Jianzhuang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4437340/publications.pdf

Version: 2024-02-01

381 papers 13,588 citations

63 h-index 91 g-index

389 all docs 389 docs citations

times ranked

389

8446 citing authors

#	Article	IF	CITATIONS
1	Chiral porphyrin assemblies. Aggregate, 2023, 4, .	9.9	19
2	Atomic CoN3S1 sites for boosting oxygen reduction reaction via an atomic exchange strategy. Nano Research, 2022, 15, 1803-1808.	10.4	9
3	Porous organic cages for efficient gas selective separation and iodine capture. Chemical Engineering Journal, 2022, 428, 131129.	12.7	34
4	Porous Pyrene Organic Cage with Unusual Absorption Bathochromic-Shift Enables Visible Light Photocatalysis. CCS Chemistry, 2022, 4, 2588-2596.	7.8	18
5	Maximizing Electroactive Sites in a Threeâ€Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	83
6	High Fluorescence Porous Organic Cage for Sensing Divalent Palladium Ion and Encapsulating Fine Palladium Nanoparticles. Chinese Journal of Chemistry, 2022, 40, 385-391.	4.9	7
7	Co–Fe alloy nanoparticles and Fe3C nanocrystals on N-doped biomass-derived porous carbon for superior electrocatalytic oxygen reduction. Journal of Solid State Chemistry, 2022, 307, 122735.	2.9	9
8	Phthalocyanineâ€Triggered Helical Dipeptide Nanotubes with Intense Circularly Polarized Luminescence. Small, 2022, 18, e2104438.	10.0	9
9	Edge-located Fe-N4 sites on porous Graphene-like nanosheets for boosting CO2 electroreduction. Chemical Engineering Journal, 2022, 431, 134269.	12.7	12
10	Transplantation of feces from mice with Alzheimer's disease promoted lung cancer growth. Biochemical and Biophysical Research Communications, 2022, 600, 67-74.	2.1	4
11	A robust redox-active hydrogen-bonded organic framework for rechargeable batteries. Journal of Materials Chemistry A, 2022, 10, 1808-1814.	10.3	25
12	Cobalt Nanocluster-Decorated N-Rich Hierarchical Carbon Architectures Efficiently Catalyze Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 2001-2009.	6.7	8
13	Sensitive and selective sensor based on porphyrin porous organic cage fluorescence towards copper ion. Dyes and Pigments, 2022, 200, 110117.	3.7	8
14	Photoresponsive Covalent Organic Frameworks with Diarylethene Switch for Tunable Singlet Oxygen Generation. Chemistry of Materials, 2022, 34, 1956-1964.	6.7	35
15	Titelbild: Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks (Angew.) Tj ET0	Qq <u>1</u> .1,0.78	843] 4 rgBT /C
16	Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
17	Porphyrin Coordination Polymer with Dual Photocatalytic Sites for Efficient Carbon Dioxide Reduction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 8048-8057.	8.0	36
18	A Robust Hydrogen-Bonded Organic Framework with 7-Fold Interpenetration Nets and High Permanent Microporosity. Crystal Growth and Design, 2022, 22, 1817-1823.	3.0	15

#	Article	IF	CITATIONS
19	F-doped carbon hollow nanospheres for efficient electrochemical oxygen reduction. Journal of Materials Science, 2022, 57, 5924-5932.	3.7	7
20	Covalent Microporous Polymer Nanosheets for Efficient Photocatalytic CO ₂ Conversion with H ₂ O. Small, 2022, 18, e2201314.	10.0	25
21	Stimuli-Responsive Porous Molecular Crystal with Reversible Modulation of Porosity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1519-1525.	8.0	9
22	Atomically Dispersed NiN ₃ Sites on Highly Defective Microâ€Mesoporous Carbon for Superior CO ₂ Electroreduction. Small, 2022, 18, e2107997.	10.0	16
23	Efficient hydrogenation of cinnamaldehyde to 3-phenylpropanol on Ni/NiS-modified twin Zn _{0.5} Cd _{0.5} S under visible light irradiation. Catalysis Science and Technology, 2022, 12, 3706-3715.	4.1	5
24	Covalent organic frameworks based on tetraphenyl- <i>p</i> phenylenediamine and metalloporphyrin for electrochemical conversion of CO ₂ to CO. Inorganic Chemistry Frontiers, 2022, 9, 3217-3223.	6.0	11
25	Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chemical Science, 2022, 13, 7014-7020.	7.4	8
26	Enhanced Photocatalytic CO ₂ Reduction through Hydrophobic Microenvironment and Binuclear Cobalt Synergistic Effect in Metallogels. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
27	An efficient strategy to boost the directed migration of photogenerated holes by introducing phthalocyanine as a hole extraction layer. Inorganic Chemistry Frontiers, 2022, 9, 3915-3923.	6.0	6
28	Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Science China Chemistry, 2022, 65, 1291-1298.	8.2	16
29	Mesoporous Polyimideâ€Linked Covalent Organic Framework with Multiple Redoxâ€Active Sites for Highâ€Performance Cathodic Li Storage. Angewandte Chemie - International Edition, 2022, 61, .	13.8	79
30	Transformation of Porous Organic Cages and Covalent Organic Frameworks with Efficient Iodine Vapor Capture Performance. Journal of the American Chemical Society, 2022, 144, 12390-12399.	13.7	77
31	Highly efficient bifunctional catalyst with 2D MoN formed in situ synergy for OER and ORR based-on Co(II) doped Mo(IV)-Ni(II) supramolecular coordination polymer. Molecular Catalysis, 2022, 528, 112513.	2.0	1
32	An active site pre-anchoring and post-exposure strategy in Fe(CN)64-@PPy derived Fe/S/N-doped carbon electrocatalyst for high performance oxygen reduction reaction and zinc-air batteries. Chemical Engineering Journal, 2021, 413, 127395.	12.7	38
33	Advances in gas sensors of tetrapyrrolato-rare earth sandwich-type complexes — CommemoratingÂtheÂ100thÂanniversaryÂofÂtheÂbirthÂofÂAcademicianÂGuangxianÂXu. Journal of Rare Earths, 2021, 39, 113-120.	4.8	7
34	Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO ₂ fixation to cyclic carbonates. Inorganic Chemistry Frontiers, 2021, 8, 2880-2888.	6.0	16
35	Guest-tuned proton conductivity of a porphyrinylphosphonate-based hydrogen-bonded organic framework. Journal of Materials Chemistry A, 2021, 9, 2683-2688.	10.3	60
36	Crown-ether-substituted asymmetric phthalocyanine derivatives/CdS self-assembled hybrid films with an unprecedented high response toward NO2., 2021, , 1020-1030.		0

#	Article	IF	Citations
37	Post-synthetic modification of porous organic cages. Chemical Society Reviews, 2021, 50, 8874-8886.	38.1	98
38	An anionic potassium-organic framework for selective removal of uranyl ions. Dalton Transactions, 2021, 50, 8314-8321.	3.3	4
39	STM Investigation of the Y[C6S-Pc]2 and Y[C4O-Pc]2Complex at the Solution–Solid Interface: Substrate Effects, Submolecular Resolution, and Vacancies. Journal of Physical Chemistry C, 2021, 125, 1421-1431.	3.1	10
40	Atomic Zn Sites on N and S Codoped Biomass-Derived Graphene for a High-Efficiency Oxygen Reduction Reaction in both Acidic and Alkaline Electrolytes. ACS Applied Energy Materials, 2021, 4, 2481-2488.	5.1	21
41	Porphyrin-Based Metal–Organic Frameworks for Efficient Photocatalytic H ₂ Production under Visible-Light Irradiation. Inorganic Chemistry, 2021, 60, 3988-3995.	4.0	49
42	Robust Biological Hydrogenâ€Bonded Organic Framework with Postâ€Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visibleâ€Lightâ€Driven CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 8983-8989.	13.8	83
43	Robust Biological Hydrogenâ€Bonded Organic Framework with Postâ€Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visibleâ€Lightâ€Driven CO ₂ Reduction. Angewandte Chemie, 2021, 133, 9065-9071.	2.0	23
44	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143, 7104-7113.	13.7	198
45	Calreticulin as a special marker to distinguish dental pulp stem cells from gingival mesenchymal stem cells. International Journal of Biological Macromolecules, 2021, 178, 229-239.	7.5	7
46	Rational Modification of Two-Dimensional Donor–Acceptor Covalent Organic Frameworks for Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Enhanced Visible Photocatalytic Activity. ACS Applied Visible Photocatalytic Activity. ACS Applied Visible Photocatalytic Photocatalytic Activity. ACS Applied Visible Photocatalytic Photocatalyt	8.0	80
47	Ethylthio-substituted sandwich phthalocyaninato europium (III) semiconductors for sensing NO2 and NH3: Effect of the extended π-conjugate systems on tuning the conductivity and sensing behavior. Organic Electronics, 2021, 93, 106151.	2.6	5
48	Spin Crossover in a Series of Non-Hofmann-Type Fe(II) Coordination Polymers Based on [Hg(SeCN) ₃] ^{â^²} or [Hg(SeCN) ₄] ^{2–} Building Blocks. Inorganic Chemistry, 2021, 60, 11048-11057.	4.0	3
49	Magnetic Behaviors and Nonlinear Optical Properties of Heteroleptic Bis(phthalocyaninato) Holmium Compounds. European Journal of Inorganic Chemistry, 2021, 2021, 3512-3516.	2.0	3
50	Cocatalystâ€Free Reduction of 4,4′â€Dinitrodiphenyl Ether to 4,4′â€Diaminodiphenyl Ether Over Twinâ€Cry Zn _{Cd_{1â~x}S under Visible Light. ChemCatChem, 2021, 13, 4591-4601.}	rstal 3.7	5
51	Enhancement of Mass Transfer for Facilitating Industrialâ€Level CO ₂ Electroreduction on Atomic NiN ₄ Sites. Advanced Energy Materials, 2021, 11, 2102152.	19.5	56
52	A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogenâ€Bonded Organic Framework for Propyne/Propylene Separation. Angewandte Chemie - International Edition, 2021, 60, 25942-25948.	13.8	68
53	Metformin enhances the osteogenesis and angiogenesis of human umbilical cord mesenchymal stem cells for tissue regeneration engineering. International Journal of Biochemistry and Cell Biology, 2021, 141, 106086.	2.8	14
54	A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogenâ€Bonded Organic Framework for Propyne/Propylene Separation. Angewandte Chemie, 2021, 133, 26146-26152.	2.0	14

