Chunyan Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4436999/publications.pdf

Version: 2024-02-01

108	3,813	33 h-index	58
papers	citations		g-index
112	112	112	5216
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cross-Reactive Fluorescent Sensor Array for Discrimination of Amyloid Beta Aggregates. Analytical Chemistry, 2022, 94, 5469-5473.	6.5	12
2	Fluorescence Analysis of Circulating Exosomes for Breast Cancer Diagnosis Using a Sensor Array and Deep Learning. ACS Sensors, 2022, 7, 1524-1532.	7.8	27
3	Molecular Design and Photothermal Application of Thienoisoindigo Dyes with Aggregation-Induced Emission. ACS Applied Bio Materials, 2022, 5, 3428-3437.	4.6	7
4	Biological Sensing and Imaging Using Conjugated Polymers and Peptide Substrates. Protein and Peptide Letters, 2021, 28, 2-10.	0.9	3
5	Conjugated Polymer Nanoparticles Based on Copper Coordination for Real-Time Monitoring of pH-Responsive Drug Delivery. ACS Applied Bio Materials, 2021, 4, 2583-2590.	4.6	12
6	Design, synthesis and evaluation of novel ErbB/HDAC multitargeted inhibitors with selectivity in EGFRT790M mutant cell lines. European Journal of Medicinal Chemistry, 2021, 213, 113173.	5.5	12
7	Discrimination of Powdered Infant Formula According to Species, Country of Origin, and Brand Using a Fluorescent Sensor Array. ACS Food Science & Technology, 2021, 1, 1392-1398.	2.7	2
8	One-Pot Simultaneous Detection of Multiple DNA and MicroRNA by Integrating the Cationic-Conjugated Polymer and Nuclease-Assisted Cyclic Amplification. ACS Applied Bio Materials, 2021, 4, 820-828.	4.6	7
9	A novel aptasensor strategy for protein detection based on G-quadruplex and exonuclease III-aided recycling amplification. Chinese Chemical Letters, 2020, 31, 155-158.	9.0	16
10	Magnetic bead-gold nanoparticle hybrids probe based on optically countable gold nanoparticles with dark-field microscope for T4 polynucleotide kinase activity assay. Biosensors and Bioelectronics, 2020, 150, 111936.	10.1	22
11	Highly Selective Oxidation of Organic Sulfides by a Conjugated Polymer as the Photosensitizer for Singlet Oxygen Generation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35475-35481.	8.0	38
12	Fluorescence Sensor Array for Discrimination of Urine Proteins and Differentiation Diagnosis of Urinary System Diseases. ACS Applied Bio Materials, 2020, 3, 5639-5643.	4.6	12
13	Poly(fluorenone- <i>co</i> -thiophene)-based nanoparticles for two-photon fluorescence imaging in living cells and tissues. RSC Advances, 2020, 10, 12373-12377.	3.6	3
14	Visual artificial tongue for identification of various metal ions in mixtures and real water samples: a colorimetric sensor array using off-the-shelf dyes. RSC Advances, 2019, 9, 27583-27587.	3.6	6
15	One-Step Construction of Fluorenone-Based Donor–Acceptor-Type Conjugated Polymers via Direct Arylation Polymerization for Cell-Imaging Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28246-28253.	8.0	13
16	Naphthalimide-containing conjugated polyelectrolytes with different chain configurations. Organic and Biomolecular Chemistry, 2019, 17, 2635-2639.	2.8	3
17	Isotope Labeling Strategies for Acylcarnitines Profile in Biological Samples by Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2019, 91, 1701-1705.	6.5	9
18	White light-induced cell apoptosis by a conjugated polyelectrolyte through singlet oxygen generation. RSC Advances, 2018, 8, 9218-9222.	3.6	6

#	Article	lF	Citations
19	A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles. Analytica Chimica Acta, 2018, 1018, 86-93.	5.4	46
