List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Air-breathing cathodes for microbial fuel cells based on iron-nitrogen-carbon electrocatalysts. Bioelectrochemistry, 2022, 146, 108103.	4.6	9
2	Iron(II) phthalocyanine (FePc) over carbon support for oxygen reduction reaction electrocatalysts operating in alkaline electrolyte. Journal of Solid State Electrochemistry, 2021, 25, 93-104.	2.5	29
3	Crosslinked sulfonated poly(phenylene sulfide sulfone) membranes for vanadium redox flow batteries. Sustainable Materials and Technologies, 2021, 28, e00249.	3.3	3
4	Electrocatalytic CO2 reduction on nanostructured metal-based materials: Challenges and constraints for a sustainable pathway to decarbonization. Journal of CO2 Utilization, 2021, 50, 101579.	6.8	29
5	Redox-active coordination polymers as bifunctional electrolytes in slurry-based aqueous batteries at neutral pH. Journal of Electroanalytical Chemistry, 2021, 895, 115442.	3.8	4
6	Tailoring active sites of iron-nitrogen-carbon catalysts for oxygen reduction in alkaline environment: Effect of nitrogen-based organic precursor and pyrolysis atmosphere. Electrochimica Acta, 2021, 391, 138899.	5.2	14
7	Nanostructured Fe-N-C as Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution. Catalysts, 2021, 11, 1525.	3.5	11
8	Optimization of PGM-free cathodes for oxygen reduction in microbial fuel cells. Electrochimica Acta, 2020, 334, 135650.	5.2	12
9	Tailoring morphology and structure of manganese oxide nanomaterials to enhance oxygen reduction in microbial fuel cells. Synthetic Metals, 2020, 268, 116487.	3.9	10
10	Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity. Applied Sciences (Switzerland), 2020, 10, 5278.	2.5	11
11	Effect of Active Site Poisoning on Ironâ^'Nitrogenâ^'Carbon Platinumâ€Groupâ€Metalâ€Free Oxygen Reduction Reaction Catalysts Operating in Neutral Media: A Rotating Disk Electrode Study. ChemElectroChem, 2020, 7, 3044-3055.	3.4	19
12	Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts, 2020, 10, 475.	3.5	34
13	Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. Journal of Power Sources, 2020, 462, 228183.	7.8	56
14	Metalloâ€Corroles Supported on Carbon Nanostructures as Oxygen Reduction Electrocatalysts in Neutral Media. European Journal of Inorganic Chemistry, 2019, 2019, 4760-4765.	2.0	13
15	Investigating the factors that influence resistance rise of PIM-1 membranes in nonaqueous electrolytes. Electrochemistry Communications, 2019, 107, 106530.	4.7	11
16	Carbon-supported Fe/Mn-based perovskite-type oxides boost oxygen reduction in bioelectrochemical systems. Carbon, 2019, 145, 716-724.	10.3	47
17	Interaction of vanadium species with a functionalized graphite electrode: A combined theoretical and experimental study for flow battery applications. Journal of Power Sources, 2019, 420, 134-142.	7.8	10
18	Communication—Sulfonated Poly (ether ether ketone) as Cation Exchange Membrane for Alkaline Redox Flow Batteries, Journal of the Electrochemical Society, 2018, 165, A1137-A1139	2.9	32

#	Article	IF	CITATIONS
19	MnOx-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes. Journal of Power Sources, 2018, 390, 45-53.	7.8	64
20	Innovative Redox Flow Battery Systems for the Implementation of Flexible Microgrids. , 2018, , .		1
21	Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS Applied Energy Materials, 2018, 1, 5755-5765.	5.1	29
22	Highly ion selective hydrocarbon-based membranes containing sulfonated hypercrosslinked polystyrene nanoparticles for vanadium redox flow batteries. Journal of Membrane Science, 2018, 563, 552-560.	8.2	26
23	Facile synthesis of graphene-phthalocyanine composites as oxygen reduction electrocatalysts in microbial fuel cells. Applied Catalysis B: Environmental, 2018, 237, 699-707.	20.2	89