#	Article	IF	CITATIONS
55	Assembled small organic molecules for photodynamic therapy and photothermal therapy. RSC Advances, 2021, 11, 10061-10074.	3.6	29
56	Ultralow loading of ruthenium nanoparticles on nitrogen-doped porous carbon enables ultrahigh mass activity for the hydrogen evolution reaction in alkaline media. Catalysis Science and Technology, 2021, 11, 3182-3188.	4.1	11
57	Donor–acceptor covalent organic framework/g-C ₃ N ₄ hybrids for efficient visible light photocatalytic H ₂ production. Catalysis Science and Technology, 2021, 11, 2616-2621.	4.1	20
58	A sextuple-decker heteroleptic phthalocyanine heterometallic samarium–cadmium complex with crystal structure and nonlinear optical properties in solution and gel glass. Dalton Transactions, 2021, 50, 13661-13665.	3.3	2
59	Mass production of a single-atom cobalt photocatalyst for high-performance visible-light photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 26286-26297.	10.3	32
60	Facile preparation of N-doped corncob-derived carbon nanofiber efficiently encapsulating Fe2O3 nanocrystals towards high ORR electrocatalytic activity. Journal of Energy Chemistry, 2020, 44, 121-130.	12.9	100
61	A porous tetraphenylethylene-based polymer for fast-response fluorescence sensing of Fe(III) ion and nitrobenzene. Dyes and Pigments, 2020, 173, 107929.	3.7	15
62	A phthalocyanine-porphyrin triad for ratiometric fluorescent detection of Lead(II) ions. Dyes and Pigments, 2020, 173, 107941.	3.7	16
63	Sonochemical synthesis and fabrication of neodymium sesquioxide entrapped with graphene oxide based hierarchical nanocomposite for highly sensitive electrochemical sensor of anti-cancer (raloxifene) drug. Ultrasonics Sonochemistry, 2020, 64, 104717.	8.2	11
64	Elucidating π–π interaction-induced extension effect in sandwich phthalocyaninato compounds. RSC Advances, 2020, 10, 317-322.	3.6	5
65	Single iron atoms coordinated to g-C < sub > 3 < / sub > N < sub > 4 < / sub > on hierarchical porous N-doped carbon polyhedra as a high-performance electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2020, 56, 798-801.	4.1	45
66	Multi-component supramolecular gels induce protonation of a porphyrin exciplex to achieve improved collective optical properties for effective photocatalytic hydrogen generation. Chemical Communications, 2020, 56, 527-530.	4.1	20
67	A Ni/Fe-based heterometallic phthalocyanine conjugated polymer for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 642-646.	6.0	32
68	An ultrafast responsive NO ₂ gas sensor based on a hydrogen-bonded organic framework material. Chemical Communications, 2020, 56, 703-706.	4.1	77
69	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 3840-3845.	13.8	109
70	In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2020, 47, 79-85.	12.9	32
71	Quintuple-Decker Heteroleptic Phthalocyanine Heterometallic Samarium–Cadmium Complexes. Synthesis, Crystal Structure, Electrochemical Behavior, and Spectroscopic Investigation. Inorganic Chemistry, 2020, 59, 17591-17599.	4.0	4
72	Photonic Switching Porous Organic Polymers toward Reversible Control of Heterogeneous Photocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 56491-56498.	8.0	19

#	Article	IF	CITATIONS
73	Single-crystal-to-single-crystal transformation and proton conductivity of three hydrogen-bonded organic frameworks. Chemical Communications, 2020, 56, 15529-15532.	4.1	39
74	Multipolar Porphyrinâ€Triazatruxene Arrays for Twoâ€Photon Fluorescence Cell Imaging. Chemistry - A European Journal, 2020, 26, 13842-13848.	3.3	11
75	Metal-free azo-bridged porphyrin porous organic polymers for visible-light-driven CO ₂ reduction to CO with high selectivity. Dalton Transactions, 2020, 49, 7592-7597.	3.3	16
76	<i>ci>cis</i> -Silicon phthalocyanine conformation endows <i>J</i> -aggregated nanosphere with unique near-infrared absorbance and fluorescence enhancement: a tumor sensitive phototheranostic agent with deep tissue penetrating ability. Journal of Materials Chemistry B, 2020, 8, 2895-2908.	5.8	15
77	Heterobimetallic complexes from 0D clusters to 3D networks based on various polycyanometallates and [Cu(dmpn) ₂] ²⁺ (dmpn = 2,2-dimethyl-1,3-diaminopropane): synthesis, crystal structures and magnetic properties. CrystEngComm, 2020, 22, 2806-2816.	2.6	8
78	An Overall Comprehension of Antiâ€Aromatic Porphyrinoids Using 3Dâ€Graphical Chemical Shielding Description. Advanced Theory and Simulations, 2020, 3, 2000007.	2.8	1
79	Ternary Cross-Vanadium Tetra-Capped POMOFs@PPy/RGO Nanocomposites with Hybrid Battery-Supercapacitor Behavior for Enhancing Lithium Battery Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 4667-4675.	6.7	36
80	A cascade surface immobilization strategy to access high-density and closely distanced atomic Pt sites for enhancing alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 5255-5262.	10.3	21
81	Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage. Nature Communications, 2020, 11, 1047.	12.8	100
82	Innentitelbild: Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation (Angew. Chem. 10/2020). Angewandte Chemie, 2020, 132, 3778-3778.	2.0	0
83	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie, 2020, 132, 3868-3873.	2.0	20
84	Unique electronic structure of Tri- $\hat{1}\frac{1}{4}$ -oxido-[bis(porphyrinato)niobium(V)]: Spontaneous symmetry breaking mechanism of the special coordination skeleton. Computational and Theoretical Chemistry, 2020, 1181, 112832.	2.5	3
85	Three Hydrogen-Bonded Organic Frameworks with Water-Induced Single-Crystal-to-Single-Crystal Transformation and High Proton Conductivity. Crystal Growth and Design, 2020, 20, 3456-3465.	3.0	51
86	A porphyrin-pyranine dyad for ratiometric fluorescent sensing of intracellular pH. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112524.	3.9	6
87	A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation. Chemical Science, 2019, 10, 8246-8252.	7.4	64
88	An indirect ELISA-inspired dual-channel fluorescent immunoassay based on MPA-capped CdTe/ZnS QDs. Analytical and Bioanalytical Chemistry, 2019, 411, 5437-5444.	3.7	7
89	Ferromagnetic coupling between 4f- and delocalized π-radical spins in mixed (phthalocyaninato)(porphyrinato) rare earth double-decker SMMs. Inorganic Chemistry Frontiers, 2019, 6, 2142-2147.	6.0	11
90	Facile sonochemical synthesis of porous and hierarchical manganese(III) oxide tiny nanostructures for super sensitive electrocatalytic detection of antibiotic (chloramphenicol) in fresh milk. Ultrasonics Sonochemistry, 2019, 58, 104648.	8.2	28

#	Article	IF	Citations
91	The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 2019, 7, 10240-10246.	5.5	27
92	Crown-ether-substituted asymmetric phthalocyanine derivatives/CdS self-assembled hybrid films with an unprecedented high response toward NO2. Journal of Porphyrins and Phthalocyanines, 2019, 23, 507-517.	0.8	3
93	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18011-18016.	13.8	103
94	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie, 2019, 131, 18179-18184.	2.0	30
95	A Scalable General Synthetic Approach toward Ultrathin Imine-Linked Two-Dimensional Covalent Organic Framework Nanosheets for Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 17431-17440.	13.7	418
96	Photoactive Porphyrinâ€Based Metalâ€Organic Framework Nanosheets. European Journal of Inorganic Chemistry, 2019, 2019, 4815-4819.	2.0	13
97	Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium–Porphyrin Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. ACS Applied Materials & Amp; Interfaces, 2019, 11, 45118-45125.	8.0	29
98	Compartmentalization within Nanofibers of Doubleâ€Decker Phthalocyanine Induces Highâ€Performance Sensing in both Aqueous Solution and the Gas Phase. Chemistry - A European Journal, 2019, 25, 16207-16213.	3.3	7
99	A hybrid of g-C ₃ N ₄ and porphyrin-based covalent organic frameworks <i>via</i> liquid-assisted grinding for enhanced visible-light-driven photoactivity. Dalton Transactions, 2019, 48, 14989-14995.	3.3	76
100	A sandwich-type tetrakis(phthalocyaninato) europium–cadmium quadruple-decker complex: structural, spectroscopic, OFET, and gas sensing properties. New Journal of Chemistry, 2019, 43, 15763-15767.	2.8	9
101	A calix[4]arene-modified (Pc)Eu(Pc)Eu[T(C4A)PP]-based sensor for highly sensitive and specific host–guest electrochemical recognition. Dalton Transactions, 2019, 48, 718-727.	3.3	9
102	Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 3112-3119.	10.3	87
103	Single-Ion Magnet Investigation of ABAB-Type Tetrachloro- and Tetraalkoxy-Substituted Bis(phthalocyaninato) Terbium Double-Decker with D 2 Symmetrical Ligand Field. European Journal of Inorganic Chemistry, 2019, 2019, 1329-1334.	2.0	2
104	Bis [1,8,15,22-tetrakis (3-pentyloxy) phthalocyaninato] terbium Double-Decker Single-Ion Magnets. Inorganic Chemistry, 2019, 58, 2422-2429.	4.0	12
105	Surfactant-assisted synthesis and electrochemical properties of an unprecedented polyoxometalate-based metal–organic nanocaged framework. Chemical Communications, 2019, 55, 1201-1204.	4.1	45
106	Magnetic investigations over reversibly switched chiral (phthalocyaninato)(porphyrinato) dysprosium double-decker compounds. Dalton Transactions, 2019, 48, 1586-1590.	3.3	9
107	Molecular assembly-induced charge transfer between a mixed (phthalocyaninato)(porphyrinato) yttrium triple-decker and a fullerene. Inorganic Chemistry Frontiers, 2019, 6, 654-658.	6.0	5
108	Controlling the Crystal Field of Heteroleptic Bis(phthalocyaninato) Erbium for Fieldâ€Induced Magnetic Relaxation. European Journal of Inorganic Chemistry, 2019, 2019, 2940-2946.	2.0	9

