
Linglong Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4431068/publications.pdf Version: 2024-02-01

LINCLONG DAL

#	Article	IF	CITATIONS
1	Max-Min Fairness for Beamspace MIMO-NOMA: From Single-Beam to Multi-Beam. IEEE Transactions on Wireless Communications, 2022, 21, 739-752.	9.2	15
2	Active Reconfigurable Intelligent Surface: Fully-Connected or Sub-Connected?. IEEE Communications Letters, 2022, 26, 167-171.	4.1	69
3	Compact User-Specific Reconfigurable Intelligent Surfaces for Uplink Transmission. IEEE Transactions on Communications, 2022, 70, 680-692.	7.8	19
4	Channel Estimation for Extremely Large-Scale Massive MIMO: Far-Field, Near-Field, or Hybrid-Field?. IEEE Communications Letters, 2022, 26, 177-181.	4.1	42
5	Triple-Structured Sparsity-Based Channel Feedback for RIS-Assisted MU-MIMO System. IEEE Communications Letters, 2022, 26, 1141-1145.	4.1	6
6	Channel Estimation for Extremely Large-Scale MIMO: Far-Field or Near-Field?. IEEE Transactions on Communications, 2022, 70, 2663-2677.	7.8	115
7	Reconfigurable Intelligent Surface Empowered Optimization for Spectrum Sharing: Scenarios and Methods. IEEE Vehicular Technology Magazine, 2022, 17, 74-82.	3.4	14
8	End-to-End Learning for RIS-Aided Communication Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 6778-6783.	6.3	7
9	Residual-Aided End-to-End Learning of Communication System Without Known Channel. IEEE Transactions on Cognitive Communications and Networking, 2022, 8, 631-641.	7.9	7
10	Deep Learning for Beamspace Channel Estimation in Millimeter-Wave Massive MIMO Systems. IEEE Transactions on Communications, 2021, 69, 182-193.	7.8	88
11	Joint Transceiver and Large Intelligent Surface Design for Massive MIMO mmWave Systems. IEEE Transactions on Wireless Communications, 2021, 20, 1052-1064.	9.2	97
12	Dimension Reduced Channel Feedback for Reconfigurable Intelligent Surface Aided Wireless Communications. IEEE Transactions on Communications, 2021, 69, 7748-7760.	7.8	23
13	A Joint Precoding Framework for Wideband Reconfigurable Intelligent Surface-Aided Cell-Free Network. IEEE Transactions on Signal Processing, 2021, 69, 4085-4101.	5.3	141
14	Channel Estimation for RIS Assisted Wireless Communications—Part I: Fundamentals, Solutions, and Future Opportunities. IEEE Communications Letters, 2021, 25, 1398-1402.	4.1	87
15	Channel Estimation for RIS Assisted Wireless Communications—Part II: An Improved Solution Based on Double-Structured Sparsity. IEEE Communications Letters, 2021, 25, 1403-1407.	4.1	119
16	Wideband Beam Tracking in THz Massive MIMO Systems. IEEE Journal on Selected Areas in Communications, 2021, 39, 1693-1710.	14.0	68
17	End-to-End Learning of Communication System without Known Channel. , 2021, , .		8
18	Two-Timescale Channel Estimation for Reconfigurable Intelligent Surface Aided Wireless Communications. IEEE Transactions on Communications, 2021, 69, 7736-7747.	7.8	175

#	Article	IF	CITATIONS
19	Channel Feedback in TDD Massive MIMO Systems With Partial Reciprocity. IEEE Transactions on Vehicular Technology, 2021, 70, 12960-12974.	6.3	8
20	Attention-Based Hybrid Precoding for mmWave MIMO Systems. , 2021, , .		4
21	Near-Field Channel Estimation for Extremely Large-scale MIMO with Hybrid Precoding. , 2021, , .		4
22	On the Max-Min Fairness of Beamspace MIMO-NOMA. IEEE Transactions on Signal Processing, 2020, 68, 4919-4932.	5.3	20
23	Capacity Improvement in Wideband Reconfigurable Intelligent Surface-Aided Cell-Free Network. , 2020,		31
