Henry S Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4433090/publications.pdf

Version: 2024-02-01

28 papers 1,582 citations

16 h-index 28 g-index

28 all docs

28 docs citations

times ranked

28

2886 citing authors

#	Article	IF	Citations
1	Deficiency of IncRNA SNHG12 impairs ischemic limb neovascularization by altering an endothelial cell cycle pathway. JCI Insight, 2022, 7, .	5.0	8
2	MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovascular Diabetology, 2022, 21, 31.	6.8	31
3	A miRNA cassette reprograms smooth muscle cells into endothelial cells. FASEB Journal, 2022, 36, e22239.	0.5	1
4	Isolation and culture of murine aortic cells and RNA isolation of aortic intima and media: Rapid and optimized approaches for atherosclerosis research. Atherosclerosis, 2022, 347, 39-46.	0.8	5
5	Endothelial cell-specific deletion of a microRNA accelerates atherosclerosis. Atherosclerosis, 2022, 350, 9-18.	0.8	4
6	Perivascular Fibrosis Is Mediated by a KLF10-IL-9 Signaling Axis in CD4+ T Cells. Circulation Research, 2022, 130, 1662-1681.	4.5	6
7	miRâ€181b regulates vascular endothelial aging by modulating an MAP3K3 signaling pathway. FASEB Journal, 2022, 36, e22353.	0.5	5
8	<i>RIPK1</i> Expression Associates With Inflammation in Early Atherosclerosis in Humans and Can Be Therapeutically Silenced to Reduce NF-κB Activation and Atherogenesis in Mice. Circulation, 2021, 143, 163-177.	1.6	102
9	Dj1 deficiency protects against atherosclerosis with anti-inflammatory response in macrophages. Scientific Reports, 2021, 11, 4723.	3.3	2
10	Gene Expression Signature in Patients With Symptomatic Peripheral Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1521-1533.	2.4	12
11	A Smooth Muscle Cell–Enriched Long Noncoding RNA Regulates Cell Plasticity and Atherosclerosis by Interacting With Serum Response Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2399-2416.	2.4	30
12	Noncoding RNAs in Critical Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 523-533.	2.4	25
13	Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs. Genes, 2020, 11, 1354.	2.4	56
14	Revisiting Hormonal Control of Vascular Injury and Repair. Circulation Research, 2020, 127, 1488-1490.	4.5	2
15	Skeletal muscle expression of adipose-specific phospholipase in peripheral artery disease. Vascular Medicine, 2020, 25, 401-410.	1.5	4
16	MicroRNAâ€135aâ€3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB Journal, 2019, 33, 5599-5614.	0.5	53
17	c-Myb Exacerbates Atherosclerosis through Regulation of Protective IgM-Producing Antibody-Secreting Cells. Cell Reports, 2019, 27, 2304-2312.e6.	6.4	3
18	MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase) Tj ETQq0 0 Vascular Biology, 2019, 39, 1458-1474.	0 rgBT /O 2.4	verlock 10 Tf ! 72

Vascular Biology, 2019, 39, 1458-1474.

#	Article	lF	CITATION
19	Extracellular Vesicles Secreted by Atherogenic Macrophages Transfer MicroRNA to Inhibit Cell Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 49-63.	2.4	176
20	Dynamic regulation of VEGF-inducible genes by an ERK-ERG-p300 transcriptional network. Development (Cambridge), 2017, 144, 2428-2444.	2.5	68
21	Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circulation Research, 2017, 121, 354-367.	4.5	79
22	miR-155 Modifies Inflammation, Endothelial Activation and Blood-Brain Barrier Dysfunction in Cerebral Malaria. Molecular Medicine, 2017, 23, 24-33.	4.4	70
23	Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood, 2015, 125, 3202-3212.	1.4	205
24	Cardioprotective Signature of Short-Term Caloric Restriction. PLoS ONE, 2015, 10, e0130658.	2.5	47
25	Neovascularization Driven by MicroRNA Delivery to the Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2263-2265.	2.4	3
26	Noncoding RNAs regulate NF-κB signaling to modulate blood vessel inflammation. Frontiers in Genetics, 2014, 5, 422.	2.3	70
27	Micro <scp>RNA</scp> â€146 represses endothelial activation by inhibiting proâ€inflammatory pathways. EMBO Molecular Medicine, 2013, 5, 1017-1034.	6.9	352
28	Antagonism of Chemical Genetic Interaction Networks Resensitize MRSA to \hat{l}^2 -Lactam Antibiotics. Chemistry and Biology, 2011, 18, 1379-1389.	6.0	91