24	Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. Journal of Power Sources, 2017, 356, 381-388.	7.8	75
25	Design of Iron(II) Phthalocyanineâ€Derived Oxygen Reduction Electrocatalysts for Highâ€Powerâ€Density Microbial Fuel Cells. ChemSusChem, 2017, 10, 3243-3251.	6.8	67
26	Poly(phenylene sulfide sulfone) based membranes with improved stability for vanadium redox flow batteries. Journal of Materials Chemistry A, 2017, 5, 18845-18853.	10.3	23
27	Power generation using a low-cost sulfated zirconium oxide based cathode in single chamber microbial fuel cells. Journal of Alloys and Compounds, 2017, 693, 170-176.	5.5	34
28	Membrane and Electrolyte Optimization for Quinone-Bromide Redox Flow Battery. ECS Meeting Abstracts, 2017, , .	0.0	0
29	High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress in Photovoltaics: Research and Applications, 2016, 24, 436-445.	8.1	112
30	lron–nitrogen-functionalized carbon as efficient oxygen reduction reaction electrocatalyst in microbial fuel cells. International Journal of Hydrogen Energy, 2016, 41, 19637-19644.	7.1	47
31	Enhancement of proton mobility and mitigation of methanol crossover in sPEEK fuel cells by an organically modified titania nanofiller. Journal of Solid State Electrochemistry, 2016, 20, 1585-1598.	2.5	30
32	Iron-Based Electrocatalysts Supported on Nanostructured Carbon to Enhance Oxygen Reduction in Microbial Fuel Cells. ECS Transactions, 2016, 72, 9-15.	0.5	8
33	Carbon‣upported Zirconium Oxide as a Cathode for Microbial Fuel Cell Applications. ChemPlusChem, 2016, 81, 80-85.	2.8	47
34	Iron/Polyindole-based Electrocatalysts to Enhance Oxygen Reduction in Microbial Fuel Cells. Electrochimica Acta, 2016, 190, 388-395.	5.2	101
35	Membranes for Aqueous All Vanadium Redox Flow Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
36	Device architectures with nanocrystalline mesoporous scaffolds and thin compact layers for flexible perovskite solar cells and modules. , 2015, , .		0

#	Article	IF	CITATIONS
37	Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UVâ€Irradiated TiO ₂ Scaffolds on Plastic Substrates. Advanced Energy Materials, 2015, 5, 1401808.	19.5	241
38	Vertical TiO ₂ Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano, 2015, 9, 8420-8429.	14.6	174
39	TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 150-157.	6.2	72
40	Opportunities of Atomic Layer Deposition for Perovskite Solar Cells. ECS Transactions, 2015, 69, 15-22.	0.5	3
41	Perovskite solar cells and large area modules (100Âcm 2) based on an air flow-assisted PbI 2 blade coating deposition process. Journal of Power Sources, 2015, 277, 286-291.	7.8	332
42	Electricity generation using white and red wine lees in air cathode microbial fuel cells. Journal of Power Sources, 2015, 274, 393-399.	7.8	58
43	Mesoscopic perovskite solar cells and modules. , 2014, , .		2
44	Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. Journal of Power Sources, 2014, 248, 1127-1132.	7.8	65
45	High efficiency CH3NH3PbI(3â^'x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. Journal of Power Sources, 2014, 251, 152-156.	7.8	179
46	Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Physical Chemistry Chemical Physics, 2014, 16, 3918.	2.8	158
47	Sulfated zirconium oxide as electrode and electrolyte additive for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 2014, 39, 11241-11249.	7.1	14
48	Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochimica Acta, 2014, 147, 418-425.	5.2	39
49	La0.8Sr0.2Fe0.8Cu0.2O3â^' as "cobalt-free―cathode for La0.8Sr0.2Ga0.8Mg0.2O3â^' electrolyte. Journal of Power Sources, 2014, 271, 187-194.	7.8	52