24	Deep Learning for Wireless Communications: An Emerging Interdisciplinary Paradigm. IEEE Wireless Communications, 2020, 27, 133-139.	9.0	75
25	Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results. IEEE Access, 2020, 8, 45913-45923.	4.2	432
26	Partially Coherent Compressive Phase Retrieval for Millimeter-Wave Massive MIMO Channel Estimation. IEEE Transactions on Signal Processing, 2020, 68, 1673-1687.	5.3	19
27	Channel Feedback for Reconfigurable Intelligent Surface Assisted Wireless Communications. , 2020, , .		4
28	Lens Antenna Array. , 2020, , 706-708.		0
29	Millimeter Wave NOMA. , 2020, , 833-835.		О
30	Millimeter-Wave (mmWave) Multiple-Input Multiple-Output (MIMO) Technique. , 2020, , 838-843.		0
31	Wideband Beamspace Channel Estimation for Millimeter-Wave MIMO Systems Relying on Lens Antenna Arrays. IEEE Transactions on Signal Processing, 2019, 67, 4809-4824.	5.3	80
32	Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO. IEEE Transactions on Signal Processing, 2019, 67, 4204-4217.	5.3	198
33	On the Power Leakage Problem in Millimeter-Wave Massive MIMO With Lens Antenna Arrays. IEEE Transactions on Signal Processing, 2019, 67, 4730-4744.	5.3	38
34	Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO. , 2019, , .		13
35	Performance Analysis of FD-NOMA-Based Decentralized V2X Systems. IEEE Transactions on Communications, 2019, 67, 5024-5036.	7.8	109
36	Optimal 3D-Trajectory Design and Resource Allocation for Solar-Powered UAV Communication Systems. IEEE Transactions on Communications, 2019, 67, 4281-4298.	7.8	285

#	Article	IF	CITATIONS
37	Power Allocation for Multi-Beam Max-Min Fairness in Millimeter-Wave Beamspace MIMO-NOMA. , 2019, ,		3
38	Delay-Phase Precoding for THz Massive MIMO with Beam Split. , 2019, , .		49
39	Performance Analysis of Decentralized V2X System with FD-NOMA. , 2019, , .		7
40	Mixed-ADC/DAC Multipair Massive MIMO Relaying Systems: Performance Analysis and Power Optimization. IEEE Transactions on Communications, 2019, 67, 140-153.	7.8	125
41	Hybrid Precoding-Based Millimeter-Wave Massive MIMO-NOMA With Simultaneous Wireless Information and Power Transfer. IEEE Journal on Selected Areas in Communications, 2019, 37, 131-141.	14.0	219
42	Low RF-Complexity Technologies to Enable Millimeter-Wave MIMO with Large Antenna Array for 5G Wireless Communications. IEEE Communications Magazine, 2018, 56, 211-217.	6.1	167
43	Relay Hybrid Precoding Design in Millimeter-Wave Massive MIMO Systems. IEEE Transactions on Signal Processing, 2018, 66, 2011-2026.	5.3	44
44	Compressive Sensing Techniques for Next-Generation Wireless Communications. IEEE Wireless Communications, 2018, 25, 144-153.	9.0	190
45	Millimeter-Wave Massive MIMO Communication for Future Wireless Systems: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 836-869.	39.4	457
46	Power-Efficient and Secure WPCNs With Hardware Impairments and Non-Linear EH Circuit. IEEE Transactions on Communications, 2018, 66, 2642-2657.	7.8	56
47	Channel Feedback Codebook Design for Millimeter-Wave Massive MIMO Systems Relying on Lens Antenna Array. IEEE Wireless Communications Letters, 2018, 7, 736-739.	5.0	14
48	Nonorthogonal Multiple Access for 5G. , 2018, , 135-204.		3
49	Millimeter Wave NOMA. , 2018, , 1-3.		0
50	How to Interconnect for Massive Mimo Self-Calibration?. , 2018, , .		2
51	Beamspace Channel Estimation for Wideband Millimeter-Wave MIMO with Lens Antenna Array. , 2018, , .		17