20	Conjugated polyelectrolytes with a label-free aptamer for specific protein photoinactivation. Analytical Methods, 2018, 10, 2205-2210.	2.7	2
21	Aggregation-induced near-infrared emitting platinum(<scp>ii</scp>) terpyridyl complex: cellular characterisation and lysosome-specific localisation. Chemical Communications, 2018, 54, 11144-11147.	4.1	44
22	Efficient photocatalytic oxidation sensitized by conjugated polymers in a batch reaction and microreactors under visible light. Journal of Materials Chemistry A, 2018, 6, 15927-15932.	10.3	14
23	A New Strategy Involving the Use of Peptides and Graphene Oxide for Fluorescence Turn-on Detection of Proteins. Sensors, 2018, 18, 385.	3.8	8
24	Discovery of ErbB/HDAC inhibitors by combining the core pharmacophores of HDAC inhibitor vorinostat and kinase inhibitors vandetanib, BMS-690514, neratinib, and TAK-285. Chinese Chemical Letters, 2017, 28, 1220-1227.	9.0	22
25	Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment. European Journal of Medicinal Chemistry, 2017, 129, 337-348.	5.5	38
26	An iminodiacetate-modified conjugated polyelectrolyte for fluorescent labeling of histidine-tagged proteins. Chemical Communications, 2017, 53, 4191-4194.	4.1	6
27	Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. European Journal of Medicinal Chemistry, 2017, 134, 281-292.	5.5	47
28	Synthesis and biological research of novel azaacridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 3437-3446.	3.0	16
29	Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment. European Journal of Medicinal Chemistry, 2017, 136, 372-381.	5.5	31
30	Conjugated polyelectrolytes with galactose-containing side chains for targeted hepatoma cell imaging. Chemical Communications, 2017, 53, 5625-5628.	4.1	11
31	Olaparib hydroxamic acid derivatives as dual PARP and HDAC inhibitors for cancer therapy. Bioorganic and Medicinal Chemistry, 2017, 25, 4100-4109.	3.0	64
32	Modulating aggregation-induced emission via a non-conjugated linkage of fluorophores to tetraphenylethenes. Journal of Materials Chemistry B, 2017, 5, 5096-5100.	5.8	17
33	Light-Induced Translocation of a Conjugated Polyelectrolyte in Cells: From Fluorescent Probe to Anticancer Agent. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10512-10518.	8.0	19
34	A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron(III) ions in aqueous medium. Sensors and Actuators B: Chemical, 2017, 243, 765-774.	7.8	124
35	Molecular weight analysis of water-soluble poly(phenylene ethynylene)s using MALDI-TOF MS. Journal of Polymer Science Part A, 2017, 55, 2537-2543.	2.3	7
36	Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy. Bioorganic and Medicinal Chemistry, 2017, 25, 27-37.	3.0	45

#	Article	IF	CITATIONS
37	The Optimization and Characterization of an RNA-Cleaving Fluorogenic DNAzyme Probe for MDA-MB-231 Cell Detection. Sensors, 2017, 17, 650.	3.8	4
38	UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion <i>in vitro</i> . Oncotarget, 2017, 8, 71736-71749.	1.8	6
39	Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. European Journal of Medicinal Chemistry, 2016, 116, 59-70.	5. 5	33
40	A simple benzimidazole quinoline-conjugate fluorescent chemosensor for highly selective detection of Ag +. Tetrahedron, 2016, 72, 3980-3985.	1.9	22
41	Fluorescence array-based sensing of nitroaromatics using conjugated polyelectrolytes. Analyst, The, 2016, 141, 3242-3245.	3.5	12
42	An efficient quinoline-based fluorescence sensor for zinc(II) and its application in live-cell imaging. Sensors and Actuators B: Chemical, 2016, 234, 616-624.	7.8	70
