Sara Bals

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4430624/publications.pdf

Version: 2024-02-01

431 papers

21,933 citations

73 h-index

9786

124 g-index

462 all docs 462 docs citations

times ranked

462

27381 citing authors

#	Article	IF	CITATIONS
1	3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC. Carbon, 2022, 189, 210-218.	10.3	3
2	Two-Dimensional CdSe-PbSe Heterostructures and PbSe Nanoplatelets: Formation, Atomic Structure, and Optical Properties. Journal of Physical Chemistry C, 2022, 126, 1513-1522.	3.1	11
3	Catalytic upcycling of PVC waste-derived phthalate esters into safe, hydrogenated plasticizers. Green Chemistry, 2022, 24, 754-766.	9.0	14
4	Metal–Polymer Heterojunction in Colloidal-Phase Plasmonic Catalysis. Journal of Physical Chemistry Letters, 2022, 13, 2264-2272.	4.6	2
5	Quantification of the Helical Morphology of Chiral Gold Nanorods. , 2022, 4, 642-649.		13
6	Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography. ACS Nano, 2022, 16, 4408-4414.	14.6	16
7	Chemistry, Local Molybdenum Clustering, and Electrochemistry in the Li _{2+<i>x</i>} Mo _{1â€"<i>x</i>} O ₃ Solid Solutions. Inorganic Chemistry, 2022, 61, 5637-5652.	4.0	4
8	Direct Solar Energy-Mediated Synthesis of Tertiary Benzylic Alcohols Using a Metal-Free Heterogeneous Photocatalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 530-540.	6.7	25
9	Multimode Electron Tomography Sheds Light on Synthesis, Structure, and Properties of Complex Metalâ€Based Nanoparticles. Advanced Materials, 2022, 34, e2110394.	21.0	11
10	Use of Nanoscale Carbon Layers on Ag-Based Gas Diffusion Electrodes to Promote CO Production. ACS Applied Nano Materials, 2022, 5, 7723-7732.	5.0	3
11	Atomic-scale detection of individual lead clusters confined in Linde Type A zeolites. Nanoscale, 2022, 14, 9323-9330.	5.6	2
12	Fast Aâ€Site Cation Crossâ€Exchange at Room Temperature: Singleâ€to Double―and Tripleâ€Cation Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
13	Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods. ACS Nano, 2022, 16, 9608-9619.	14.6	8
14	Shuffling Atomic Layer Deposition Gas Sequences to Modulate Bimetallic Thin Films and Nanoparticle Properties. Chemistry of Materials, 2022, 34, 6142-6154.	6.7	3
15	Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals. Nature Communications, 2022, 13, .	12.8	16
16	Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges. Ultramicroscopy, 2021, 221, 113191.	1.9	17
17	Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. Journal of Catalysis, 2021, 393, 313-323.	6.2	43
18	A simple method to clean ligand contamination on TEM grids. Ultramicroscopy, 2021, 221, 113195.	1.9	12