52	On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems. IEEE Communications Magazine, 2018, 56, 205-211.	6.1	218
53	Introduction to the Issue on Hybrid Analog–Digital Signal Processing for Hardware-Efficient Large-Scale Antenna Arrays (Part I). IEEE Journal on Selected Topics in Signal Processing, 2018, 12, 253-255.	10.8	0
54	Geometric mean decomposition based hybrid precoding for millimeter-wave massive MIMO. China Communications, 2018, 15, 229-238.	3.2	44

#	Article	IF	CITATIONS
55	Super-Resolution Channel Estimation for MmWave Massive MIMO With Hybrid Precoding. IEEE Transactions on Vehicular Technology, 2018, 67, 8954-8958.	6.3	108
56	Channel Feedback Based on AoD-Adaptive Subspace Codebook in FDD Massive MIMO Systems. IEEE Transactions on Communications, 2018, 66, 5235-5248.	7.8	77
57	A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Communications Surveys and Tutorials, 2018, 20, 2294-2323.	39.4	887
58	Introduction to the Issue on Hybrid Analog–Digital Signal Processing for Hardware-Efficient Large Scale Antenna Arrays (Part II). IEEE Journal on Selected Topics in Signal Processing, 2018, 12, 419-421.	10.8	1
59	Lens Antenna Array. , 2018, , 1-3.		0
60	Millimeter-Wave (mmWave) Multiple-Input Multiple-Output (MIMO) Technique. , 2018, , 1-6.		0
61	Weighted-Graph-Coloring-Based Pilot Decontamination for Multicell Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2017, 66, 2829-2834.	6.3	54
62	Near-Optimal Signal Detector Based on Structured Compressive Sensing for Massive SM-MIMO. IEEE Transactions on Vehicular Technology, 2017, 66, 1860-1865.	6.3	33
63	On the Performance of Channel-Statistics-Based Codebook for Massive MIMO Channel Feedback. IEEE Transactions on Vehicular Technology, 2017, 66, 7553-7557.	6.3	28
64	Secure SWIPT Networks Based on a Non-Linear Energy Harvesting Model. , 2017, , .		35
65	NOMA Meets Finite Resolution Analog Beamforming in Massive MIMO and Millimeter-Wave Networks. IEEE Communications Letters, 2017, 21, 1879-1882.	4.1	66
66	Millimeter Wave Communications for Future Mobile Networks (Guest Editorial), Part I. IEEE Journal on Selected Areas in Communications, 2017, 35, 1425-1431.	14.0	24
67	Low RF-Complexity Massive MIMO Systems Based on Vertical Spatial Filtering for Urban Macro Cellular Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 9214-9225.	6.3	4
68	Performance Analysis of Mixed-ADC Massive MIMO Systems Over Rician Fading Channels. IEEE Journal on Selected Areas in Communications, 2017, 35, 1327-1338.	14.0	220
69	On the Performance of NOMA-Based Cooperative Relaying Systems Over Rician Fading Channels. IEEE Transactions on Vehicular Technology, 2017, 66, 11409-11413.	6.3	137
70	Machine learning inspired energy-efficient hybrid precoding for mmWave massive MIMO systems. , 2017, , .		130
71	AoD-adaptive subspace codebook for channel feedback in FDD massive MIMO systems. , 2017, , .		14
72	A Novel Low-Complexity Precoding Algorithm for MIMO Cognitive Radio Systems. Wireless Personal Communications, 2017, 97, 5077-5088.	2.7	0

#	Article	IF	CITATIONS
73	Spectrum and Energy-Efficient Beamspace MIMO-NOMA for Millimeter-Wave Communications Using Lens Antenna Array. IEEE Journal on Selected Areas in Communications, 2017, 35, 2370-2382.	14.0	275
74	Optimal spectrum access and power control of secondary users in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, .	2.4	7
