Nicholas E Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4430885/publications.pdf

Version: 2024-02-01

279798 223800 2,337 51 23 46 citations h-index g-index papers 61 61 61 2020 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The transcription factor $Xrp1$ orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. ELife, 2022, 11 ,.	6.0	19
2	New regulators of <i>Drosophila </i> eye development identified from temporal transcriptome changes. Genetics, 2021, 217, .	2.9	3
3	Cell competition removes segmental aneuploid cells from Drosophila imaginal disc-derived tissues based on ribosomal protein gene dose. ELife, 2021, 10, .	6.0	25
4	Emerging mechanisms of cell competition. Nature Reviews Genetics, 2020, 21, 683-697.	16.3	140
5	Roles of C/EBP class bZip proteins in the growth and cell competition of Rp (â€~Minute') mutants in Drosophila. ELife, 2020, 9, .	6.0	37
6	Salvador–Warts–Hippo pathway regulates sensory organ development via caspase-dependent nonapoptotic signaling. Cell Death and Disease, 2019, 10, 669.	6.3	8
7	Transcriptional and post-transcriptional regulation of extra macrochaetae during Drosophila adult peripheral neurogenesis. Developmental Biology, 2019, 449, 41-51.	2.0	4
8	DrosophilaÂRpS12 controls translation, growth, and cell competition through Xrp1. PLoS Genetics, 2019, 15, e1008513.	3.5	41
9	A potential link between p53, cell competition and ribosomopathy in mammals and in Drosophila. Developmental Biology, 2019, 446, 17-19.	2.0	26
10	Ribosomal Protein S12e Has a Distinct Function in Cell Competition. Developmental Cell, 2018, 44, 42-55.e4.	7.0	43
11	All in the family: proneural bHLH genes and neuronal diversity. Development (Cambridge), 2018, 145, .	2.5	70
12	Tumor evolution: Multiple induction mechanisms for cell competition. Molecular and Cellular Oncology, 2018, 5, e1481812.	0.7	0
13	A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Developmental Cell, 2018, 46, 456-469.e4.	7.0	86
14	Spatial regulation of expanded transcription in the Drosophila wing imaginal disc. PLoS ONE, 2018, 13, e0201317.	2.5	4
15	Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners. ELife, 2018, 7, .	6.0	14
16	Mechanisms of cell competition emerging from Drosophila studies. Current Opinion in Cell Biology, 2017, 48, 40-46.	5.4	47
17	The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Developmental Biology, 2017, 431, 309-320.	2.0	2
18	Patterning the eye: A role for the cell cycle?. Developmental Biology, 2017, 430, 263-265.	2.0	1

#	Article	IF	CITATIONS
19	Local Cell Death Changes the Orientation of Cell Division in the Developing Drosophila Wing Imaginal Disc Without Using Fat or Dachsous as Orienting Signals. PLoS ONE, 2016, 11, e0167637.	2.5	2
20	Whole-Genome Sequencing and iPLEX MassARRAY Genotyping Map an EMS-Induced Mutation Affecting Cell Competition in <i>Drosophila melanogaster</i>): G3: Genes, Genomes, Genetics, 2016, 6, 3207-3217.	1.8	26
21	Mutations in ribosomal proteins: Apoptosis, cell competition, and cancer. Molecular and Cellular Oncology, 2016, 3, e1029065.	0.7	9
22	Salvador-Warts-Hippo Pathway in a Developmental Checkpoint Monitoring Helix-Loop-Helix Proteins. Developmental Cell, 2015, 32, 191-202.	7.0	16
23	Signaling by the Engulfment Receptor Draper: A Screen in Drosophila melanogaster Implicates Cytoskeletal Regulators, Jun N-Terminal Kinase, and Yorkie. Genetics, 2015, 199, 117-134.	2.9	8
24	E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Developmental Cell, 2015, 35, 269-280.	7.0	129
25	Eye development. Methods, 2014, 68, 252-259.	3.8	29
26	Metabolism and the Other Fat: A Protocadherin in Mitochondria. Cell, 2014, 158, 1240-1241.	28.9	0
27	Developmental Regulation of Nucleolus Size during Drosophila Eye Differentiation. PLoS ONE, 2013, 8, e58266.	2.5	15
28	Mitosis in Neurons: Roughex and APC/C Maintain Cell Cycle Exit to Prevent Cytokinetic and Axonal Defects in Drosophila Photoreceptor Neurons. PLoS Genetics, 2012, 8, e1003049.	3.5	19
29	A Network of Broadly Expressed HLH Genes Regulates Tissue-Specific Cell Fates. Cell, 2011, 147, 881-892.	28.9	76
30	Cell competition. Current Biology, 2011, 21, R11-R15.	3.9	59
31	Retinal determination genes function along with cellâ€cell signals to regulate <i>Drosophila</i> eye development. BioEssays, 2011, 33, 538-546.	2.5	18
32	Proximodistal Patterning in the Drosophila Leg: Models and Mutations. Genetics, 2011, 187, 1003-1010.	2.9	6
33	Oriented Cell Division as a Response to Cell Death and Cell Competition. Current Biology, 2009, 19, 1821-1826.	3.9	51
34	The HLH protein Extramacrochaetae is required for R7 cell and cone cell fates in the Drosophila eye. Developmental Biology, 2009, 327, 288-300.	2.0	40
35	Retinal determination genes as targets and possible effectors of extracellular signals. Developmental Biology, 2009, 327, 366-375.	2.0	44
36	Regulation of Hh signal transduction as Drosophila eye differentiation progresses. Developmental Biology, 2009, 335, 356-366.	2.0	20

#	Article	IF	CITATIONS
37	Cell Competition and Its Possible Relation to Cancer. Cancer Research, 2008, 68, 5505-5507.	0.9	75
38	Genes Affecting Cell Competition in Drosophila. Genetics, 2007, 175, 643-657.	2.9	168
39	Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc. Developmental Biology, 2007, 307, 521-538.	2.0	22
40	Engulfment Is Required for Cell Competition. Cell, 2007, 129, 1215-1225.	28.9	213
41	Patterning signals and proliferation in Drosophila imaginal discs. Current Opinion in Genetics and Development, 2007, 17, 287-293.	3.3	84
42	Characterization of the Molecular Basis of the Drosophila Mutations in Carboxypeptidase D. Journal of Biological Chemistry, 2006, 281, 13844-13852.	3.4	20
43	Extracellular Signals Responsible for Spatially Regulated Proliferation in the Differentiating Drosophila Eye. Developmental Cell, 2005, 8, 541-551.	7.0	133
44	Atonal Points the Wayâ€" Protein-Protein Interactions and Developmental Biology. Developmental Cell, 2004, 7, 632-634.	7.0	6
45	Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development (Cambridge), 2003, 130, 5229-5239.	2.5	70
46	NOTCH and the Patterning of Ommatidial Founder Cells in the Developing Drosophila Eye. Results and Problems in Cell Differentiation, 2002, 37, 35-58.	0.7	16
47	Master regulatory genes; telling them what to do. BioEssays, 2001, 23, 763-766.	2.5	26
48	Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Current Biology, 2001, 11, 330-338.	3.9	88
49	Notch signaling in the nervous system. Pieces still missing from the puzzle. BioEssays, 2000, 22, 264-273.	2.5	80
50	Functional Analysis of the Fibrinogen-Related scabrous Gene From Drosophila melanogaster Identifies Potential Effector and Stimulatory Protein Domains. Genetics, 1998, 150, 663-673.	2.9	20
51	Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Current Biology, 1996, 6, 1290-1302.	3.9	170