#	Article	IF	CITATIONS
109	Solution-processable (Pc′)Eu(Pc′)Eu[TP(OH)PP]/rGO bilayer heterojunction organic transistors with exceptional excellent ambipolar performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 12437-12446.	2.2	6
110	Manganese(III) Porphyrin-Based Magnetic Materials. Topics in Current Chemistry, 2019, 377, 18.	5.8	12
111	Functional Supramolecular Gels Based on the Hierarchical Assembly of Porphyrins and Phthalocyanines. Frontiers in Chemistry, 2019, 7, 336.	3.6	24
112	A novel calix[4]arene-modified porphyrin-based dual-mode sensor for the specific detection of dopamine with excellent performance. New Journal of Chemistry, 2019, 43, 10376-10381.	2.8	10
113	Postsynthetic Metalation of a Robust Hydrogen-Bonded Organic Framework for Heterogeneous Catalysis. Journal of the American Chemical Society, 2019, 141, 8737-8740.	13.7	178
114	Ultrathin Phthalocyanine-Conjugated Polymer Nanosheet-Based Electrochemical Platform for Accurately Detecting H ₂ O ₂ in Real Time. ACS Applied Materials & amp; Interfaces, 2019, 11, 11466-11473.	8.0	38
115	Raman spectra of rare earth double-decker complexes with porphyrinato and 2,3-naphthalocyaninato ligands. Journal of Porphyrins and Phthalocyanines, 2019, 23, 260-266.	0.8	0
116	Towards developing efficient aminopyridine-based electrochemical catalysts for CO2 reduction. A density functional theory study. Journal of Catalysis, 2019, 373, 75-80.	6.2	10
117	Unconventional dihydrogen-bond interaction induced cyanide-bridged chiral nano-sized magnetic molecular wheel: synthesis, crystal structure and systematic theoretical magnetism investigation. Journal of Materials Chemistry C, 2019, 7, 3623-3633.	5.5	11
118	An ultrafast BODIPY single molecular sensor for multi-analytes (acid/base/Cu2+/Bi3+) with different sensing mechanism. Dyes and Pigments, 2019, 165, 279-286.	3.7	11
119	High mobility at the interface of the cocrystallized sandwich-type tetrapyrrole metal compound and fullerene layers. Inorganic Chemistry Frontiers, 2019, 6, 3345-3349.	6.0	5
120	A Br-regulated transition metal active-site anchoring and exposure strategy in biomass-derived carbon nanosheets for obtaining robust ORR/HER electrocatalysts at all pH values. Journal of Materials Chemistry A, 2019, 7, 27089-27098.	10.3	40
121	Dimeric phthalocyanine-involved double-decker complex-based electrochemical sensor for simultaneous detection of acetaminophen and ascorbic acid. Journal of Materials Science: Materials in Electronics, 2019, 30, 1976-1983.	2.2	12
122	Optimizing the gas sensing properties of sandwich-type phthalocyaninato europium complex through extending the conjugated framework. Dyes and Pigments, 2019, 161, 240-246.	3.7	25
123	Tetrapyrrole macrocycle based conjugated two-dimensional mesoporous polymers and covalent organic frameworks: From synthesis to material applications. Coordination Chemistry Reviews, 2019, 378, 188-206.	18.8	106
124	Room temperature chiral reorganization of interfacial assembly of achiral double-decker phthalocyanine. Physical Chemistry Chemical Physics, 2018, 20, 7223-7229.	2.8	6
125	The lower rather than higher density charge carrier determines the NH ₃ -sensing nature and sensitivity of ambipolar organic semiconductors. Materials Chemistry Frontiers, 2018, 2, 1009-1016.	5.9	38
126	Chiral bis(phthalocyaninato) terbium double-decker compounds with enhanced single-ion magnetic behavior. Inorganic Chemistry Frontiers, 2018, 5, 939-943.	6.0	20

#	Article	IF	Citations
127	Detection and Manipulation of Charge States for Double-Decker DyPc ₂ Molecules on Ultrathin CuO Films. ACS Nano, 2018, 12, 2991-2997.	14.6	16
128	Fabricating Bis(phthalocyaninato) Terbium SIM into Tetrakis(phthalocyaninato) Terbium SMM with Enhanced Performance through Sodium Coordination. Chemistry - A European Journal, 2018, 24, 8066-8070.	3.3	28
129	Regulating the emission of tetraphenylethenes by changing the alkoxyl linkage length between two neighboring phenyl moieties. Chemical Communications, 2018, 54, 6987-6990.	4.1	6
130	TTF-fused heteroleptic bis(phthalocyaninato) europium double-decker complexes. Synthesis, spectroscopic, and electrochemical properties. Dyes and Pigments, 2018, 156, 167-174.	3.7	13
131	An ethynyl-linked Fe/Co heterometallic phthalocyanine conjugated polymer for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8349-8357.	10.3	71
132	Distribution of the unpaired electron in neutral bis(phthalocyaninato) yttrium double-deckers: An experimental and theoretical combinative investigation. Journal of Porphyrins and Phthalocyanines, 2018, 22, 165-172.	0.8	4
133	Conformation-controlled emission of AIE luminogen: a tetraphenylethene embedded pillar[5]arene skeleton. Chemical Communications, 2018, 54, 837-840.	4.1	37
134	Fabrication and Electrochemical Performance of Polyoxometalate-Based Three-Dimensional Metal Organic Frameworks Containing Carbene Nanocages. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16660-16665.	8.0	45
135	Alkali metal ions regulate the supramolecular chirality of interfacial assembly of achiral phthalocyanine. Dyes and Pigments, 2018, 157, 133-139.	3.7	10
136	Synthetic porphyrin chemistry in China. Science China Chemistry, 2018, 61, 511-514.	8.2	37
137	Binuclear Phthalocyanine Dimerâ€Containing Yttrium Doubleâ€Decker Ambipolar Semiconductor with Sensitive Response toward Oxidizing NO ₂ and Reducing NH ₃ . ChemElectroChem, 2018, 5, 605-609.	3.4	31
138	Polymorphism in the self-assembled nanostructures of a tris(phthalocyaninato) europium derivative: Phase-dependent semiconducting and NO2 sensing behaviour. Organic Electronics, 2018, 53, 127-134.	2.6	26
139	An AceDAN–porphyrin(Zn) dyad for fluorescence imaging and photodynamic therapy <i>via</i> two-photon excited FRET. Inorganic Chemistry Frontiers, 2018, 5, 3061-3066.	6.0	9
140	Mixed phthalocyanine-porphyrin-based conjugated microporous polymers towards unveiling the activity origin of Feâ€"N ₄ catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 22851-22857.	10.3	59
141	Hierarchical Assembly of <scp>l</scp> -Phenylalanine-Terminated Bolaamphiphile with Porphyrin Show Tunable Nanostructures and Photocatalytic Properties. ACS Omega, 2018, 3, 10638-10646.	3.5	20
142	Hemiporphyrazine-Involved Sandwich Dysprosium Double-Decker Single-Ion Magnets. Inorganic Chemistry, 2018, 57, 12347-12353.	4.0	9
143	Two-Photon Excited FRET Dyads for Lysosome-Targeted Imaging and Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 11537-11542.	4.0	42
144	Efficient ORR electrocatalytic activity of peanut shell-based graphitic carbon microstructures. Journal of Materials Chemistry A, 2018, 6, 12018-12028.	10.3	81