75	Millimeter Wave Communications for Future Mobile Networks. IEEE Journal on Selected Areas in Communications, 2017, 35, 1909-1935.	14.0	797
76	Reliable Beamspace Channel Estimation for Millimeter-Wave Massive MIMO Systems with Lens Antenna Array. IEEE Transactions on Wireless Communications, 2017, 16, 6010-6021.	9.2	180
77	Transmission Capacity Analysis of Relay-Assisted Device-to-Device Overlay/Underlay Communication. IEEE Transactions on Industrial Informatics, 2017, 13, 380-389.	11.3	74
78	Fast Channel Tracking for Terahertz Beamspace Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2017, 66, 5689-5696.	6.3	154
79	Optimal FemtoCell Density for Maximizing Throughput in 5G Heterogeneous Networks under Outage Constraints. , 2017, , .		18
80	Multipair Massive MIMO Two-Way Full-Duplex Relay Systems with Hardware Impairments. , 2017, , .		19
81	A Low-Complexity Hardware-Friendly DFT-Based Channel Estimator for the LTE Uplink Channel. Wireless Personal Communications, 2017, 97, 4813-4825.	2.7	1
82	On the Power Leakage Problem in Beamspace MIMO Systems with Lens Antenna Array. , 2017, , .		5
83	Precoding for mmWave massive MIMO. , 2017, , 79-111.		12
84	Channel estimation for mmWave massive MIMO systems. , 2017, , 113-139.		4
85	Introduction to mmWave massive MIMO. , 2017, , 1-18.		24
86	Performance Analysis of a Hybrid Downlink-Uplink Cooperative NOMA Scheme. , 2017, , .		30
87	On the design of MAC protocol and transmission scheduling for Internet of Things. , 2016, , .		5
88	Priori-aided channel tracking for millimeter-Wave beamspace massive MIMO systems. , 2016, , .		14
89	Beamspace channel estimation for 3D lens-based millimeter-wave massive MIMO systems. , 2016, , .		11
90	Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays. IEEE Journal on Selected Areas in Communications, 2016, 34, 998-1009.	14.0	801

#	Article	IF	CITATIONS
91	Near-Optimal Beam Selection for Beamspace MmWave Massive MIMO Systems. IEEE Communications Letters, 2016, 20, 1054-1057.	4.1	230
92	MIMO-NOMA Design for Small Packet Transmission in the Internet of Things. IEEE Access, 2016, 4, 1393-1405.	4.2	209
93	Channel Estimation for Millimeter-Wave Massive MIMO With Hybrid Precoding Over Frequency-Selective Fading Channels. IEEE Communications Letters, 2016, 20, 1259-1262.	4.1	251
94	BICM-ID scheme for clipped DCO-OFDM in visible light communications. Optics Express, 2016, 24, 4573.	3.4	15
95	Multi-User Sum-Rate Optimization for Visible Light Communications With Lighting Constraints. Journal of Lightwave Technology, 2016, 34, 3943-3952.	4.6	44
96	Channel estimation for mmWave massive MIMO based access and backhaul in ultra-dense network. , 2016, , .		38
97	Twoâ€ s tage beamforming training for multiâ€user millimetre wave systems. Electronics Letters, 2016, 52, 1351-1353.	1.0	1
98	Massive MIMO channel estimation based on block iterative support detection. , 2016, , .		8
99	On the spectral efficiency of space-constrained massive MIMO with linear receivers. , 2016, , .		8
100	Dynamic Compressive Sensing-Based Multi-User Detection for Uplink Grant-Free NOMA. IEEE Communications Letters, 2016, 20, 2320-2323.	4.1	166
101	Correntropy Induced Metric Penalized Sparse RLS Algorithm to Improve Adaptive System Identification. , 2016, , .		4
102	Dynamic multi-user detection based on structured compressive sensing for IoT-oriented 5G systems. , 2016, , .		3
103	Beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array. , 2016, , .		41