43	A sensitive polymeric dark quencher-based sensing platform for fluorescence "turn on―detection of proteins. RSC Advances, 2016, 6, 42443-42446.	3.6	6
44	Supramolecular Ensembles Formed between Charged Conjugated Polymers and Glycoprobes for the Fluorogenic Recognition of Receptor Proteins. ACS Applied Materials & Enterfaces, 2016, 8, 13601-13606.	8.0	20
45	A simple quinoline-derived fluorescent sensor for the selective and sequential detection of copper(<scp>ii</scp>) and sulfide ions and its application in living-cell imaging. RSC Advances, 2016, 6, 77508-77514.	3.6	24
46	Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of Fâ ⁻ and S2â ⁻ by a simple fluorogenic benzimidazole-based chemosensor. Talanta, 2016, 161, 309-319.	5.5	84
47	Conjugated Polyelectrolyte Nanoparticles for Apoptotic Cell Imaging. ACS Applied Materials & Company (1984-21989).	8.0	18
48	Irreversible destruction of amyloid fibril plaques by conjugated polymer based fluorogenic nanogrenades. Journal of Materials Chemistry B, 2016, 4, 4502-4506.	5.8	11
49	Design, synthesis and evaluation of acridine derivatives as multi-target Src and MEK kinase inhibitors for anti-tumor treatment. Bioorganic and Medicinal Chemistry, 2016, 24, 261-269.	3.0	45
50	Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation. Biochemical and Biophysical Research Communications, 2016, 470, 936-940.	2.1	9
51	Interlocked supramolecular glycoconjugated polymers for receptor-targeting theranostics. Chemical Communications, 2016, 52, 3821-3824.	4.1	17
52	Sensitive Conjugated-Polymer-Based Fluorescent ATP Probes and Their Application in Cell Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3567-3574.	8.0	47
53	Molecular design, synthesis and biological research of novel pyridyl acridones as potent DNA-binding and apoptosis-inducing agents. European Journal of Medicinal Chemistry, 2015, 93, 214-226.	5. 5	25
54	Rhodiumâ€Catalyzed Desulfination of Sodium Arenesulfinates and Oxidative Annulation with Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 489-499.	4.3	6

#	Article	IF	CITATIONS
55	Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorganic and Medicinal Chemistry, 2015, 23, 1800-1807.	3.0	65
56	Clustered Distribution of Natural Product Leads of Drugs in the Chemical Space as Influenced by the Privileged Target-Sites. Scientific Reports, 2015, 5, 9325.	3.3	20
57	A POCl ₃ -mediated synthesis of substituted fused azoacridones derivatives. RSC Advances, 2015, 5, 28670-28678.	3.6	14
58	Fluorescence Array-Based Sensing of Metal Ions Using Conjugated Polyelectrolytes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6882-6888.	8.0	82
59	Multitarget inhibitors derived from crosstalk mechanism involving VEGFR2. Future Medicinal Chemistry, 2014, 6, 1771-1789.	2.3	13
60	Biological evaluation and structure modification of (S)-3-aminopyrrolidine derivatives. Chemical Research in Chinese Universities, 2014, 30, 91-97.	2.6	1
61	Synthesis and antiproliferative activity of RITA and its analogs. Tetrahedron Letters, 2014, 55, 6635-6638.	1.4	16
62	Mutation of the conserved GRG motif and decreasing activity of human RNase H2. Open Life Sciences, 2014, 10, .	1.4	0
63	Exploration of N-(2-aminoethyl)piperidine-4-carboxamide as a potential scaffold for development of VEGFR-2, ERK-2 and Abl-1 multikinase inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 5694-5706.	3.0	17
64	Diazobenzene-containing conjugated polymers as dark quenchers. Chemical Communications, 2013, 49, 11379.	4.1	22