50	Deposition and electrochemical characterization of Yttrium doped Barium cerate and zirconate heterostructures. Thin Solid Films, 2014, 562, 264-268.	1.8	4
51	Iron chelates as low-cost and effective electrocatalyst for oxygen reduction reaction in microbial fuel cells. International Journal of Hydrogen Energy, 2014, 39, 6462-6469.	7.1	61
52	Yttrium Doped Barium Cerate and Zirconate Heterostructures: Deposition and Electrochemical Characterization. ECS Transactions, 2013, 57, 1059-1068.	0.5	2
53	Spin-Coated La0.8Sr0.2Ga0.8Mg0.2O3-Â Electrolyte on Infiltrated Anodes for Direct Methane Fuel Cells. ECS Transactions, 2013, 57, 1371-1378.	0.5	1
54	Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresource Technology, 2013, 147, 246-253.	9.6	79

#	Article	IF	CITATIONS
55	Composite Polymer Electrolytes for Fuel Cell Applications: Fillerâ€Induced Effect on Water Sorption and Transport Properties. ChemPhysChem, 2013, 14, 3814-3821.	2.1	4
56	La0.8Sr0.2Ga0.8Mg0.2O3Ââ^'Â thin films for IT-SOFCs: Microstructure and transport properties correlation. Journal of Power Sources, 2013, 222, 10-14.	7.8	13
57	Development of glucose oxidase-based bioanodes for enzyme fuel cell applications. Journal of Applied Electrochemistry, 2013, 43, 181-190.	2.9	10
58	DSC and DVS Investigation of Water Mobility in Nafion/Zeolite Composite Membranes for Fuel Cell Applications. Journal of Physical Chemistry C, 2012, 116, 20820-20829.	3.1	44
59	Electrochemical performance of spin coated dense BaZr0.80Y0.16Zn0.04O3-δ membranes. Journal of Power Sources, 2012, 220, 280-285.	7.8	39
60	Layered tetratitanate intercalating sulfanilic acid for organic/inorganic proton conductors. Solid State Ionics, 2012, 227, 73-79.	2.7	6
61	Characterization of sulfated-zirconia/Nafion® composite membranes for proton exchange membrane fuel cells. Journal of Power Sources, 2012, 198, 66-75.	7.8	58
62	Structural analysis, phase stability and electrochemical characterization of Nb doped BaCe0.9Y0.1O3â^'x electrolyte for IT-SOFCs. Journal of Power Sources, 2012, 199, 201-206.	7.8	33
63	Functionalized Metal Oxides for PEMFC Applications. ECS Meeting Abstracts, 2011, , .	0.0	0
64	Anode Supported Protonic Solid Oxide Fuel Cells Fabricated Using Electrophoretic Deposition. Fuel Cells, 2011, 11, 165-171.	2.4	26
65	Internal Methane Reforming High Temperature Proton Conductor (HTPC) Fuel Cells. ECS Transactions, 2011, 35, 785-795.	0.5	2
66	Layered Titanates Intercalating Organic Guest Spacers for Organic/Inorganic Proton Conductors. ECS Transactions, 2011, 41, 2091-2096.	0.5	1
67	CO2â^•CH4 Reforming High Temperature Proton Conductor (HTPC) Fuel Cells. Journal of the Electrochemical Society, 2011, 158, B1368.	2.9	9
68	Preparation and spectroscopic studies of silica nanoparticle-porphyrin hybrids held by noncovalent interactions. Journal of Porphyrins and Phthalocyanines, 2011, 15, 382-390.	0.8	4
69	A Glucose Biofuel Cell to Generate Electricity. ECS Transactions, 2011, 35, 1-8.	0.5	2
70	Functionalized Metal Oxides for PEMFC Applications. ECS Transactions, 2011, 41, 2297-2303.	0.5	0
71	An Investigation of Inorganic/Ionomer Composite Electrolyte Membranes by Dynamic Vapor Sorption. ECS Transactions, 2011, 35, 99-106.	0.5	0
72	Development of Nafion/Tin Oxide Composite MEA for DMFC Applications. Fuel Cells, 2010, 10, 790-797.	2.4	33

#	Article	IF	CITATIONS
73	Proton onducting electrolytes based on silylated and sulfonated polyetheretherketone: Synthesis and characterization. Journal of Polymer Science Part A, 2010, 48, 2178-2186.	2.3	9
74	High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Materials, 2010, 9, 846-852.	27.5	472
75	Improvement of DMFC Electrode Kinetics by Using Nanohorns Catalyst Support. Materials Science Forum, 2010, 638-642, 1106-1111.	0.3	6