104	Energy Efficiency Maximization for Device-to-Device Communication Underlaying Cellular Networks on Multiple Bands. IEEE Access, 2016, 4, 7682-7691.	4.2	24
105	Dimmable Visible Light Communications Based on Multilayer ACO-OFDM. IEEE Photonics Journal, 2016, 8, 1-11.	2.0	36
106	Joint User Activity and Data Detection Based on Structured Compressive Sensing for NOMA. IEEE Communications Letters, 2016, , 1-1.	4.1	110
107	Location-Aware Pilot Assignment for Massive MIMO Systems in Heterogeneous Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 6815-6821.	6.3	31
108	Ellipse-based DCO-OFDM for visible light communications. Optics Communications, 2016, 360, 1-6.	2.1	12

#	Article	IF	CITATIONS
109	On the Multivariate Gamma–Gamma Distribution With Arbitrary Correlation and Applications in Wireless Communications. IEEE Transactions on Vehicular Technology, 2016, 65, 3834-3840.	6.3	42
110	Joint Channel Training and Feedback for FDD Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 8762-8767.	6.3	59
111	Achievable Rate of Rician Large-Scale MIMO Channels With Transceiver Hardware Impairments. IEEE Transactions on Vehicular Technology, 2016, 65, 8800-8806.	6.3	80
112	Compressive-Sensing-Based Multiuser Detector for the Large-Scale SM-MIMO Uplink. IEEE Transactions on Vehicular Technology, 2016, 65, 8725-8730.	6.3	44
113	Low-Complexity SSOR-Based Precoding for Massive MIMO Systems. IEEE Communications Letters, 2016, 20, 744-747.	4.1	48
114	Adaptive Hybrid Precoding for Multiuser Massive MIMO. IEEE Communications Letters, 2016, 20, 776-779.	4.1	69
115	On the Spectral Efficiency of Massive MIMO Systems With Low-Resolution ADCs. IEEE Communications Letters, 2016, 20, 842-845.	4.1	207
116	Improved Receiver Design for Layered ACO-OFDM in Optical Wireless Communications. IEEE Photonics Technology Letters, 2016, 28, 319-322.	2.5	32
117	Near-Optimal Low-Complexity Sequence Detection for Clipped DCO-OFDM. IEEE Photonics Technology Letters, 2016, 28, 233-236.	2.5	23
118	Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO. IEEE Transactions on Communications, 2016, 64, 601-617.	7.8	173
119	A Tight Upper Bound on Channel Capacity for Visible Light Communications. IEEE Communications Letters, 2016, 20, 97-100.	4.1	46
120	Turbo-Like Beamforming Based on Tabu Search Algorithm for Millimeter-Wave Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 5731-5737.	6.3	71
121	Soft Pilot Reuse and Multicell Block Diagonalization Precoding for Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 3285-3298.	6.3	122
122	Joint channel estimation and feedback with low overhead for FDD massive MIMO systems. , 2015, , .		10
123	Shuffled iterative receiver for LDPC-coded MIMO systems. , 2015, , .		1
124	Effective Rate Analysis of MISO Systems over $\hat{I}\pm\cdot\hat{A}\mu$ Fading Channels. , 2015, , .		10
125	Structured Matching Pursuit for Reconstruction of Dynamic Sparse Channels. , 2015, , .		9
126	Spatially correlated channel estimation based on block iterative support detection for massive MIMO systems. Electronics Letters, 2015, 51, 587-588.	1.0	14

#	Article	IF	CITATIONS
127	Compressive Sensing Based Multi-User Detection for Uplink Grant-Free Non-Orthogonal Multiple Access. , 2015, , .		52
128	Capacity-approaching linear precoding with low-complexity for large-scale MIMO systems. , 2015, , .		23
129	MDP-based vertical handover scheme for indoor VLC-WiFi systems. , 2015, , .		7