#	Article	IF	CITATIONS
19	Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution. Journal of Applied Electrochemistry, 2021, 51, 317-330.	2.9	3
20	Binary icosahedral clusters of hard spheres in spherical confinement. Nature Physics, 2021, 17, 128-134.	16.7	42
21	Ferroelectric Gating of Narrow Band-Gap Nanocrystal Arrays with Enhanced Light–Matter Coupling. ACS Photonics, 2021, 8, 259-268.	6.6	23
22	Halide Perovskite–Lead Chalcohalide Nanocrystal Heterostructures. Journal of the American Chemical Society, 2021, 143, 1435-1446.	13.7	55
23	Deep learning-based denoising for improved dose efficiency in EDX tomography of nanoparticles. Nanoscale, 2021, 13, 12242-12249.	5 . 6	12
24	Three-dimensional atomic structure of supported Au nanoparticles at high temperature. Nanoscale, 2021, 13, 1770-1776.	5.6	13
25	Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS Nano, 2021, 15, 4916-4926.	14.6	10
26	Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope. Accounts of Chemical Research, 2021, 54, 1189-1199.	15.6	13
27	Controlled Alloying of Au@Ag Core–Shell Nanorods Induced by Femtosecond Laser Irradiation. Advanced Optical Materials, 2021, 9, 2002134.	7.3	13
28	Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites. Chemical Engineering Journal, 2021, 410, 128234.	12.7	17
29	Effectiveness of reducing the influence of CTAB at the surface of metal nanoparticles during in situ heating studies by TEM. Micron, 2021, 144, 103036.	2.2	1
30	Correlating Structure and Detection Properties in HgTe Nanocrystal Films. Nano Letters, 2021, 21, 4145-4151.	9.1	23
31	Shape from projections via differentiable forward projector for computed tomography. Ultramicroscopy, 2021, 224, 113239.	1.9	4
32	Selectivity in the Ligand Functionalization of Photocatalytic Metal Oxide Nanoparticles for Phase Transfer and Selfâ€Assembly Applications. Chemistry - A European Journal, 2021, 27, 9011-9021.	3.3	14
33	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
34	Gold and Silver-Catalyzed Reductive Amination of Aromatic Carboxylic Acids to Benzylic Amines. ACS Catalysis, 2021, 11, 7672-7684.	11.2	18
35	Quantitative 3D real-space analysis of Laves phase supraparticles. Nature Communications, 2021, 12, 3980.	12.8	12
36	Efficient long-range conduction in cable bacteria through nickel protein wires. Nature Communications, 2021, 12, 3996.	12.8	32

#	Article	IF	Citations
37	3D Atomicâ€Scale Dynamics of Laserâ€Lightâ€Induced Restructuring of Nanoparticles Unraveled by Electron Tomography. Advanced Materials, 2021, 33, 2100972.	21.0	10
38	The Influence of Size, Shape, and Twin Boundaries on Heatâ€Induced Alloying in Individual Au@Ag Core–Shell Nanoparticles. Small, 2021, 17, e2102348.	10.0	10
39	Grain Boundaries as a Diffusion-Limiting Factor in Lithium-Rich NMC Cathodes for High-Energy Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6777-6786.	5.1	6
40	Fast electron low dose tomography for beam sensitive materials. Microscopy and Microanalysis, 2021, 27, 2116-2118.	0.4	2
41	Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor. Journal of CO2 Utilization, 2021, 50, 101583.	6.8	17
42	From CdSe Nanoplatelets to Quantum Rings by Thermochemical Edge Reconfiguration. Chemistry of Materials, 2021, 33, 6853-6859.	6.7	7
43	Mapping Composition–Selectivity Relationships of Supported Sub-10 nm Cu–Ag Nanocrystals for High-Rate CO ₂ Electroreduction. ACS Nano, 2021, 15, 14858-14872.	14.6	28
44	Nd ³⁺ -Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers. Journal of Physical Chemistry C, 2021, 125, 19887-19896.	3.1	12
45	Spherical core–shell alumina support particles for model platinum catalysts. Nanoscale, 2021, 13, 4221-4232.	5.6	5
46	The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles. Chemical Communications, 2021, 57, 1903-1906.	4.1	6
47	Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow. Journal of Materials Chemistry A, 2021, 9, 15704-15713.	10.3	19
48	Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters. Nanoscale, 2021, 13, 10462-10467.	5.6	6
49	Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO ₂ reduction conditions. Nanoscale, 2021, 13, 4835-4844.	5. 6	29
50	Seeded Growth Combined with Cation Exchange for the Synthesis of Anisotropic Cu _{2â€"<i>x</i>} S/ZnS, Cu _{2â€"<i>x</i>} S, and CulnS ₂ Nanorods. Chemistry of Materials, 2021, 33, 102-116.	6.7	12
51	Kinetic Regulation of the Synthesis of Pentatwinned Gold Nanorods below Room Temperature. Journal of Physical Chemistry C, 2021, 125, 23937-23944.	3.1	9
52	Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts. Nanomaterials, 2021, 11, 2624.	4.1	7
53	Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms. Catalysts, 2021, 11, 1230.	3.5	24
54	Nanoparticle-Mediated <i>In Situ</i> Molecular Reprogramming of Immune Checkpoint Interactions for Cancer Immunotherapy. ACS Nano, 2021, 15, 17549-17564.	14.6	16