76	Phase Stability and Electrochemical Analysis of Nb Doped BaCe0.9Y0.1O3-x Electrolyte for IT-SOFCs. ECS Transactions, 2010, 28, 259-265.	0.5	1
77	Titania Nanosheets (TNS)/Sulfonated Poly Ether Ether Ketone (SPEEK) Nanocomposite Proton Exchange Membranes for Fuel Cells. Chemistry of Materials, 2010, 22, 1126-1133.	6.7	75
78	Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics. Chemistry of Materials, 2010, 22, 813-821.	6.7	103
79	A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte. Energy and Environmental Science, 2010, 3, 618.	30.8	16
80	SnO2-lonomer Composites: A Comparative Study of the Transport Properties. ECS Transactions, 2010, 28, 133-139.	0.5	0
81	Fabrication of Proton Conducting Solid Oxide Fuel Cells by using Electrophoretic Deposition. ECS Transactions, 2009, 25, 577-584.	0.5	8
82	Nafion/Tin Oxide Composite Membranes for Direct Methanol Fuel Cells. ECS Transactions, 2009, 25, 1935-1941.	0.5	4
83	Single Chamber Solid Oxide Fuel Cells (SC-SOFCs) based on a Proton Conducting Electrolyte. ECS Transactions, 2009, 25, 1001-1006.	0.5	1
84	Proton Conducting Hybrid Membranes Based on Aromatic Polymers Blends for Direct Methanol Fuel Cell Applications. Fuel Cells, 2009, 9, 387-393.	2.4	17
85	Effect of a Proton Conducting Filler on the Physico hemical Properties of SPEEKâ€Based Membranes. Fuel Cells, 2009, 9, 372-380.	2.4	22
86	Electrophoretic deposition of dense BaCe0.9Y0.1O3â^'x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2009, 190, 417-422.	7.8	36
87	Tailoring the chemical stability of Ba(Ce0.8â^'xZrx)Y0.2O3â~'δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics, 2008, 179, 558-564.	2.7	454
88	Design of BaZr _{0.8} Y _{0.2} O _{3–δ} Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT‣OFCs). Fuel Cells, 2008, 8, 69-76.	2.4	88
89	Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. Journal of Power Sources, 2008, 178, 554-560.	7.8	67
90	Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Energy and Environmental Science, 2008, 1, 355.	30.8	98

#	Article	IF	CITATIONS
91	SPEEK-based Composite Membranes for Direct Methanol Fuel Cells. Materials Research Society Symposia Proceedings, 2008, 1126, 1.	0.1	1
92	Hybrid Membranes Based on Aromatic Polymer Blends for Fuel Cell Applications. Materials Research Society Symposia Proceedings, 2008, 1126, 1.	0.1	0
93	BaZrxY1-xO3-d and BaCe1-x-zZrxYzO3-d Proton Conductors For Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). ECS Transactions, 2007, 7, 2337-2342.	0.5	7
94	BaCe1-x-yZrxYyO3-d Protonic Conductor for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). ECS Transactions, 2007, 6, 23-28.	0.5	1
95	Composite Ormosil/Nafion Membranes as Electrolytes for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B1148.	2.9	19
96	Hybrid materials for polymer electrolyte membrane fuel cells: Water uptake, mechanical and transport properties. Journal of Membrane Science, 2007, 304, 76-81.	8.2	51
97	SPPSU-based hybrid proton conducting polymeric electrolytes for intermediate temperature PEMFCs. Journal of Power Sources, 2007, 167, 79-83.	7.8	34
98	Effect of an ormosil-based filler on the physico-chemical and electrochemical properties of Nafion membranes. Journal of Power Sources, 2007, 169, 247-252.	7.8	10
99	Ormosil/Sulfonated Polyetheretherketone-Based Hybrid Composite Proton Conducting Membranes. Journal of the Electrochemical Society, 2006, 153, A1226.	2.9	23
100	SPEEK/PPSU-based organic–inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. Journal of Membrane Science, 2006, 279, 186-191.	8.2	56
101	Synthesis and Characterization of BaZr0.8Y0.2O3 Protonic Conductor for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Materials Research Society Symposia Proceedings, 2006, 972, 1.	0.1	0