#	Article	IF	Citations
145	Vibrational spectra of alkylamino substituted phthalocyanine compounds: Density functional theory calculations. Journal of Porphyrins and Phthalocyanines, 2018, 22, 771-776.	0.8	4
146	Heteroleptic chiral bis(phthalocyaninato) terbium double-decker single-ion magnets. Inorganic Chemistry Frontiers, 2018, 5, 2006-2012.	6.0	11
147	Synthesis, crystal structures, and fluorescence properties of porphyrin alkaline earth MOFs. Inorganic Chemistry Communication, 2018, 95, 36-39.	3.9	12
148	Structure and LIBs Anode Material Application of Novel Wells–Dawson Polyoxometalate-Based Metal Organic Frameworks with Different Helical Channels. Crystal Growth and Design, 2018, 18, 5564-5572.	3.0	19
149	Air–water interfacial assembly of all-aromatic-substituted double-decker phthalocyanine forms aligned nanoparticles. Journal of Porphyrins and Phthalocyanines, 2018, 22, 791-798.	0.8	1
150	Lysosome-targeting ratiometric fluorescent pH probes based on long-wavelength BODIPY. Journal of Materials Chemistry B, 2018, 6, 4422-4426.	5.8	47
151	Neo-N-confused Phlorins and Phlorinone: Rational Synthesis and Tunable Properties. Organic Letters, 2017, 19, 650-653.	4.6	22
152	Sensitivity enhancement of graphene Hall sensors modified by single-molecule magnets at room temperature. RSC Advances, 2017, 7, 1776-1781.	3.6	10
153	Novel chiral binaphthalene-linked pyrenes. Synthesis, structure, and spectroscopy. Dyes and Pigments, 2017, 141, 245-250.	3.7	6
154	Controlled morphology of self-assembled microstructures via solvent-vapor annealing temperature and ambipolar OFET performance based on a tris(phthalocyaninato) europium derivative. Dyes and Pigments, 2017, 143, 203-210.	3.7	15
155	Unraveling the formation mechanism of subphthalocyanine. Density functional theory studies. Inorganic Chemistry Communication, 2017, 85, 9-15.	3.9	8
156	Multinuclear Phthalocyanineâ€Fused Molecular Nanoarrays: Synthesis, Spectroscopy, and Semiconducting Property. Chemistry - A European Journal, 2017, 23, 8644-8651.	3.3	9
157	New Route toward POM[6]Catenane Members for Lithium-Ion Batteries. Crystal Growth and Design, 2017, 17, 3775-3782.	3.0	31
158	Novel imine-linked porphyrin covalent organic frameworks with good adsorption removing properties of RhB. New Journal of Chemistry, 2017, 41, 6145-6151.	2.8	50
159	Sandwich rare earth complexes simultaneously involving aromatic phthalocyanine and antiaromatic hemiporphyrazine ligands showing a predominantly aromatic nature. Chemical Communications, 2017, 53, 3765-3768.	4.1	9
160	Unprecedented phthalocyanine–porphyrin-fused oligomers with induced chirality nature. Inorganic Chemistry Frontiers, 2017, 4, 104-109.	6.0	5
161	Intramolecular chirality induction and intermolecular chirality modulation in BINOL bridged bisporphyrin hosts. Dyes and Pigments, 2017, 137, 608-614.	3.7	13
162	Novel, linear oligoisoindole compounds with a conjugated electronic structure. Organic Chemistry Frontiers, 2017, 4, 2364-2369.	4.5	6

#	Article	IF	CITATIONS
163	Mixed Phthalocyanine–Porphyrin Fused Conjugated Pentameric Nanoarrays. Chemistry - A European Journal, 2017, 23, 15017-15021.	3.3	1
164	An Azacrown[N,S,O]â€"Styryl Modified Boronâ€"Phenylpyrrin: Coordinationâ€Modeâ€Transitionâ€Induced Colorimetric and OFFâ€"ONâ€"OFF Fluorescence Chemosensor for Quantifying Cu ²⁺ . European Journal of Inorganic Chemistry, 2017, 2017, 5254-5259.	2.0	5
165	Combinatorial experimental and DFT theoretical investigation over the formation mechanism of a binuclear phthalocyanine dimer. RSC Advances, 2017, 7, 53043-53047.	3.6	4
166	Ratiometric Fluorescent Detection of Pb ²⁺ by FRET-Based Phthalocyanine-Porphyrin Dyads. Inorganic Chemistry, 2017, 56, 14533-14539.	4.0	61
167	Solution-processed single crystal microsheets of a novel dimeric phthalocyanine-involved triple-decker for high-performance ambipolar organic field effect transistors. Chemical Communications, 2017, 53, 12754-12757.	4.1	25
168	A New Bis(phthalocyaninato) Terbium Single-Ion Magnet with an Overall Excellent Magnetic Performance. Inorganic Chemistry, 2017, 56, 13889-13896.	4.0	53
169	Chiral Discrimination of Diamines by a Binaphthalene-Bridged Porphyrin Dimer. Inorganic Chemistry, 2017, 56, 8223-8231.	4.0	26
170	Novel bis(phthalocyaninato) rare earth complexes with the bulky and strong electron-donating dibutylamino groups: synthesis, spectroscopy, and SMM properties. Inorganic Chemistry Frontiers, 2017, 4, 1465-1471.	6.0	32
171	Fluorescent Phthalocyanine Assembly Distinguishes Chiral Isomers of Different Types of Amino Acids and Sugars. Langmuir, 2017, 33, 7239-7247.	3.5	24
172	A post-cyclotetramerization strategy towards novel binuclear phthalocyanine dimers. Inorganic Chemistry Frontiers, 2017, 4, 110-113.	6.0	11
173	Highly selective enzymatic-free electrochemical sensor for dopamine detection based on the self-assemblied film of a sandwich mixed (phthalocyaninato) (porphyrinato) europium derivative. Journal of Porphyrins and Phthalocyanines, 2017, 21, 796-802.	0.8	13
174	Fabrication and electrochemical performance of unprecedented POM-based metal–carbene frameworks. Journal of Materials Chemistry A, 2017, 5, 17920-17925.	10.3	43
175	New Meso-ortho-hydroxy-decorating Fluorescent ON-OFF Bodipy sensor to Cu2+. Inorganic Chemistry Communication, 2016, 68, 9-12.	3.9	2
176	Four Dibutylamino Substituents Are Better Than Eight in Modulating the Electronic Structure and Third-Order Nonlinear-Optical Properties of Phthalocyanines. Inorganic Chemistry, 2016, 55, 3151-3160.	4.0	34
177	Metallomacrocycle-supported interpenetration networks assembled from binary N-containing ligands. CrystEngComm, 2016, 18, 3506-3512.	2.6	6
178	Coordination Field Tuned Cyanide-Bridged Polynuclear and One-Dimensional Heterobimetallic Complexes: Synthesis, Crystal Structures, and Magnetic Properties. Crystal Growth and Design, 2016, 16, 5753-5761.	3.0	23
179	The first porphyrin–subphthalocyaninatoboron(<scp>iii</scp>)-fused hybrid with unique conformation and intramolecular charge transfer behavior. Chemical Communications, 2016, 52, 10517-10520.	4.1	7
180	Chiral benzo-fused Aza-BODIPYs with optical activity extending into the NIR range. Dyes and Pigments, 2016, 134, 427-433.	3.7	19

#	Article	IF	Citations
181	Nonperipheral Tetrakis(dibutylamino)phthalocyanines. New Types of 1,8,15,22-Tetrakis(substituted)phthalocyanine Isomers. Inorganic Chemistry, 2016, 55, 9289-9296.	4.0	14
182	A Mixed Porphyrin–Schiff Base Dysprosium(III) Singleâ€Molecule Magnet. European Journal of Inorganic Chemistry, 2016, 2016, 4194-4198.	2.0	12
183	Controlled preparation of ZnS nanoparticle arrays in Langmiur monolayer of an unsymmetrical phthalocyaninato zinc complex: Synthesis, organization and semiconducting properties. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1334-1341.	0.8	2
184	ABAB-type phthalocyanines simultaneously bearing electron donating and electron accepting groups. Synthesis, spectroscopy, and structure. Inorganic Chemistry Frontiers, 2016, 3, 1146-1151.	6.0	10
185	Twoâ€Step Solutionâ€Processed Twoâ€Component Bilayer Phthalocyaninato Copperâ€Based Heterojunctions with Interesting Ambipolar Organic Transiting and Ethanolâ€Sensing Properties. Advanced Materials Interfaces, 2016, 3, 1600253.	3.7	26
186	(Pc)Eu(Pc)Eu[<i>trans</i> -T(COOCH ₃) ₂ PP]/GO Hybrid Film-Based Nonenzymatic H ₂ O ₂ Electrochemical Sensor with Excellent Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30398-30406.	8.0	35
187	Integration of inherent and induced chirality into subphthalocyanine analogue. Scientific Reports, 2016, 6, 28026.	3.3	10
188	High Sensitive Ambipolar Response towards Oxidizing NO ₂ and Reducing NH ₃ Based on Bis(phthalocyaninato) Europium Semiconductors. Chinese Journal of Chemistry, 2016, 34, 975-982.	4.9	28
189	Porphyrin–Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue. Chemistry - A European Journal, 2016, 22, 6345-6352.	3.3	74
190	Phenanthro[4,5â€∢i>fgh⟨li>]quinoxalineâ€Fused Subphthalocyanines: Synthesis, Structure, and Spectroscopic Characterization. Chemistry - A European Journal, 2016, 22, 9488-9492.	3.3	7
191	Heteroleptic Tetrapyrroleâ€Fused Dimeric and Trimeric Skeletons with Unusual Nonâ€Frustrated Fluorescence. Chemistry - A European Journal, 2016, 22, 4492-4499.	3.3	12
192	Amphiphilic (Phthalocyaninato) (Porphyrinato) Europium Triple-Decker Nanoribbons with Air-Stable Ambipolar OFET Performance. ACS Applied Materials & Enterfaces, 2016, 8, 6174-6182.	8.0	55
193	Solid state fluorescent functionalized-triphenylamine Bodipy detector for HCl vapor with high stability and absolute fluorescent quantum yield. Dyes and Pigments, 2016, 124, 110-119.	3.7	38
194	Single-molecule magnetism of tetrapyrrole lanthanide compounds with sandwich multiple-decker structures. Coordination Chemistry Reviews, 2016, 306, 195-216.	18.8	172
195	Towards Clarifying the Role of O ₂ during the Phthalocyanine Synthesis. Chemistry - A European Journal, 2015, 21, 18461-18465.	3.3	2
196	Electron Transfer Flavoprotein Subunit Beta Is a Candidate Endothelial Cell Autoantigen in Behçet's Disease. PLoS ONE, 2015, 10, e0124760.	2.5	9
197	Prohibitin Is Involved in Patients with IgG4 Related Disease. PLoS ONE, 2015, 10, e0125331.	2.5	59
198	Self-assembly and nonlinear optical properties of $(\hat{l}/4-oxo)$ bis [meso-tetrakis (p-bromophenyl-porphyrinato) iron ((xcp) iii ((xcp))]. CrystEngComm, 2015, 17, 4699-4704.	2.6	10