65	Novel synthetic acridine derivatives as potent DNA-binding and apoptosis-inducing antitumor agents. Bioorganic and Medicinal Chemistry, 2013, 21, 4170-4177.	3.0	66
66	Copperâ€Catalyzed Domino Synthesis of 4â€Oxopyrimido[1,2â€ <i>a</i>) indole Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 2928-2935.	4.3	5
67	Exploration of 1-(3-chloro-4-(4-oxo-4H-chromen-2-yl)phenyl)-3-phenylurea derivatives as selective dual inhibitors of Raf1 and JNK1 kinases for anti-tumor treatment. Bioorganic and Medicinal Chemistry, 2013, 21, 824-831.	3.0	19
68	A real-time fluorescence turn-on assay for trypsin based on a conjugated polyelectrolyte. Journal of Materials Chemistry B, 2013, 1, 1402.	5.8	19
69	Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials, 2013, 34, 6058-6067.	11.4	252
70	Binding of a bcl-2 Family Inhibitor to Bovine Serum Albumin: Fluorescence Quenching and Molecular Docking Study. Protein and Peptide Letters, 2012, 19, 949-954.	0.9	3
71	Selective VEGFR Inhibitors for Anticancer Therapeutics in Clinical Use and Clinical Trials. Current Pharmaceutical Design, 2012, 18, 2921-2935.	1.9	22
72	Site-directed Mutagenesis Study of the Ile140 in Conserved Hydrophobic Core of Bcl-xL. Protein and Peptide Letters, 2012, 19, 991-996.	0.9	4

#	Article	IF	Citations
73	Conjugated Polymer-Based Real-Time Fluorescence Caspase Assays. ACS Applied Materials & Discrete Caspase Assays. ACS Applied Materials	8.0	18
74	Analysis of bypass signaling in EGFR pathway and profiling of bypass genes for predicting response to anticancer EGFR tyrosine kinase inhibitors. Molecular BioSystems, 2012, 8, 2645.	2.9	11
75	Continuous and Sensitive Acid Phosphatase Assay Based on a Conjugated Polyelectrolyte. ACS Applied Materials & Conjugated Polyelectrolyte.	8.0	46
76	Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries. Chemistry Central Journal, 2012, 6, 139.	2.6	3
77	Synthesis and evaluation of 10-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives as selective telomeric G-quadruplex DNA ligands. Tetrahedron, 2012, 68, 7920-7925.	1.9	23
78	Efficient synthesis of RITA and its analogues: derivation of analogues with improved antiproliferative activity via modulation of p53/miR-34a pathway. Organic and Biomolecular Chemistry, 2012, 10, 9734.	2.8	17
79	A Two-Step Target Binding and Selectivity Support Vector Machines Approach for Virtual Screening of Dopamine Receptor Subtype-Selective Ligands. PLoS ONE, 2012, 7, e39076.	2.5	22
80	Synthesis and Cytotoxic Activity of Some Novel N-Pyridinyl-2-(6-phenylimidazo[2,1-b]thiazol-3-yl)acetamide Derivatives. Molecules, 2012, 17, 4703-4716.	3.8	25
81	Label-free fluorescent assays based on aptamer–target recognition. Analyst, The, 2012, 137, 2309.	3.5	23
82	2′â€Chloroâ€4′â€aminoflavone Derivatives Selectively Targeting Hepatocarcinoma Cells: Convenient Synthetic Process, G ₂ /M Cell Cycle Arrest and Apoptosis Triggers. Archiv Der Pharmazie, 2012, 345, 525-534.	4.1	5
83	Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression. Breast Cancer Research, 2011, 13, R26.	5.0	48
84	Design and Synthesis of N-phosphoryl Peptide Modified Podophyllotoxin Derivatives as Potent Anticancer Agents. Protein and Peptide Letters, 2011, 18, 1258-1264.	0.9	6
85	Novel Synthetic Azaacridine Analogues as Topoisomerase 1 Inhibitors. Chemistry Letters, 2011, 40, 728-729.	1.3	13
86	Exploration of acridine scaffold as a potentially interesting scaffold for discovering novel multi-target VEGFR-2 and Src kinase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 3312-3319.	3.0	62