130	Joint CSIT Acquisition Based on Low-Rank Matrix Completion for FDD Massive MIMO Systems. IEEE Communications Letters, 2015, 19, 2178-2181.	4.1	78
131	Tracking a dynamic sparse channel via differential orthogonal matching pursuit. , 2015, , .		17
132	Multi-user MIMO-OFDM for indoor visible light communication systems. , 2015, , .		3
133	Location-based channel estimation and pilot assignment for massive MIMO systems. , 2015, , .		43
134	Energy-efficient hybrid precoding based on successive interference cancelation for millimeter-wave massive MIMO systems. , 2015, , .		2
135	Effective capacity of communication systems over <i>l̂º</i> – <i>l̂¼</i> shadowed fading channels. Electronics Letters, 2015, 51, 1540-1542.	1.0	60
136	Fast variational Bayesian learning for channel estimation with prior statistical information. , 2015, , .		4
137	Temporal correlation based sparse channel estimation for TDS-OFDM in high-speed scenarios. , 2015, , .		2
138	Multiuser MIMO-OFDM for Visible Light Communications. IEEE Photonics Journal, 2015, 7, 1-11.	2.0	97
139	Efficient Vertical Handover Scheme for Heterogeneous VLC-RF Systems. Journal of Optical Communications and Networking, 2015, 7, 1172.	4.8	88
140	Asymmetrical Hybrid Optical OFDM for Visible Light Communications With Dimming Control. IEEE Photonics Technology Letters, 2015, 27, 974-977.	2.5	104
141	Unified Performance Analysis of Mixed Radio Frequency/Free-Space Optical Dual-Hop Transmission Systems. Journal of Lightwave Technology, 2015, 33, 2286-2293.	4.6	112
142	On the Ergodic Capacity of MIMO Free-Space Optical Systems Over Turbulence Channels. IEEE Journal on Selected Areas in Communications, 2015, 33, 1925-1934.	14.0	55
143	Smart Pilot Assignment for Massive MIMO. IEEE Communications Letters, 2015, 19, 1644-1647.	4.1	178
144	Sparsity-Aware Adaptive Channel Estimation Based on SNR Detection. IEEE Transactions on Broadcasting, 2015, 61, 119-126.	3.2	7

#	Article	IF	CITATIONS
145	Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 2015, 53, 74-81.	6.1	2,277
146	Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO. IEEE Transactions on Signal Processing, 2015, 63, 6169-6183.	5.3	496
147	Coded MIMO With Asymmetric Constellation Sizes. IEEE Transactions on Vehicular Technology, 2015, 64, 4338-4344.	6.3	0
148	Compressive sensingâ€based differential channel feedback for massive MIMO. Electronics Letters, 2015, 51, 1824-1826.	1.0	10
149	MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 2015, 22, 13-21.	9.0	339
150	Downlink training scheme for massive MIMO systems. Electronics Letters, 2015, 51, 2059-2060.	1.0	1
151	Block compressive channel estimation and feedback for FDD massive MIMO. , 2015, , .		11
152	An optimal scaling scheme for DCO-OFDM based visible light communications. Optics Communications, 2015, 356, 136-140.	2.1	21
153	Low-Complexity Soft-Output Signal Detection Based on Gauss–Seidel Method for Uplink Multiuser Large-Scale MIMO Systems. IEEE Transactions on Vehicular Technology, 2015, 64, 4839-4845.	6.3	239
154	Near-optimal hybrid analog and digital precoding for downlink mmWave massive MIMO systems. , 2015, , .		73
155	Low-Complexity Signal Detection for Large-Scale MIMO in Optical Wireless Communications. IEEE Journal on Selected Areas in Communications, 2015, 33, 1903-1912.	14.0	37
156	Asymptotic Orthogonality Analysis of Time-Domain Sparse Massive MIMO Channels. IEEE Communications Letters, 2015, 19, 1826-1829.	4.1	39