#	Article	IF	Citations
199	Good Suzuki-coupling reaction performance of Pd immobilized at the metal-free porphyrin-based covalent organic framework. Microporous and Mesoporous Materials, 2015, 214, 108-114.	4.4	74
200	Recent Advances in Phthalocyanine-Based Functional Molecular Materials. Structure and Bonding, 2015, , 159-199.	1.0	15
201	Frontispiece: Unsymmetrical Pyreneâ€Fused Phthalocyanine Derivatives: Synthesis, Structure, and Properties. Chemistry - A European Journal, 2015, 21, .	3.3	0
202	Synthesis, crystal structures and magnetic properties of mer-cyanideiron(<scp>iii</scp>)-based 1D heterobimetallic cyanide-bridged chiral coordination polymers. Dalton Transactions, 2015, 44, 4655-4664.	3.3	26
203	(TFPP)Eu[Pc(OPh) ₈]Eu[Pc(OPh) ₈]/CuPc Two-Component Bilayer Heterojunction-Based Organic Transistors with High Ambipolar Performance. ACS Applied Materials & mp; Interfaces, 2015, 7, 2486-2493.	8.0	48
204	Unsymmetrical Pyreneâ€Fused Phthalocyanine Derivatives: Synthesis, Structure, and Properties. Chemistry - A European Journal, 2015, 21, 3168-3173.	3.3	17
205	Rational enhancement of the energy barrier of bis(tetrapyrrole) dysprosium SMMs via replacing atom of porphyrin core. Chemical Science, 2015, 6, 5947-5954.	7.4	90
206	Peripheral Substitution: An Easy Way to Tuning the Magnetic Behavior of Tetrakis(phthalocyaninato) Dysprosium(III) SMMs. Scientific Reports, 2015, 5, 8838.	3.3	22
207	Influence of porphyrin meso-attached substituent on the SMM behavior of dysprosium(iii) double-deckers with mixed tetrapyrrole ligands. RSC Advances, 2015, 5, 17732-17737.	3.6	15
208	A cross-linked supramolecular polymer constructed from pillar[5]arene and porphyrine via host–guest interactions. Polymer Chemistry, 2015, 6, 5015-5020.	3.9	21
209	Novel chiral ABBB-type unsymmetrical phthalocyanine. Ring-expansion synthesis, spectroscopic, and electrochemical properties. Dyes and Pigments, 2015, 120, 52-56.	3.7	14
210	An unprecedented porphyrin-pillar[5]arene hybrid ditopic receptor. RSC Advances, 2015, 5, 43218-43224.	3.6	3
211	Low-temperature scanning tunneling microscopy study on the electronic properties of a double-decker DyPc2 molecule at the surface. Physical Chemistry Chemical Physics, 2015, 17, 27019-27026.	2.8	22
212	A Zn Metal–Organic Framework with High Stability and Sorption Selectivity for CO2. Inorganic Chemistry, 2015, 54, 10587-10592.	4.0	26
213	Unprecedented Phthalocyanines Bearing Eight Di-butylamino Peripheral Substituents: Synthesis, Spectroscopy, and Structure. Inorganic Chemistry, 2015, 54, 9962-9967.	4.0	18
214	Water Dispersible and Biocompatible Porphyrin-Based Nanospheres for Biophotonics Applications: A Novel Surfactant and Polyelectrolyte-Based Fabrication Strategy for Modifying Hydrophobic Porphyrins. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19718-19725.	8.0	16
215	Identification of heat shock protein 27 as a novel autoantigen of Behçet's disease. Biochemical and Biophysical Research Communications, 2015, 456, 866-871.	2.1	14
216	Air-stable ambipolar field-effect transistor based on a solution-processed octanaphthoxy-substituted tris(phthalocyaninato) europium semiconductor with high and balanced carrier mobilities. Chemical Science, 2015, 6, 1967-1972.	7.4	68

#	Article	IF	CITATIONS
217	Heterogeneous Nuclear Ribonucleoprotein A2/B1 as a Target Antigen in Han Chinese for BD Patients. Protein and Peptide Letters, 2015, 22, 504-508.	0.9	4
218	Multiple correlations of mRNA expression and protein abundance in human cytokine profile. Molecular Biology Reports, 2014, 41, 6985-6993.	2.3	18
219	Experimental and Theoretical Characterization of 5,10-Diminoporphodimethenes: Dearomatized Porphyrinoids from Palladium-Catalyzed Hydrazinations of 5,10-Diarylporphyrins. ChemPlusChem, 2014, 79, 752-752.	2.8	0
220	Experimental and Theoretical Characterization of 5,10â€Diminoporphodimethenes: Dearomatized Porphyrinoids from Palladiumâ€Catalyzed Hydrazinations of 5,10â€Diarylporphyrins. ChemPlusChem, 2014, 79, 813-824.	2.8	5
221	Chiral bis(phthalocyaninato) yttrium double-decker complexes. Synthesis, structure, spectroscopy, and electrochemistry. Dalton Transactions, 2014, 43, 1699-1705.	3.3	14
222	Planar Binuclear Phthalocyanine-Containing Sandwich-Type Rare-Earth Complexes: Synthesis, Spectroscopy, Electrochemistry, and NLO Properties. European Journal of Inorganic Chemistry, 2014, 2014, 1546-1551.	2.0	21
223	Co-crystallized fullerene and a mixed (phthalocyaninato) (porphyrinato) dysprosium double-decker SMM. Chemical Science, 2014, 5, 3214-3220.	7.4	40
224	Determination of Deoxynivalenol, Zearalenone, Aflatoxin B1, and Ochratoxin by an Enzyme-Linked Immunosorbent Assay. Analytical Letters, 2014, 47, 1912-1920.	1.8	9
225	The First Fiveâ€Memberedâ€Heterocycleâ€Fused Subphthalocyanine Analogues: Chiral Tri(benzo[<i>b</i>]thiopheno)subporphyrazines. Chemistry - A European Journal, 2014, 20, 16266-16272.	3.3	24
226	Unprecedented cucurbituril-based ternary host–guest supramolecular polymers mediated through included alkyl chains. Polymer Chemistry, 2014, 5, 5211-5217.	3.9	19
227	Constructing bis(porphyrinato) rare earth double-decker complexes involving N-confused porphyrin. Dalton Transactions, 2014, 43, 9152.	3.3	12
228	Low-temperature scanning tunneling microscopy study of double-decker DyPc ₂ on Pb Surface. Nanoscale, 2014, 6, 10779.	5.6	18
229	Magneto-chiral dichroism in chiral mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker SMMs. Inorganic Chemistry Frontiers, 2014, 1, 167.	6.0	74
230	Synthesis and spectroscopic properties of chiral binaphthyl-linked subphthalocyanines. Chemical Communications, 2014, 50, 7663-7665.	4.1	22
231	1D to 3D Heterobimetallic Complexes Tuned by Cyanide Precursors: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2014, 53, 3494-3502.	4.0	37
232	A new series of cyanide-bridged heterobimetallic FeIII–FeIII/MnIII/CuII one-dimensional complexes: synthesis, crystal structures, and magnetic properties. New Journal of Chemistry, 2014, 38, 5470-5479.	2.8	7
233	Tetrakis(phthalocyaninato) terbium–cadmium quadruple-decker liquid crystals with good semiconducting properties. Organic Electronics, 2014, 15, 2654-2660.	2.6	2
234	Identification of prohibitin as an antigen in Behcet's disease. Biochemical and Biophysical Research Communications, 2014, 451, 389-393.	2.1	21

#	Article	IF	Citations
235	Synthesis, crystal structures, and luminescence properties of seven tripodal imidazole-based Zn/Cd(<scp>ii</scp>) coordination polymers induced by tricarboxylates. CrystEngComm, 2014, 16, 4554-4561.	2.6	35
236	Homobinuclear phthalocyaninato metal complexes. Synthesis, structure, spectroscopy, and electrochemistry. Dyes and Pigments, 2014, 109, 163-168.	3.7	11
237	Binuclear Phthalocyanineâ€Based Sandwichâ€Type Rare Earth Complexes: Unprecedented Two Ï€â€Bridged Biradicalâ€Metal Integrated SMMs. Chemistry - A European Journal, 2013, 19, 11162-11166.	3.3	74
238	Sandwich-Type Mixed Tetrapyrrole Rare-Earth Triple-Decker Compounds. Effect of the Coordination Geometry on the Single-Molecule-Magnet Nature. Inorganic Chemistry, 2013, 52, 8505-8510.	4.0	77
239	POSS-based luminescent hybrid material for enhanced photo-emitting properties. Journal of Materials Science, 2013, 48, 7533-7539.	3.7	8
240	Synthesis, Structure, and Singleâ€Molecule Magnetic Properties of Rareâ€Earth Sandwich Complexes with Mixed Phthalocyanine and Schiff Base Ligands. Chemistry - A European Journal, 2013, 19, 2266-2270.	3.3	48
241	Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 15: The IR characteristics of phthalocyanine in homoleptic tetrakis(phthalocyaninato) rare earth(III)-cadmium(II) quadruple-deckers. Vibrational Spectroscopy, 2013, 69, 8-12.	2.2	8
242	The electronic structures and charge transfer properties of tetra(naphthalene-dione)porphyrins and tetra(naphthalene-dithione)porphyrins as dye-sensitized solar cell skeleton. International Journal of Quantum Chemistry, 2013, 113, 2605-2610.	2.0	8
243	Mixed (phthalocyanine)(Schiff-base) terbium(iii)–alkali metal(i)/zinc(ii) complexes: synthesis, structures, and spectroscopic properties. CrystEngComm, 2013, 15, 10383.	2.6	12
244	H-aggregation mode in triple-decker phthalocyaninato-europium semiconductors. Materials design for high-performance air-stable ambipolar organic thin film transistors. Organic Electronics, 2013, 14, 2582-2589.	2.6	46
245	Sandwich-type tetrakis(phthalocyaninato) rare earth(iii)–cadmium(ii) quadruple-deckers. The effect of f-electrons. Dalton Transactions, 2013, 42, 1109-1115.	3.3	29
246	A sandwich-type phthalocyaninato metal sextuple-decker complex: synthesis and NLO properties. Chemical Communications, 2013, 49, 889-891.	4.1	61
247	Boron–Phenylpyrrin Dyes: Facile Synthesis, Structure, and pHâ€Sensitive Properties. Chemistry - A European Journal, 2013, 19, 7342-7347.	3.3	28
248	Synthesis, characterization and cytotoxic activity of 5,10,15,20â€tetrakis[4â€(triorganostannyloxy)phenyl]porphyrins. Applied Organometallic Chemistry, 2013, 27, 191-197.	3.5	1
249	Twist angle perturbation on mixed (phthalocyaninato)(porphyrinato) dysprosium(iii) double-decker SMMs. Chemical Communications, 2012, 48, 2973.	4.1	113
250	Porphyrin-based multi-signal chemosensors for Pb2+ and Cu2+. Organic and Biomolecular Chemistry, 2012, 10, 4782.	2.8	60
251	A Chiral Phthalocyanine Dimer with Wellâ€Defined Supramolecular Symmetry Based on π–π Interactions. Chemistry - A European Journal, 2012, 18, 15948-15952.	3.3	28
252	Multiple Foreign Gene Delivery Can Induce Antibody Production in Mice. Analytical Letters, 2012, 45, 2066-2074.	1.8	0

