressive Interstitial Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 250-253.	5.6	30
52	Skewed Lung CCR4 to CCR6 CD4+ T Cell Ratio in Idiopathic Pulmonary Fibrosis Is Associated with Pulmonary Function. Frontiers in Immunology, 2016, 7, 516.	4.8	29
53	Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)–deficient mice. Journal of Allergy and Clinical Immunology, 2016, 137, 591-600.e1.	2.9	29
54	Circulating cytokines in sarcoidosis: Phenotype-specific alterations for fibrotic and non-fibrotic pulmonary disease. Cytokine, 2013, 61, 906-911.	3.2	28

#	Article	IF	CITATIONS
55	Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nature Communications, 2021, 12, 6115.	12.8	28
56	Regulation of T:B cell interactions by the Inducible Costimulator molecule: Does ICOS "induce― disease?. Clinical Immunology, 2006, 121, 13-18.	3.2	27
57	Signaling through CD43 regulates CD4 T-cell trafficking. Blood, 2007, 110, 2974-2982.	1.4	25
58	CD43 interaction with ezrin-radixin-moesin (ERM) proteins regulates T-cell trafficking and CD43 phosphorylation. Molecular Biology of the Cell, 2011, 22, 954-963.	2.1	25
59	Autoreactive T and B Cells Induce the Development of Bronchus-Associated Lymphoid Tissue in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 406-414.	2.9	25
60	ICOS Costimulation Expands Th2 Immunity by Augmenting Migration of Lymphocytes to Draining Lymph Nodes. Journal of Immunology, 2008, 181, 1019-1024.	0.8	24
61	ICOS protects against mortality from acute lung injury through activation of IL-5+ ILC2s. Mucosal Immunology, 2018, 11, 61-70.	6.0	23
62	T-cell phenotypes are associated with serum IgE levels in Amish and Hutterite children. Journal of Allergy and Clinical Immunology, 2019, 144, 1391-1401.e10.	2.9	23
63	TCRĴ³Ĵ´ cells: Mysterious cells of the immune system. Immunologic Research, 1994, 13, 268-279.	2.9	22
64	Regulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L757-L764.	2.9	22
65	IL-33–mediated Eosinophilia Protects against Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 569-578.	2.9	22
66	CD4â^', CD8â^' \hat{I}^3/\hat{I}^c cells from normal mice respond to a syngeneic B cell lymphoma and can induce its differentiation. International Immunology, 1989, 1, 434-441.	4.0	21
67	Protective Effector Memory CD4 T Cells Depend on ICOS for Survival. PLoS ONE, 2011, 6, e16529.	2.5	21
68	Antigen stimulation of TH2 cells augments acute bacterial sinusitis in mice. Journal of Allergy and Clinical Immunology, 2004, 114, 328-334.	2.9	20
69	CD43 Regulates Th2 Differentiation and Inflammation. Journal of Immunology, 2008, 180, 7385-7393.	0.8	19
70	CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo. Cellular Immunology, 2009, 259, 177-184.	3.0	18
71	Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells. PLoS ONE, 2016, 11, e0159779.	2.5	18
72	Regulation of Smad-Mediated Gene Transcription by RGS3. Molecular Pharmacology, 2008, 73, 1356-1361.	2.3	17

#	Article	IF	Citations
73	Inducible Costimulator Expression Regulates the Magnitude of Th2-Mediated Airway Inflammation by Regulating the Number of Th2 Cells. PLoS ONE, 2009, 4, e7525.	2.5	17
74	RGS3 controls T lymphocyte migration in a model of Th2-mediated airway inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L693-L701.	2.9	17
75	Role of Type 1 T Helper Cells in the Resolution of AcuteStreptococcus pneumoniaeSinusitis: A Mouse Model. Journal of Infectious Diseases, 2005, 192, 1237-1244.	4.0	16
76	Inducible Costimulator Controls Migration of T Cells to the Lungs via Down-Regulation of CCR7 and CD62L. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 843-850.	2.9	16
77	Non-apoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation. Frontiers in Immunology, 2018, 9, 2521.	4.8	16
78	Transcriptional programming and T cell receptor repertoires distinguish human lung and lymph node memory T cells. Communications Biology, 2019, 2, 411.	4.4	16
79	Characterization of Monoclonal Antibodies Specific for 14-kDa Human Group V Secretory Phospholipase A2(hVPLA2). Hybridoma, 2000, 19, 171-176.	0.6	15
80	Evidence for an IL-6–high asthma phenotype in asthmatic patients of African ancestry. Journal of Allergy and Clinical Immunology, 2019, 144, 304-306.e4.	2.9	15
81	CD4+ T Cell and Eosinophil Adhesion Is Mediated by Specific ICAM-3 Ligation and Results in Eosinophil Activation. Journal of Immunology, 2000, 164, 3385-3391.	0.8	14
82	PKCÎ, Regulates T Cell Motility via Ezrin-Radixin-Moesin Localization to the Uropod. PLoS ONE, 2013, 8, e78940.	2.5	14
83	Elevated levels of soluble humanleukocyte antigen-G in the airways are a marker for a low-inflammatory endotype of asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 857-860.	2.9	13
84	Preexisting Type 2 Immune Activation Protects against the Development of Sepsis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 628-630.	2.9	13
85	A $<$ i $>$ Gata $3<$ /i $>enhancer$ necessary for ILC2 development and function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
86	Fas Ligand Expression on T Cells Is Sufficient to Prevent Prolonged Airway Inflammation in a Murine Model of Asthma. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 342-348.	2.9	11
87	Gata5 Deficiency Causes Airway Constrictor Hyperresponsiveness in Mice. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 787-795.	2.9	11
88	The Role of Dendritic Cells and Monocytes in the Maintenance and Loss of Respiratory Tolerance. Current Allergy and Asthma Reports, 2015, 15, 494.	5.3	9
89	A series of <scp>COVID</scp> â€19 autopsies with clinical and pathologic comparisons to both seasonal and pandemic influenza. Journal of Pathology: Clinical Research, 2021, 7, 459-470.	3.0	9
90	IL-33 Drives Monocyte Recruitment to Lung Interstitium through Chemokine Upregulation. ImmunoHorizons, 2017, 1, 101-108.	1.8	9