87	Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 4529-4535.	3.0	97
88	Exploration of (S)-3-aminopyrrolidine as a potentially interesting scaffold for discovery of novel Abl and PI3K dual inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 1404-1414.	5.5	45
89	One step synthesis of azo compounds from nitroaromatics and anilines. Tetrahedron Letters, 2011, 52, 3805-3809.	1.4	79
90	Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12943-12948.	7.1	223

#	Article	IF	CITATIONS
91	In-Silico Approaches to Multi-target Drug Discovery. Pharmaceutical Research, 2010, 27, 739-749.	3.5	135
92	New synthetic flavone derivatives induce apoptosis of hepatocarcinoma cells. Bioorganic and Medicinal Chemistry, 2010, 18, 6322-6328.	3.0	29
93	Novel synthetic 2-amino-10-(3,5-dimethoxy)benzyl-9(10H)-acridinone derivatives as potent DNA-binding antiproliferative agents. Bioorganic and Medicinal Chemistry, 2010, 18, 7507-7514.	3.0	45
94	Hyper-Efficient Quenching of a Conjugated Polyelectrolyte by Dye-Doped Silica Nanoparticles: Better Quenching in the Nonaggregated State. Langmuir, 2010, 26, 1528-1532.	3.5	4
95	RNA interference in mammalian cells by siRNAs modified with morpholino nucleoside analogues. Bioorganic and Medicinal Chemistry, 2009, 17, 2441-2446.	3.0	37
96	The design, synthesis and evaluation of hypoxia-activated pro-oligonucleotides. Chemical Communications, 2009, , 3216.	4.1	25
97	Synthesis and properties of morpholino chimeric oligonucleotides. Tetrahedron Letters, 2008, 49, 3570-3573.	1.4	26
98	Synthesis and potent antileukemic activities of 10-benzyl-9(10H)-acridinones. Bioorganic and Medicinal Chemistry, 2008, 16, 8670-8675.	3.0	44
99	The design, synthesis, and anti-tumor mechanism study of N-phosphoryl amino acid modified resveratrol analogues. Bioorganic and Medicinal Chemistry, 2008, 16, 10013-10021.	3.0	34
100	The Synthesis and Biological Evaluation of Benzamide Riboside and Its Phosphordiamidates Prodrugs. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 787-790.	1.6	0
101	2,4-Dinitrobenzaldehyde hydrazone. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, 0745-0745.	0.2	0
102	Synthesis and Biological Evaluation of N-Phosphoryl Dipeptide Derivatives as Potent Apoptosis Inducers. Protein and Peptide Letters, 2008, 15, 356-359.	0.9	2
103	Amplified fluorescence quenching and biosensor application of a poly (para-phenylene) cationic polyelectrolyte. Research on Chemical Intermediates, 2007, 33, 79-90.	2.7	11
104	The Role of Exciton Hopping and Direct Energy Transfer in the Efficient Quenching of Conjugated Polyelectrolytes. Journal of the American Chemical Society, 2006, 128, 4007-4016.	13.7	58
105	Amplified Fluorescence Quenching and Electroluminescence of a Cationic Poly(p-phenylene-co-thiophene) Polyelectrolyte. Macromolecules, 2005, 38, 234-243.	4.8	73
106	Amplified Quenching of a Conjugated Polyelectrolyte by Cyanine Dyes. Journal of the American Chemical Society, 2004, 126, 13685-13694.	13.7	262
107	Luminescence Quenching of a Phosphorescent Conjugated Polyelectrolyte. Journal of the American Chemical Society, 2004, 126, 14964-14971.	13.7	119
108	Photophysics, aggregation and amplified quenching of a water-soluble poly(phenylene) Tj ETQq0 0 0 rgBT /Overlostructural characterization of PPE-SO3ââ,¬â€œ and PE-SO3ââ,¬â€œ. See http://www.rsc.org/suppdata/cc/b1/b109630c/. Chemical Communications, 2002, , 446-447.	ock 10 Tf 5 4.1	50 72 Td (eth 273