#	Article	IF	Citations
253	5,10,15,20-tetra(4-pyridyl)porphyrinato zinc coordination polymeric particles with different shapes and luminescent properties. CrystEngComm, 2012, 14, 7780.	2.6	26
254	Constructing Sandwich-Type Rare Earth Double-Decker Complexes with N-Confused Porphyrinato and Phthalocyaninato Ligands. Inorganic Chemistry, 2012, 51, 9265-9272.	4.0	28
255	Peripheryâ€Hydrogenating Effects on the Unordinary 14 Ï€â€Electron Delocalized Circuits and Related Electronic Properties of Subporphyrazine Analogs: A Density Functional Theory Investigation. Chinese Journal of Chemistry, 2012, 30, 2126-2130.	4.9	5
256	Synthesis, self-assembly, and semiconducting properties of phenanthroline-fused phthalocyanine derivatives. Journal of Materials Chemistry, 2012, 22, 15695.	6.7	28
257	Tetrakis(phthalocyaninato) Rareâ€Earth–Cadmium–Rareâ€Earth Quadrupleâ€Decker Sandwich SMMs: Suppression of QTM by Longâ€Distance f–f Interactions. Chemistry - A European Journal, 2012, 18, 7691-7694.	3.3	59
258	Cyanide-bridged complexes based on dinuclear Cu(II)-M(II) [M = Pb and Cu] building blocks: Synthesis, crystal structures and magnetic properties. Science China Chemistry, 2012, 55, 978-986.	8.2	3
259	New Sandwichâ€Type Phthalocyaninato–Metal Quintupleâ€Decker Complexes. Chemistry - A European Journal, 2012, 18, 1047-1049.	3.3	47
260	Highâ∈Performance Airâ∈Stable Ambipolar Organic Fieldâ∈Effect Transistor Based on Tris(phthalocyaninato) Europium(III). Advanced Materials, 2012, 24, 1755-1758.	21.0	111
261	The first solution-processable n-type phthalocyaninato copper semiconductor: tuning the semiconducting nature via peripheral electron-withdrawing octyloxycarbonyl substituents. Journal of Materials Chemistry, 2011, 21, 18552.	6.7	44
262	Helical nano-structures self-assembled from dimethylaminoethyloxy-containing unsymmetrical octakis-substituted phthalocyanine derivatives. Soft Matter, 2011, 7, 3417.	2.7	27
263	Morphology and chirality controlled self-assembled nanostructures of porphyrin–pentapeptide conjugate: effect of the peptide secondary conformation. Journal of Materials Chemistry, 2011, 21, 8057.	6.7	54
264	Synthesis, crystal structures, and luminescent properties of Cd(<scp>ii</scp>) coordination polymers assembled from asymmetric semi-rigid V-shaped multicarboxylate ligands. CrystEngComm, 2011, 13, 279-286.	2.6	53
265	Sandwich-type tetrakis(phthalocyaninato) dysprosium–cadmium quadruple-decker SMM. Chemical Communications, 2011, 47, 9624.	4.1	86
266	Sandwich-type (phthalocyaninato) (porphyrinato) europium triple-decker nanotubes. Effects of the phthalocyanine peripheral substituents on the molecular packing. Dalton Transactions, 2011, 40, 12895.	3.3	13
267	Sandwich-type mixed (phthalocyaninato) (porphyrinato) rare earth double-decker complexes with decreased molecular symmetry of Cs: Single crystal structure and self-assembled nano-structure. Dalton Transactions, 2011, 40, 107-113.	3.3	18
268	Mixed (porphyrinato)(phthalocyaninato) rare-earth(III) double-decker complexes for broadband light harvesting organic solar cells. Journal of Materials Chemistry, 2011, 21, 11131.	6.7	46
269	Rational Design and Synthesis for Versatile FRET Ratiometric Sensor for Hg ²⁺ and Fe ²⁺ : A Flexible 8-Hydroxyquinoline Benzoate Linked Bodipy-Porphyrin Dyad. Organic Letters, 2011, 13, 5774-5777.	4.6	69
270	Mixed (phthalocyaninato)(porphyrinato) heterometal complexes with sandwich quadruple-decker molecular structure. Chemical Communications, 2011, 47, 6879.	4.1	33

#	Article	IF	Citations
271	2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines with good n-type semiconducting properties. Synthesis, spectroscopic, and electrochemical characteristics. Journal of Materials Chemistry, 2011, 21, 6515.	6.7	36
272	Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration. Photochemical and Photobiological Sciences, 2011, 10, 1030-1038.	2.9	53
273	Conformational effects, molecular orbitals, and reaction activities of bis(phthalocyaninato) lanthanum double-deckers: Density functional theory calculations. Physical Chemistry Chemical Physics, 2011, 13, 13277.	2.8	48
274	8-Hydroxyquinoline-Substituted Boron–Dipyrromethene Compounds: Synthesis, Structure, and OFF–ON–OFF Type of pH-Sensing Properties. Journal of Organic Chemistry, 2011, 76, 3774-3781.	3.2	101
275	Ring-Shaped J-Type and Star-Shaped H-Type Nanostructures of an Unsymmetrical (Phthalocyaninato)zinc Complex. European Journal of Inorganic Chemistry, 2011, 2011, 1466-1472.	2.0	9
276	Charge transfer properties of phthalocyaninato zinc complexes for organic field-effect transistors: tuning semiconductor nature $\langle i \rangle via \langle j \rangle$ peripheral substituents. Journal of Porphyrins and Phthalocyanines, 2011, 15, 964-972.	0.8	0
277	Structures and properties of novel 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl] porphyrin derivatives: Density functional theory calculations. Science China Chemistry, 2010, 53, 2183-2192.	8.2	2
278	Nanoscale Hollow Spheres of an Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium Doubleâ€Decker Complex. European Journal of Inorganic Chemistry, 2010, 2010, 753-757.	2.0	14
279	Helical Nanostructures of an Optically Active Metalâ€Free Porphyrin with Four Optically Active Binaphthyl Moieties: Effect of Metal–Ligand Coordination on the Morphology. European Journal of Inorganic Chemistry, 2010, 2010, 4000-4008.	2.0	25
280	Synthesis, crystal structure and magnetic properties of a new 2D cyanide-bridged heterobimetallic Cr(I)–Mn(III) complex. Inorganic Chemistry Communication, 2010, 13, 895-898.	3.9	11
281	Nature of the near-IR band in the electronic absorption spectra of neutral bis(tetrapyrrole) rare earth(III) complexes: Time-dependent density functional theory calculations. International Journal of Quantum Chemistry, 2010, 110, 1559-1564.	2.0	1
282	Benzo-fused low symmetry metal-free tetraazaporphyrin and phthalocyanine analogs: synthesis, spectroscopy, electrochemistry, and density functional theory calculations. Journal of Porphyrins and Phthalocyanines, 2010, 14, 421-437.	0.8	9
283	Synthesis, Crystal Structures, and Magnetic Properties of One-Dimensional Mixed Cyanide- and Phenolate-Bridged Heterotrimetallic Complexes. Crystal Growth and Design, 2010, 10, 4231-4234.	3.0	48
284	Structures and Spectroscopic Properties of Fluoroboronâ^'Subtriazaporphyrin Derivatives: Density Functional Theory Approach on the Benzo-Fusing Effect. Journal of Physical Chemistry A, 2010, 114, 1931-1938.	2.5	29
285	Optically Active Homoleptic Bis(phthalocyaninato) Rare Earth Double-Decker Complexes Bearing Peripheral Chiral Menthol Moieties: Effect of πⴒπ Interaction on the Chiral Information Transfer at the Molecular Level. Inorganic Chemistry, 2010, 49, 6628-6635.	4.0	30
286	Heterobimetallic porphyrin-based single-chain magnet constructed from manganese(iii)-porphyrin and trans-dicyanobis(acetylacetonato) ruthenate(iii) containing co-crystallized bulk anions and cations. Chemical Communications, 2010, 46, 3550.	4.1	75
287	Morphology Controlled Surface-Assisted Self-Assembled Microtube Junctions and Dendrites of Metal Free Porphyrin-Based Semiconductor. Langmuir, 2010, 26, 3678-3684.	3.5	35
288	Manipulating Double-Decker Molecules at the Liquidâ^'Solid Interface. Journal of the American Chemical Society, 2010, 132, 16460-16466.	13.7	40

