Masaya Notomi

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4433325/publications.pdf
Version: 2024-02-01

Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, 2005, 13,
7 High-speed ultracompact buried heterostructure photonic-crystal laser with 13Âff of energy consumed per bit transmitted. Nature Photonics, 2010, 4, 648-654.$31.4 \quad 300$photonic-crystal lasers. Nature Photonics, 2013, 7, 569-575. 3.3155
19
20

> Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nature Materials, 2014, 13, 279-285.
27.5

94

Generation and Annihilation of Topologically Protected Bound States in the Continuum and
Circularly Polarized States by Symmetry Breaking. Physical Review Letters, 2020, 125, 053902.
7.8

93
21
22

Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear
31.4
functions. Nature Photonics, 2019, 13, 454-459.

All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal. Optics Express, 2008,
3.4

69
16, 19382.
23 Carrier Diffusion and Recombination in Photonic Crystal Nanocavity Optical Switches. Journal of Lightwave Technology, 2008, 26, 1396-1403.
24 Ultralow Operating Energy Electrically Driven Photonic Crystal Lasers. IEEE Journal of Selected
Topics in Quantum Electronics, 2013, 19, 4900311-4900311.
25 Telecom-band lasing in single $\ln P / \ln A s$ heterostructure nanowires at room temperature. Science Advances, 2019, 5, eaat8896.
Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier. Optica, 2016, 3, 483.
27 Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 2016, 3, 999.
28 Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide. Optics Express, 2011, 19, 19861.
29 Continuous-wave operation and $10-\mathrm{Gb} /$ s direct modulation of $\operatorname{InAsP} / \ln P$ sub-wavelength nanowire
laser on silicon photonic crystal. APL Photonics, 2017, 2, .
$4.6 \quad 68$
2.9

6810.3689.3
5.7 60
30 Toward ff/bit optical communication in a chip. Optics Communications, 2014, 314, 3-17.2.158
31 On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning. Optics Express, 2008, 16, 18657.Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by usinghexapole mode. Applied Physics Letters, 2007, 91, 021110.3.343
All-Optical InAsP/InP Nanowire Switches Integrated in a Si Photonic Crystal. ACS Photonics, 2020, 7, 6.6 42Systematic study of thresholdless oscillation in high-î2 buried multiple-quantum-well photonic crystalnanocavity lasers. Optics Express, 2016, 24, 3441.
Subwavelength Nanowire Lasers on a Silicon Photonic Crystal Operating at Telecom Wavelengths. ACS Photonics, 2017, 4, 355-362.
Photonic Crystal Lasers for Chip-to-Chip and On-Chip Optical Interconnects. IEEE Journal of Selected
Topics in Quantum Electronics, 2015, 21, 728-737.

39	InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure. Optics Express, 2013, 21, 19022.	3.4	26
40	Ultralow-energy electro-absorption modulator consisting of InGaAsP-embedded photonic-crystal waveguide. APL Photonics, 2017, 2, .	5.7	25
41	Mid-Infrared Lasing of Single Wurtzite InAs Nanowire. Nano Letters, 2019, 19, 8059-8065.	9.1	22
42	Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers. Optica, 2021, 8, 184.	9.3	22
43	All-optical switching for $10-\mathrm{Cb} / \mathrm{s}$ packet data by using an ultralow-power optical bistability of photonic-crystal nanocavities. Optics Express, 2015, 23, 30379.	3.4	21

$$
\begin{aligned}
& \text { Controlled } \left.1.1 a \hat{a} €^{\prime \prime} 1.6\langle\mathrm{i}\rangle \hat{1} 1 / 4</ \mathrm{i}\right\rangle \mathrm{m} \text { luminescence in gold-free multi-stacked } \operatorname{InAs} / \ln P \text { heterostructure } \\
& \text { nanowires. Nanotechnology, } 2015,26,115704 .
\end{aligned}
$$

Imaginary couplings in non-Hermitian coupled-mode theory: Effects on exceptional points of opticalresonators. Physical Review A, 2022, 105, .2.557 Lasing up to 380 â€\%oK in a sublimated GaN nanowire. Applied Physics Letters, 2020, 116, .
Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L33.311
60 ZnO-Nanowire-Induced Nanocavities in Photonic Crystal Disks. ACS Photonics, 2019, 6, 1132-1138.6.611
61 Low- and high- $\hat{1}^{2}$ lasers in the class-A limit: photon statistics, linewidth, and the laser-phase transition analogy. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 699. 2.1 11
Room temperature continuous-wave nanolaser diode utilized by ultrahigh-Q few-cell photoniccrystal nanocavities. Optics Express, 2018, 26, 26598.
Nanowire photonics toward wide wavelength range and subwavelength confinement [Invited]. 63 Optical Materials Express, 2020, 10, 2560.3.0103.410
Forward-biased nanophotonic detector for ultralow-energy dissipation receiver. APL Photonics, 2018,3, .
65 Far-field optical imaging of topological edge states in zigzag plasmonic chains. Nanophotonics, 2022, 11, 2183-2189.
6.0 8
Thermal effect of $\operatorname{InP} /$ InAs nanowire lasers integrated on different optical platforms. OSA Continuum, 1.8 7
66 2021, 4, 1838.
3.4 7Designs toward synchronization of optical limit cycles with coupled silicon photonic crystalmicrocavities. Optics Express, 2020, 28, 27657.An Optical Neural Network Architecture based on Highly Parallelized WDM-Multiplier-Accumulator.,6
2019, , .
Low-Threshold Lasing up to 360 K in All-Dielectric Subwavelength-Nanowire Nanocavities. ACS
6.6 5
Photonics, 2020, 7, 1104-1110. 5 69Emulating the local Kuramoto model with an injection-locked photonic crystal laser array. ScientificReports, 2021, 11, 8587.

```
73 Topology in momentum space becomes real. Nature Photonics, 2020, 14, 595-596.

74 xmlns:mml="http:/|www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> nonlinearsilicon photonic crystal microcavities. Physical Review A, 2020, 102, .75 Ultracompact O-E-O converter based on fF-capacitance nanophotonic integration. , 2018, , .4
76 Design of nanowire-induced nanocavities in photonic crystal disks. Optics Letters, 2017, 42, 5121. ..... 3.383 Experimental observation of bound states in the continuum generated by spatial symmetry breaking. ,2021, , .```

