Jinping Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434400/publications.pdf Version: 2024-02-01

LINDING TIAN

#	Article	IF	CITATIONS
1	Reconfigurable multifunctional polarization converter based on asymmetric hybridized metasurfaces. Optical Materials, 2022, 124, 111953.	3.6	14
2	Dual-mode terahertz broadband polarization conversion metasurface with integrated graphene-VO <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e333" altimg="si3.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> . Optics Communications, 2022, 510, 127895.	2.1	26
3	Broadband terahertz metamaterial absorber and modulator based on hybrid graphene-gold pattern. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115142.	2.7	10
4	VO ₂ -assisted multifunctional metamaterial for polarization conversion and asymmetric transmission. Optics Express, 2022, 30, 27407.	3.4	19
5	A graphene based dual-band metamaterial absorber for TE polarized THz wave. , 2022, 168, 207331.		11
6	Multiband tunable perfect metamaterial absorber realized by different graphene patterns. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2409.	2.1	9
7	Tunable quad-band perfect metamaterial absorber on the basis of monolayer graphene pattern and its sensing application. Results in Physics, 2021, 26, 104447.	4.1	14
8	Multifunctional metasurface for broadband absorption, linear and circular polarization conversions. Optical Materials Express, 2021, 11, 3507.	3.0	39
9	Design of a type of broadband metamaterial absorber based on metal and graphene. Current Applied Physics, 2021, 31, 122-131.	2.4	18
10	A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes. Superlattices and Microstructures, 2021, 159, 107038.	3.1	13
11	A photoexcited switchable tristate terahertz metamaterial absorber. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22014.	1.2	18
12	Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik, 2020, 208, 164136.	2.9	9
13	Tunable enhanced bandwidth all-graphene -dielectric terahertz metamaterial absorber/reflector. Optik, 2020, 224, 165517.	2.9	15
14	Dual-band tunable perfect absorber based on monolayer graphene pattern. Results in Physics, 2020, 18, 103306.	4.1	27
15	Reconfigurable Multifunctional Metasurface for Broadband Polarization Conversion and Perfect Absorption. IEEE Access, 2020, 8, 105815-105823.	4.2	37
16	Methodology for High Purity Broadband Near-Unity THz Linear Polarization Converter and its Switching Characteristics. IEEE Access, 2020, 8, 46505-46517.	4.2	19
17	INVESTIGATION ON PLASMON INDUCED TRANSPARENCY AND ITS APPLICATION IN AN MIM TYPECOMPOUND PLASMONIC WAVEGUIDE. Progress in Electromagnetics Research C, 2020, 98, 199-212.	0.9	6
18	Diverse composite waves in coherently coupled inhomogeneous fiber systems with external potentials. Nonlinear Dynamics, 2020, 99, 2987-2999.	5.2	9

JINPING TIAN

#	Article	IF	CITATIONS
19	Fano resonance in MDM plasmonic waveguides coupled with split ring resonator. Optik, 2019, 193, 162990.	2.9	9
20	Photoexcited switchable single-/dual-band terahertz metamaterial absorber. Materials Research Express, 2019, 6, 075807.	1.6	40
21	Transmission properties of two vertically coupled double-graphene-coated nanowires integrated with substrate. Optik, 2019, 185, 242-247.	2.9	9
22	Plasmon induced transparency like transmission properties in compact MIM waveguide side-coupled with U-cavity. European Physical Journal D, 2019, 73, 1.	1.3	8
23	(2+1)-dimensional combined solitary waves in Kerr- and parabolic-law nonlinear metamaterials. Optik, 2019, 181, 465-473.	2.9	2
24	Investigation of the transmission properties of a plasmonic MIM waveguide coupled with two ring resonators. Materials Research Express, 2019, 6, 035018.	1.6	8
25	Tunable Fano resonance in MDM plasmonic waveguide with a T-shaped resonator coupled to ring resonator. Materials Research Express, 2019, 6, 035021.	1.6	12
26	High-power pulse, pulse pair, and pulse train generated by breathers in dispersion exponentially decreasing fiber. Applied Optics, 2019, 58, 912.	1.8	5
27	Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity. European Physical Journal D, 2018, 72, 1.	1.3	25
28	Controllable excitation of higher-order rogue waves in nonautonomous systems with both varying linear and harmonic external potentials. Optics Communications, 2018, 415, 93-100.	2.1	11
29	A Dual-Band Tunable Metamaterial Near-Unity Absorber Composed of Periodic Cross and Disk Graphene Arrays. IEEE Photonics Journal, 2018, 10, 1-12.	2.0	45
30	Study on the plasmonic characteristics of bow-tie type graphene-coated nanowire pair. Optik, 2018, 156, 689-695.	2.9	10
31	Plasmon induced transparency and refractive index sensing in a new type of graphene-based plasmonic waveguide. Optics Communications, 2018, 412, 41-48.	2.1	21
32	Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber. Materials, 2018, 11, 1619.	2.9	11
33	A Dual-Band Absorber With Wide-Angle and Polarization Insensitivity. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 1242-1246.	4.0	45
34	Control of interaction between femtosecond dark solitons in inhomogeneous optical fibers. Optical and Quantum Electronics, 2018, 50, 1.	3.3	2
35	Frequency-tunable metamaterial absorber with three bands. Optik, 2018, 172, 1057-1063.	2.9	11
36	Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate. Journal of Nonlinear Optical Physics and Materials, 2018, 27, 1850013.	1.8	12