#	Article	IF	Citations
289	Linkage Dependence of Intramolecular Fluorescence Quenching Process in Porphyrin-Appended Mixed (Phthalocyaninato) (Porphyrinato) Yttrium(III) Double-Decker Complexes. Journal of Physical Chemistry B, 2010, 114, 13143-13151.	2.6	21
290	Novel Pathway to Synthesize Unsymmetrical 2,3,9,10,16,17,23-heptakis(alkoxyl)-24-mono(dimethylaminoalkoxyl)phthalocyanines. Inorganic Chemistry, 2010, 49, 9005-9011.	4.0	12
291	Bis[1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] rare earth double-decker complexes: synthesis, spectroscopy, and molecular structure. Dalton Transactions, 2010, 39, 1321-1327.	3.3	26
292	Facile approaches to build ordered amphiphilic tris(phthalocyaninato) europium triple-decker complex thin films and their comparative performances in ozone sensing. Physical Chemistry Chemical Physics, 2010, 12, 12851.	2.8	106
293	Diverse Ni(<scp>ii</scp>) MOFs constructed from asymmetric semi-rigid V-shaped multicarboxylate ligands: structures and magnetic properties. CrystEngComm, 2010, 12, 1096-1102.	2.6	73
294	Synthesis and third-order nonlinear optical properties of novel ethynyl-linked heteropentamer composed of four porphyrins and one pyrene. Journal of Porphyrins and Phthalocyanines, 2009, 13, 275-282.	0.8	13
295	Synthesis, Characterization and OFET Properties of Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium(III) Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 954-960.	2.0	34
296	Synthesis, structural characterization and cytotoxic activity of diorganotin(IV) complexes of $\langle i \rangle N \langle i \rangle \hat{a} \in \{5\hat{a} \in halosalicylidene\}$ tryptophane. Applied Organometallic Chemistry, 2009, 23, 24-31.	3.5	19
297	Density functional theory study on organic semiconductor for field effect transistors: Symmetrical and unsymmetrical porphyrazine derivatives with annulated 1,2,5-thiadiazole and 1,4-diamyloxybenzene moieties. Science in China Series B: Chemistry, 2009, 52, 840-848.	0.8	4
298	Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues: Density functional theory studies. Journal of Molecular Graphics and Modelling, 2009, 27, 693-700.	2.4	22
299	A novel photochromic and electrochromic europium tetraazaporphyrinato and phthalocyaninato heteroleptic double-decker for information storage. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1197-1205.	0.8	4
300	Tuning the morphology of self-assembled nanostructures of amphiphilic tetra(p-hydroxyphenyl)porphyrins with hydrogen bonding and metal–ligand coordination bonding. Journal of Materials Chemistry, 2009, 19, 2417.	6.7	94
301	Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Double-Decker Complexes with <i>C</i> < ₄ Chirality: Synthesis, Resolution, and Absolute Configuration Assignment. Inorganic Chemistry, 2009, 48, 8925-8933.	4.0	34
302	Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes. The Effect of Crown Ether Hydrophilic Substituents. Inorganic Chemistry, 2009, 48, 45-54.	4.0	61
303	Synthesis, Crystal Structures, and Magnetic Properties of Cyanide-Bridged Fe(III)â^'Mn(III) Complexes Based on Manganese(III)-Porphyrin and Pyridinecarboxamide Dicyanideiron(III) Building Blocks. Crystal Growth and Design, 2009, 9, 3989-3996.	3.0	25
304	A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolatoâ^Rare Earth Complexes. Accounts of Chemical Research, 2009, 42, 79-88.	15.6	328
305	Co(II) Metalâ^'Organic Frameworks (MOFs) Assembled from Asymmetric Semirigid Multicarboxylate Ligands: Synthesis, Crystal Structures, and Magnetic Properties. Crystal Growth and Design, 2009, 9, 5273-5282.	3.0	124
306	Rational design of cyanide-bridged heterometallic M(I)â€"Mn(II) (M = Ag, Au) one-dimensional chain complexes: synthesis, crystal structures and magnetic properties. CrystEngComm, 2009, 11, 2447.	2.6	25

#	Article	IF	CITATIONS
307	Optically Active Mixed Phthalocyaninato–Porphyrinato Rareâ€Earth Doubleâ€Decker Complexes: Synthesis, Spectroscopy, and Solventâ€Dependent Molecular Conformations. Chemistry - A European Journal, 2008, 14, 4667-4674.	3.3	48
308	Optically Active Mixed Phthalocyaninato-porphyrinato Rare-Earth Double-Decker Complexes: Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformation. Chemistry - A European Journal, 2008, 14, 6288-6288.	3. 3	0
309	Methyloxy Substituted Heteroleptic Bis(phthalocyaninato) Yttrium Complexes: Density Functional Calculations. ChemPhysChem, 2008, 9, 781-792.	2.1	19
310	Sandwichâ€Type Heteroleptic <i>opposite</i> â€(Diazaporphyrinato)cerium Complexes: Synthesis, Spectroscopy, Structure, and Electrochemistry. European Journal of Inorganic Chemistry, 2008, 2008, 5519-5523.	2.0	21
311	Synthesis and Hollowâ€Sphere Nanostructures of Optically Active Metalâ€Free Phthalocyanine. European Journal of Inorganic Chemistry, 2008, 2008, 4255-4261.	2.0	21
312	Synthesis, crystal structure and magnetic properties of a cyanide-bridged heterobimetallic trinuclear complex based on K[Cr(salen)(CN)2] building block. Inorganic Chemistry Communication, 2008, 11, 94-96.	3.9	19
313	Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato) (Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. Journal of the American Chemical Society, 2008, 130, 11623-11630.	13.7	146
314	Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metalâ^'Ligand Coordination Bonding on Tuning the Intermolecular Interaction. Journal of the American Chemical Society, 2008, 130, 17044-17052.	13.7	145
315	Charge Transfer Properties of Bis(phthalocyaninato) Rare Earth (III) Complexes: Intrinsic Ambipolar Semiconductor for Field Effect Transistors. Journal of Physical Chemistry C, 2008, 112, 14579-14588.	3.1	39
316	H ₂ O-Involved Hydrogen Bonds in Pseudo-Double-Decker Supramolecular Structure of 1,8,15,22-Tetrasubstituted Phthalocyaninato Zinc Complex. Crystal Growth and Design, 2008, 8, 4454-4459.	3.0	15
317	Organic photovoltaic cells made from phthalocyanine deckers. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
318	Organic photovoltaic cells made from sandwich-type rare earth phthalocyaninato double and triple deckers. Applied Physics Letters, 2008, 93, 073303.	3.3	28
319	Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. Inorganic Chemistry, 2007, 46, 11397-11404.	4.0	68
320	Synthesis and liquid crystal behavior of tris[2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato] rare earth complexes. Journal of Porphyrins and Phthalocyanines, 2007, 11, 100-108.	0.8	19
321	2,3,9,10,16,17,24,25-Octakis(octyloxycarbonyl)phthalocyanines. Synthesis, Spectroscopic, and Electrochemical Characteristics. Inorganic Chemistry, 2007, 46, 7136-7141.	4.0	29
322	Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalocyaninato) Europium Triple-Decker Complexes. Langmuir, 2007, 23, 12549-12554.	3. 5	64
323	Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor. Langmuir, 2007, 23, 5836-5842.	3.5	66
324	Structures and Spectroscopic Properties of Bis(phthalocyaninato) Yttrium and Lanthanum Complexes:  Theoretical Study Based on Density Functional Theory Calculations. Journal of Physical Chemistry A, 2007, 111, 392-400.	2.5	40

#	Article	IF	Citations
325	Porphyrin-Appended Europium(III) Bis(phthalocyaninato) Complexes: Synthesis, Characterization, and Photophysical Properties. Chemistry - A European Journal, 2007, 13, 4169-4177.	3.3	42
326	Location of the Hole and Acid Proton in Neutral Nonprotonated and Protonated Mixed (Phthalocyaninato) (porphyrinato) Yttrium Doubleâ€Decker Complexes: Density Functional Theory Calculations. Chemistry - A European Journal, 2007, 13, 9503-9514.	3.3	40
327	(Phthalocyaninato)copper(II) Complexes Fused with Different Numbers of 15-Crown-5 Moieties – Synthesis, Spectroscopy, Supramolecular Structures, and the Effects of Substituent Number and Molecular Symmetry. European Journal of Inorganic Chemistry, 2007, 2007, 3268-3275.	2.0	17
328	Time-dependent density functional theory studies of the electronic absorption spectra of metallophthalocyanines of group IVA. International Journal of Quantum Chemistry, 2007, 107, 952-961.	2.0	26
329	Tuning Interactions between Ligands in Self-Assembled Double-Decker Phthalocyanine Arrays. Journal of the American Chemical Society, 2006, 128, 10984-10985.	13.7	79
330	Ordered Molecular Assemblies of Substituted Bis(phthalocyaninato) Rare Earth Complexes on Au(111):Â In Situ Scanning Tunneling Microscopy and Electrochemical Studies. Langmuir, 2006, 22, 2105-2111.	3.5	28
331	Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. Inorganic Chemistry, 2006, 45, 3794-3802.	4.0	88
332	Electron-Donating or -Withdrawing Nature of Substituents Revealed by the Electrochemistry of Metal-Free Phthalocyanines. Inorganic Chemistry, 2006, 45, 2327-2334.	4.0	169
333	Two-Dimensional Crystal Growth and Stacking of Bis(phthalocyaninato) Rare Earth Sandwich Complexes at the 1-Phenyloctane/Graphite Interface. Journal of Physical Chemistry B, 2006, 110, 1661-1664.	2.6	42
334	Heteroleptic protonated bis(phthalocyaninato) rare earth compounds containing 1,4,8,11,15,18,22,25-octa(butyloxy)-phthalocyanine ligand. Journal of Alloys and Compounds, 2006, 408-412, 1041-1045.	5 . 5	13
335	Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Coordination Chemistry Reviews, 2006, 250, 424-448.	18.8	174
336	Controlling the Nature of Mixed (Phthalocyaninato) (porphyrinato) Rare-Earth(III) Double-Decker Complexes: The Effects of Nonperipheral Alkoxy Substitution of the Phthalocyanine Ligand. Chemistry - A European Journal, 2006, 12, 1475-1485.	3.3	90
337	Lanthanide(III) Double-Decker Complexes with Octaphenoxy- or Octathiophenoxyphthalocyaninato Ligands – Revealing the Electron-Withdrawing Nature of the Phenoxy and Thiophenoxy Groups in the Double-Decker Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 3703-3709.	2.0	42
338	Synthesis and liquid crystal behavior of bis [3,4,12,13,21,22,30,31-octa (dodecylthio)-2,3-naphthalocyaninato] rare earth complexes. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1132-1139.	0.8	8
339	Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 2612-2618.	2.0	38
340	Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(III) Triple-Deckers with Symmetrical Molecular Structure. Chemistry - A European Journal, 2005, 11, 1425-1432.	3.3	83
341	Studies of "Pinwheel-Like―Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] Rare Earth(III) Double-Decker Complexes. Chemistry - A European Journal, 2005, 11, 7351-7357.	3.3	56
342	Electrochemistry of homoleptic bis[3(4),12(13),21(22),30(31)-tetra(<i>tert</i> -butyl)-naphthalocyaninato] rare earth(III) complexes. Journal of Porphyrins and Phthalocyanines, 2005, 09, 40-46.	0.8	9