102	Proton Conducting Composite Membranes from Polyether Ether Ketone and Hydrated Metal Oxides. ECS Transactions, 2006, 3, 151-156.	0.5	1
103	Sulfonated Polyether Ether Ketone-Based Composite Membranes Doped with a Tungsten-Based Inorganic Proton Conductor for Fuel Cell Applications. Journal of the Electrochemical Society, 2006, 153, A463.	2.9	44
104	Ormosil-Nafion Composite Membranes for PEM Fuel Cells. ECS Transactions, 2006, 3, 157-162.	0.5	0
105	Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). Journal of Power Sources, 2005, 152, 16-21.	7.8	183
106	A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer, 2005, 46, 1754-1758.	3.8	70
107	Proton Conducting Electrolyte Membranes based on Tungsten Oxide and Sulfonated Polyether Ether Ketone Hybrid Composites. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0
108	Functionalized ORMOSIL-Based Hybrid Membranes for Polymer Electrolyte Membrane Fuel Cells. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0

#	Article	IF	CITATIONS
109	Synthesis, spectroscopic and electrochemical characterization of hybrid membranes for Polymer Electrolyte Membrane Fuel Cells Materials Research Society Symposia Proceedings, 2004, 835, K9.11.1.	0.1	0
110	Co-Sintering of Dense Electrophoretically Deposited YSZ Films on Porous NiO-YSZ Substrates for SOFC Applications. Materials Research Society Symposia Proceedings, 2004, 835, K3.1.1.	0.1	0
111	Metallic-lithium, LiFePO ₄ -based polymer battery using PEO–ZrO ₂ nanocomposite polymer electrolyte. Journal of Applied Electrochemistry, 2004, 34, 403-408.	2.9	37
112	Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers. Journal of the European Ceramic Society, 2004, 24, 1187-1190.	5.7	63
113	PEO based polymer electrolyte lithium-ion battery. Journal of the European Ceramic Society, 2004, 24, 1385-1387.	5.7	30
114	Lithium and proton conducting gel-type membranes. Journal of Power Sources, 2004, 127, 53-57.	7.8	26
115	Effect of Mg2+Doping on the Structural, Thermal, and Electrochemical Properties of LiNi0.8Co0.16Mg0.04O2. Chemistry of Materials, 2004, 16, 3559-3564.	6.7	20
116	New concepts for the development of lithium and proton conducting membranes. Electrochimica Acta, 2003, 48, 2009-2014.	5.2	27
117	Advanced electrolyte and electrode materials for lithium polymer batteries. Journal of Power Sources, 2003, 119-121, 399-402.	7.8	32
118	Ruthenium Oxide-Added Quartz Iron Phosphate as a New Intercalation Electrode in Rechargeable Lithium Cells. Journal of the Electrochemical Society, 2003, 150, A576.	2.9	39
119	Thermal, Electrochemical and In-Situ Structural Study of Stabilized LiNi _y Co _{1-y-z} M _z O ₂ (M = Al and Mg) Lithium-Ion Cathode Materials Prepared by a Soft Chemistry Route. Key Engineering Materials, 2002, 206-213, 1519-1522.	0.4	0
120	A Novel Concept for the Synthesis of an Improved LiFePO[sub 4] Lithium Battery Cathode. Electrochemical and Solid-State Letters, 2002, 5, A47.	2.2	549
121	High Voltage Lithium Polymer Cells Using a PAN-Based Composite Electrolyte. Journal of the Electrochemical Society, 2002, 149, A414.	2.9	32
122	Characterization of phospho-olivines as materials for Li-ion cell cathodes. Ionics, 2002, 8, 17-26.	2.4	36
123	Thermal, electrochemical and structural properties of stabilized LiNiyCo1-y-zMzO2 lithium-ion cathode material prepared by a chemical route. Physical Chemistry Chemical Physics, 2001, 3, 4399-4403.	2.8	28
124	An electrochemical impedance spectroscopic study of the transport properties of LiNi0.75Co0.25O2. Electrochemistry Communications, 1999, 1, 605-608.	4.7	113
125	Improving the Performance of High Temperature Protonic Conductor (HTPC) Electrolytes for Solid Oxide Fuel Cell (SOFC) Applications. Key Engineering Materials, 0, 421-422, 336-339.	0.4	3