JINPING TIAN

#	Article	IF	CITATIONS
37	Tunable Fano resonance in plasmonic MDM waveguide with a square type split-ring resonator. Optik, 2018, 171, 139-148.	2.9	16
38	Pantoscopic and temperature-controlled dual-band perfect absorber based on strontium titanate material. Materials Research Express, 2018, 5, 065802.	1.6	7
39	A type of all-optical logic gate based on graphene surface plasmon polaritons. Optics Communications, 2017, 403, 185-192.	2.1	29
40	Surface plasmon polariton based metal-insulator-metal filter including two face-to-face concentric semi-rings with different radii. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2017, 84, 588.	0.4	5
41	Exact dipole solitary wave solution in metamaterials with higher-order dispersion. Journal of Modern Optics, 2016, 63, S44-S50.	1.3	15
42	New types of exact quasi-soliton solutions in metamaterials. Physica Scripta, 2016, 91, 025201.	2.5	10
43	Modal properties of novel hybrid plasmonic waveguide consisting of two identical dielectric nanotubes symmetrically placed on both sides of a thin metal film. European Physical Journal D, 2016, 70, 1.	1.3	3
44	Tunable modulation instability in metamaterials with pseudo-quintic nonlinearity, self-steepening effect and delayed Raman response. European Physical Journal D, 2016, 70, 1.	1.3	3
45	Mode properties of a coaxial multi-layer hybrid surface plasmon waveguide. Physica Status Solidi (B): Basic Research, 2015, 252, 1884-1889.	1.5	6
46	Self-similar soliton-like solution for coupled higher-order nonlinear SchrĶdinger equation with variable coefficients. Optik, 2015, 126, 1191-1195.	2.9	11
47	Coaxial multi-layer hybrid plasmonic waveguide at subwavelength scale. European Physical Journal D, 2014, 68, 1.	1.3	3
48	Optical Properties of a Y-Splitter Based on Hybrid Multilayer Plasmonic Waveguide. IEEE Journal of Quantum Electronics, 2014, 50, 898-903.	1.9	21
49	Mode analysis of surface plasmon metal-dielectric-metal nanowire array waveguide at sub-wavelength scale. European Physical Journal D, 2013, 67, 1.	1.3	1
50	Self-similar soliton-like beam generation and propagation in inhomogeneous coupled optical fiber media system. Optik, 2013, 124, 7040-7043.	2.9	9
51	Mode Analysis of a Symmetric Hybrid Surface Plasmonic Waveguide for Photonic Integration. IEEE Journal of Quantum Electronics, 2013, 49, 331-334.	1.9	6
52	Efficient frequency-domain numerical analysis of modified surface plasmon waveguides formed by a metallic sleeve and coaxial rod. Physica Scripta, 2012, 85, 015707.	2.5	6
53	Analysis of a Surface Plasmonic Waveguide of Three Circumscribed Circular Silver Rods. IEEE Journal of Quantum Electronics, 2011, 47, 920-927.	1.9	7
54	Theoretical Analysis of a Surface Plasmonic Waveguide With a Double-Petal-Shaped Air Core. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 935-941.	2.9	4

JINPING TIAN

#	Article	IF	CITATIONS
55	Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 1391-1402.	1.5	3
56	Exact bright soliton solution for a family of coupled higher-order nonlinear SchrĶdinger equation in inhomogeneous optical fiber media. European Physical Journal D, 2007, 41, 171-177.	1.3	17
57	Chirped soliton-like solutions for nonlinear SchrĶdinger equation with variable coefficients. Optics Communications, 2006, 262, 257-262.	2.1	16
58	Soliton-like solutions for higher-order nonlinear SchrĶdinger equation in inhomogeneous optical fibre media. Physica Scripta, 2006, 73, 56-61.	2.5	6
59	Optical Solitonlike Pulses for Nonlinear Schrödinger Equation with Variable Coefficients. Fiber and Integrated Optics, 2006, 25, 101-110.	2.5	0
60	Optical solitary wave solutions in quadratic nonlinear media. Optics Communications, 2005, 247, 225-232.	2.1	11
61	Soliton Solutions and Soliton Interactions for the Coupled Nonlinear Schrödinger Equation with Varying Coefficients. Physica Scripta, 2005, 72, 394-398.	2.5	22
62	Chirped Ultrashort Soliton-like Laser Pulse Form with Fourth-order Dispersion. Physica Scripta, 2005, 71, 507-512.	2.5	7
63	Propagation of ultrashort optical pulses for nonconservative systems with higher order effect. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 4295-4307.	1.5	2
64	Effect of nonlinear gradient terms on pulsating, erupting and creeping solitons. Applied Physics B: Lasers and Optics, 2004, 78, 199-204.	2.2	40
65	Combined solitary-wave solution for coupled higher-order nonlinear Schrödinger equations. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1908.	2.1	20
66	Stable soliton in the fiber-optic system with self-frequency shift. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 59.	2.1	13
67	An Inter-modulated Solitary Wave Solution for the Higher Order Nonlinear SchrĶdinger Equation. Physica Scripta, 2003, 67, 325-328.	2.5	19
68	Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms. Physical Review E, 2002, 66, 066204.	2.1	10