157	Graph Coloring Based Pilot Allocation to Mitigate Pilot Contamination for Multi-Cell Massive MIMO Systems. IEEE Communications Letters, 2015, 19, 1842-1845.	4.1	95
158	Joint CSIT acquisition based on low-rank matrix recovery for FDD massive MIMO systems. , 2015, , .		1
159	Iterative Receiver for Hybrid Asymmetrically Clipped Optical OFDM. Journal of Lightwave Technology, 2014, 32, 4471-4477.	4.6	29
160	Structured compressive sensing based superimposed pilot design in downlink largeâ€scale MIMO systems. Electronics Letters, 2014, 50, 896-898.	1.0	100
161	Signaling-Embedded Preamble Design for Flexible Optical Transport Networks. , 2014, , .		0
162	Low-Complexity MMSE Signal Detection Based on Richardson Method for Large-Scale MIMO Systems. , 2014, , .		49

#	Article	IF	CITATIONS
163	Simultaneous time-frequency channel estimation based on compressive sensing for OFDM system. , 2014, , .		3
164	Variable earns profit: Improved adaptive channel estimation using sparse VSS-NLMS algorithms. , 2014, ,		19
165	Lowâ€complexity nearâ€optimal signal detection for uplink largeâ€scale MIMO systems. Electronics Letters, 2014, 50, 1326-1328.	1.0	113
166	Joint time-frequency channel estimation method for OFDM systems based on compressive sensing. , 2014, , .		2
167	Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems. , 2014, , .		66
168	Spectrum-efficient superimposed pilot design based on structured compressive sensing for downlink large-scale MIMO systems. , 2014, , .		6
169	Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations. IEEE Communications Letters, 2014, 18, 1266-1269.	4.1	71
170	Reliable and energy-efficient OFDM based on structured compressive sensing. , 2014, , .		2
171	Compressive Sensing Based Channel Estimation for OFDM Systems Under Long Delay Channels. IEEE Transactions on Broadcasting, 2014, 60, 313-321.	3.2	120
172	Structured Matching Pursuit for Reconstruction of Dynamic Sparse Channels. , 2014, , .		4
173	Spectrally Efficient Time-Frequency Training OFDM for Mobile Large-Scale MIMO Systems. IEEE Journal on Selected Areas in Communications, 2013, 31, 251-263.	14.0	189
174	Compressive Sensing Based Time Domain Synchronous OFDM Transmission for Vehicular Communications. IEEE Journal on Selected Areas in Communications, 2013, 31, 460-469.	14.0	82
175	TDS-OFDM based HDTV transmission over fast fading channels. IEEE Transactions on Consumer Electronics, 2013, 59, 16-23.	3.6	4
176	Flexible Multi-Block OFDM Transmission for High-Speed Fiber-Wireless Networks. IEEE Journal on Selected Areas in Communications, 2013, 31, 788-796.	14.0	7
177	Spectrum-Efficient Coherent Optical OFDM for Transport Networks. IEEE Journal on Selected Areas in Communications, 2013, 31, 62-74.	14.0	12
178	Spectrum- and Energy-Efficient OFDM Based on Simultaneous Multi-Channel Reconstruction. IEEE Transactions on Signal Processing, 2013, 61, 6047-6059.	5.3	106
179	Joint Time-Frequency Channel Estimation for Time Domain Synchronous OFDM Systems. IEEE Transactions on Broadcasting, 2013, 59, 168-173.	3.2	15
180	Spectrally efficient time-frequency training OFDM for MIMO systems. , 2013, , .		0

#	Article	IF	CITATIONS
181	Time domain synchronous OFDM based on simultaneous multi-channel reconstruction. , 2013, , .		7
182	Unified Time-Frequency OFDM Transmission with Self Interference Cancellation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96.A, 807-813.	0.3	5
183	Time domain synchronous OFDM based on compressive sensing: A new perspective. , 2012, , .		8