#	Article	IF	Citations
91	Ezrin Is Highly Expressed in Early Thymocytes, but Dispensable for T Cell Development in Mice. PLoS ONE, 2010, 5, e12404.	2.5	8
92	DNAâ€Directed Assembly of Antibody–Fluorophore Conjugates for Quantitative Multiparametric Flow Cytometry. ChemBioChem, 2014, 15, 267-275.	2.6	8
93	Effects of an FcÎ ³ RIIA polymorphism on leukocyte gene expression and cytokine responses to anti-CD3 and anti-CD28 antibodies. Genes and Immunity, 2019, 20, 462-472.	4.1	8
94	Pro-lymphangiogenic VEGFR-3 signaling modulates memory T cell responses in allergic airway inflammation. Mucosal Immunology, 2021, 14, 144-151.	6.0	8
95	The first line of defence?. Current Biology, 1993, 3, 294-296.	3.9	7
96	Quantitation of secretory group V phospholipase A2 in human tissues by sandwich enzyme-linked immunosorbent assay. Journal of Immunological Methods, 2002, 262, 41-51.	1.4	7
97	T cell Co-Stimulatory molecules ICOS and CD28 stratify idiopathic pulmonary fibrosis survival. Respiratory Medicine: X, 2019, 1, 100002.	1.4	7
98	ICOS-Expressing Lymphocytes Promote Resolution of CD8-Mediated Lung Injury in a Mouse Model of Lung Rejection. PLoS ONE, 2013, 8, e72955.	2.5	6
99	SARS-CoV-2 Infection Is Associated with Reduced Kr \tilde{A}^{1} /4ppel-like Factor 2 in Human Lung Autopsy. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 222-226.	2.9	5
100	Gene-environment interactions in a mutant mouse kindred with native airway constrictor hyperresponsiveness. Mammalian Genome, 2008, 19, 2-14.	2.2	3
101	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	2.9	3
102	Allergen Exposure in Lymphopenic Fas-Deficient Mice Results in Persistent Eosinophilia Due to Defects in Resolution of Inflammation. Frontiers in Immunology, 2018, 9, 2395.	4.8	1
103	T-cell costimulation blockade in immunologic diseases: role of CD28 family members. Expert Review of Clinical Immunology, 2007, 3, 383-393.	3.0	0
104	578 Tight Junction Protein Expression by $\hat{I}^3\hat{I}'$ IELs Regulates Gastrointestinal Lymphocyte-Epithelial Interactions. Gastroenterology, 2010, 138, S-82.	1.3	0
105	Editorial overview: Allergy and hypersensitivity. Current Opinion in Immunology, 2014, 31, ix-xi.	5. 5	0
106	Reply to Lescoat et al. and to Khamis et al American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1041-1042.	5.6	0
107	ICOS costimulation regulates the development of effector memory CD4 T cells. FASEB Journal, 2008, 22, 846.9.	0.5	0
108	Tight junction protein expression by $\hat{I}^3\hat{I}'$ intraepithelial lymphocytes (IELs) regulates interactions between lymphocytes and epithelial cells. FASEB Journal, 2010, 24, .	0.5	0

#	Article	IF	CITATIONS
109	Occludin regulates γδ intraepithelial lymphocyte migration in vivo. FASEB Journal, 2011, 25, 1121.2.	0.5	O