#	Article	IF	Citations
343	Structures and Properties of 1,8,15,22-Tetrasubstituted Phthalocyaninato-Lead Complexes:Â The Substitutional Effect Study Based on Density Functional Theory Calculations. Journal of Physical Chemistry A, 2005, 109, 6363-6370.	2.5	69
344	Heteroleptic Rare Earth Double-Decker Complexes with Naphthalocyaninato and Phthalocyaninato Ligands. General Synthesis, Spectroscopic, and Electrochemical Characteristics. Inorganic Chemistry, 2005, 44, 2114-2120.	4.0	35
345	Thin-Film Transistors Based on Langmuirâ^'Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. Langmuir, 2005, 21, 6527-6531.	3.5	68
346	High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. Journal of the American Chemical Society, 2005, 127, 15700-15701.	13.7	194
347	Comparative Electrochemical Study of Unsubstituted and Substituted Bis(phthalocyaninato) Rare Earth(III) Complexes. European Journal of Inorganic Chemistry, 2004, 2004, 510-517.	2.0	92
348	Electrochemistry of Heteroleptic Tris(phthalocyaninato) Rare Earth(III) Complexes. European Journal of Inorganic Chemistry, 2004, 2004, 518-523.	2.0	27
349	Synthesis and Characterization of Mixed Phthalocyaninato andmeso-Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexesâ^' Revealing the Origin of Their Electronic Absorptions. European Journal of Inorganic Chemistry, 2004, 2004, 3806-3813.	2.0	45
350	Synthesis, Structure, and Spectroscopic and Electrochemical Properties of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes with aC4 Symmetry. Helvetica Chimica Acta, 2004, 87, 2581-2596.	1.6	44
351	Vibrational spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type phthalocyaninato and porphyrinato rare earth complexes. Part 11â€"Raman spectroscopic characteristics of phthalocyanine in mixed [tetrakis(4-chlorophenyl)porphyrinato](phthalocyaninato) rare earth double-deckers. Journal of	2.5	21
352	The First Slipped Pseudo-Quadruple-Decker Complex of Phthalocyanines. Inorganic Chemistry, 2004, 43, 4740-4742.	4.0	40
353	Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted) Tj ETQq1 1	. 0.784314 . 0.784314	, 4 rgBT /Over <mark>lo</mark> c
354	Synthesis, spectroscopic properties, and electrochemistry of heteroleptic rare earth double-decker complexes with phthalocyaninato and meso-tetrakis (4-chlorophenyl)porphyrinato ligands. New Journal of Chemistry, 2004, 28, 1116-1122.	2.8	57
355	The Electronic Absorption Characteristics of Mixed Phthalocyaninato Porphyrinato Rare Earth(III) Triple-Deckers M2(TPyP)2(Pc). European Journal of Inorganic Chemistry, 2003, 2003, 1555-1561.	2.0	31
356	Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type phthalocyaninato and porphyrinato rare earth complexes. Part 5?Raman spectroscopic characteristics of naphthalocyanine in mixed [tetrakis(4-tert-butylphenyl)porphyrinato] (naphthalocyaninato) rare earth double-deckers. Journal of Raman Spectroscopy, 2003, 34, 306-314.	2.5	17
357	Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Vibrational Spectroscopy, 2003, 32, 175-184.	2.2	71
358	Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 3. The effects of substituents and molecular symmetry on the infrared characteristics of phthalocyanine in bis(phthalocyaninato) rare earth complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 3273-3286.	3.9	84
359	Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands. Journal of the American Chemical Society, 2003, 125, 12257-12267.	13.7	158
360	Sandwich complexes of naphthalocyanine with the rare earth metals. Journal of Porphyrins and Phthalocyanines, 2003, 07, 459-473.	0.8	67

#	Article	IF	CITATIONS
361	synthesis, spectroscopic characterisation and structure of the first chiral neteroleptic bis(phthalocyaninato) rare earth complexesElectronic supplementary information (ESI) available: 1H NMR spectrum of {SmlII(Pc)[Pc(OC5H11)4]}– in CDCl3/DMSO-d6 (1∶1) in the presence of a few drops of hydrazine hydrate. See http://www.rsc.org/suppdata/cc/b3/b301139a/. Chemical Communications, 2003, ,	4.1	60
362	New dimeric supramolecular structure of mixed (phthalocyaninato)(porphyrinato)europium(iii) sandwiches: preparation and spectroscopic characteristicsElectronic supplementary information (ESI) available: experimental and simulated MALDI-TOF mass spectra of 3; IR spectra of 1, SM1, 3 and SM3. See http://www.rsc.org/suppdata/jm/b3/b300529a/. Journal of Materials Chemistry, 2003, 13, 1333.	6.7	25
363	Structural studies of the whole series of lanthanide double-decker compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. New Journal of Chemistry, 2003, 27, 844-849.	2.8	36
364	Templated tetramerization of dicyanobenzenes to form mixed porphyrinato and phthalocyaninato rare earth(III) triple-decker complexes. Journal of Porphyrins and Phthalocyanines, 2002, 06, 347-357.	0.8	13
365	Ordered supramolecular assembly of bis [3,4,12,13,21,22,30,31-octa (dodecylthio)-2,3-naphthalocyaninato] erbium at the air/water interface. Science in China Series B: Chemistry, 2001, 44, 650-656.	0.8	4
366	Heteroleptic Rare Earth Double-Decker Complexes with Porphyrinato and 2,3-Naphthalocyaninato Ligands â ⁻ Preparation, Spectroscopic Characterization, and Electrochemical Studies. European Journal of Inorganic Chemistry, 2001, 2001, 413-417.	2.0	46
367	Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of Rare Earth Sandwich Compounds with Mixed 2,3-Naphthalocyaninato and Octaethylporphyrinato Ligands. Chemistry - A European Journal, 2001, 7, 5059-5069.	3.3	103
368	Praseodymium bis[phthalocyaninato] complex based gas sensor using a charge-flow transistor. Journal of Materials Science Letters, 2001, 20, 1009-1011.	0.5	0
369	Title is missing!. Australian Journal of Chemistry, 2000, 53, 131.	0.9	72
370	Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Polyhedron, 1999, 18, 2129-2139.	2.2	96
371	Double-decker Yttrium(III) Complexes with Phthalocyaninato and Porphyrinato Ligands. Journal of Porphyrins and Phthalocyanines, 1999, 03, 322-328.	0.8	77
372	Synthesis, Spectroscopic, and Electrochemical Properties of Homoleptic Bis(Substituted-Phthalocyaninato) Cerium(IV) Complexes. Molecular Crystals and Liquid Crystals, 1999, 337, 385-388.	0.3	22
373	Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. Chemical Society Reviews, 1997, 26, 433.	38.1	267
374	Synthesis, spectroscopic and electrochemical properties of substituted bis(phthalocyaninato)lanthanide(III) complexes. Polyhedron, 1997, 16, 515-520.	2.2	116
375	Synthesis of Water-Soluble Lanthanide Porphyrin Sandwich Complexes: Bis(tetrapyridylporphyrinato) Cerium(IV), [Ce(tpyp)2], and Bis(tetramethylpyridylporphyrinato) Cerium(IV), [Ce(tmpyp)2]. Bulletin of the Chemical Society of Japan, 1992, 65, 1990-1992.	3.2	19
376	High-selective room-temperature NO2 sensors based on a coumarin-substituted tris(phthalocyaninato) europium. Journal of Porphyrins and Phthalocyanines, 0, , A-G.	0.8	0
377	Maximizing Electroactive Sites in a Threeâ€dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	2.0	30
378	Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
379	Photophysical Behaviors of Shape-persistent Zinc Porphyrin Organic Cage. New Journal of Chemistry, 0, , .	2.8	1
380	Enhanced Photocatalytic CO2 Reduction through Hydrophobic Microenvironment and Binuclear Cobalt Synergistic Effect in Metallogels. Angewandte Chemie, 0, , .	2.0	0
381	Mesoporous Polyimideâ€linked Covalent Organic Framework with Multiple Redoxâ€active Sites for Highâ€Performance Cathodic Li Storage. Angewandte Chemie, 0, , .	2.0	3