184	Spectrum-efficient coherent optical zero padding OFDM for future high-speed transport networks. , 2012, , .		0
185	Priori information aided compressive sensing for time domain synchronous OFDM. Electronics Letters, 2012, 48, 800.	1.0	8
186	Efficient power control algorithms for V-BLAST system with per-antenna power constraints. , 2012, , .		0
187	Next-generation digital television terrestrial broadcasting systems: Key technologies and research trends. , 2012, 50, 150-158.		141
188	Time-Frequency Training OFDM with High Spectral Efficiency and Reliable Performance in High Speed Environments. IEEE Journal on Selected Areas in Communications, 2012, 30, 695-707.	14.0	93
189	Wireless Positioning Using TDS-OFDM Signals in Single-Frequency Networks. IEEE Transactions on Broadcasting, 2012, 58, 236-246.	3.2	32
190	A Novel Uplink Multiple Access Scheme Based on TDS-FDMA. IEEE Transactions on Wireless Communications, 2011, 10, 757-761.	9.2	31
191	Time-Frequency Training OFDM with High Spectral Efficiency and Improved Performance over Fast Fading Channels. , 2011, , .		1
192	Pilot Design and Channel Estimation for TDS-OFDM System with Transmit Diversity. IEICE Transactions on Communications, 2011, E94-B, 852-855.	0.7	3
193	TDS-OFDMA: a novel multiple access system based on TDS-OFDM. IEEE Transactions on Consumer Electronics, 2011, 57, 1528-1534.	3.6	2
194	Transmit Diversity for TDS-OFDM Broadcasting System Over Doubly Selective Fading Channels. IEEE Transactions on Broadcasting, 2011, 57, 135-142.	3.2	34
195	Transmit Diversity Scheme for TDS-OFDM Systems with Reduced Complexity. , 2011, , .		4
196	Positioning in Chinese Digital Television Network Using TDS-OFDM Signals. , 2011, , .		2
197	Time-frequency training OFDM. Electronics Letters, 2011, 47, 1128.	1.0	1
198	Complexity Reduced Transmit Diversity Scheme for Time Domain Synchronous OFDM Systems. IEICE Transactions on Communications, 2011, E94-B, 3116-3124.	0.7	0

#	Article	IF	CITATIONS
199	Training Sequence Aided MC-CDMA Scheme with High Spectrum Efficiency. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93-A, 1857-1860.	0.3	2
200	A Novel TDS-FDMA Scheme for Multi-User Uplink Scenarios. , 2010, , .		1
201	TDS-OFDM Transmit Diversity Based on Space-Time Shifted CAZAC Sequence. , 2010, , .		2
202	Accurate position location in TDS-OFDM based digital television broadcasting networks. , 2010, , .		0
203	Positioning with OFDM signals for the next- generation GNSS. IEEE Transactions on Consumer Electronics, 2010, 56, 374-379.	3.6	55
204	Joint channel estimation and time-frequency synchronization for uplink TDS-OFDMA systems. IEEE Transactions on Consumer Electronics, 2010, 56, 494-500.	3.6	25
205	Secure communication in TDS-OFDM system using constellation rotation and noise insertion. IEEE Transactions on Consumer Electronics, 2010, 56, 1328-1332.	3.6	70
206	Time-frequency joint positioning for Chinese digital television terrestrial broadcasting system. , 2010, , .		1
207	Joint Code Acquisition and Doppler Frequency Shift Estimation for GPS Signals. , 2010, , .		10
208	A Novel CPR-TDS-OFDM System for High-Speed Mobile Reception. IEICE Transactions on Communications, 2010, E93-B, 788-791.	0.7	2
209	A Novel Time Domain Synchronous Orthogonal Frequency Division Multiple Access Scheme. , 2009, , .		2
210	A multi-user uplink TDS-OFDM system based on dual PN sequence padding. IEEE Transactions on Consumer Electronics, 2009, 55, 1098-1106.	3.6	8