#	Article	IF	Citations
55	Cyan Emission in Two-Dimensional Colloidal Cs ₂ CdCl ₄ :Sb ³⁺ Ruddlesden–Popper Phase Nanoplatelets. ACS Nano, 2021, 15, 17729-17737.	14.6	34
56	Interface Pattern Engineering in Coreâ€Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties. Small, 2021, 17, e2104441.	10.0	17
57	Third-Order Nonlinear Optical Properties and Saturation of Two-Photon Absorption in Lead-Free Double Perovskite Nanocrystals under Femtosecond Excitation. ACS Photonics, 2021, 8, 3365-3374.	6.6	30
58	Shape Control Beyond the Seeds in Gold Nanoparticles. Chemistry of Materials, 2021, 33, 9152-9164.	6.7	4
59	3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atomâ€Counting and a Local Minima Search Algorithm. Small Methods, 2021, 5, e2101150.	8.6	10
60	Optimized 3D Reconstruction of Large, Compact Assemblies of Metallic Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 26240-26246.	3.1	5
61	Interface Pattern Engineering in Coreâ€Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties (Small 47/2021). Small, 2021, 17, 2170246.	10.0	0
62	Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66. Journal of the American Chemical Society, 2021, 143, 21511-21518.	13.7	40
63	Defectâ€Directed Growth of Symmetrically Branched Metal Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 943-950.	13.8	25
64	Bifunctional Nickel–Nitrogen-Doped-Carbon-Supported Copper Electrocatalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2020, 124, 1369-1381.	3.1	23
65	Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation. Journal of Physical Chemistry Letters, 2020, 11, 670-677.	4.6	15
66	Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO ₂ to CO in a continuous-flow electrolyzer. Sustainable Energy and Fuels, 2020, 4, 1296-1311.	4.9	13
67	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	12.8	147
68	High-Performance CO ₂ -Selective Hybrid Membranes by Exploiting MOF-Breathing Effects. ACS Applied Materials & Diterfaces, 2020, 12, 2952-2961.	8.0	32
69	Defectâ€Directed Growth of Symmetrically Branched Metal Nanocrystals. Angewandte Chemie, 2020, 132, 953-960.	2.0	3
70	Locating and Controlling the Zn Content in In(Zn)P Quantum Dots. Chemistry of Materials, 2020, 32, 557-565.	6.7	40
71	Alloy CsCd <i>_x</i> Pb _{1â€"<i>x</i>} Br ₃ Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission. Chemistry of Materials, 2020, 32, 10641-10652.	6.7	45
72	3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation. ACS Nano, 2020, 14, 12558-12570.	14.6	30

#	Article	IF	CITATIONS
73	Novel Approaches for Electron Tomography to Investigate the Structure and Stability of Nanomaterials in 3 Dimensions Microscopy and Microanalysis, 2020, 26, 1128-1130.	0.4	1
74	3D Atomic Scale Quantification of Nanostructures and their Dynamics Using Model-based STEM. Microscopy and Microanalysis, 2020, 26, 2606-2608.	0.4	1
75	An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells. ACS Nano, 2020, 14, 14655-14664.	14.6	20
76	Tuning Size and Seed Position in Small Silver Nanorods. , 2020, 2, 1246-1250.		9
77	Luminescent Colloidal InSb Quantum Dots from <i>In Situ</i> Generated Single-Source Precursor. ACS Nano, 2020, 14, 13146-13160.	14.6	28
78	Intracellular Fate of Hydrophobic Nanocrystal Selfâ€Assemblies in Tumor Cells. Advanced Functional Materials, 2020, 30, 2004274.	14.9	18
79	Fast Electron Tomography for Nanomaterials. Journal of Physical Chemistry C, 2020, 124, 27276-27286.	3.1	30
80	Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO ₂ Electroreduction. ACS Catalysis, 2020, 10, 13468-13478.	11.2	24
81	Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures. Journal of the American Chemical Society, 2020, 142, 10198-10211.	13.7	34
82	Direct Correlation of Nanoscale Morphology and Device Performance to Study Photocurrent Generation in Donor-Enriched Phases of Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28404-28415.	8.0	7
83	Realâ€Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000073.	2.3	12
84	Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications. ACS Applied Nano Materials, 2020, 3, 3859-3867.	5.0	23
85	Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science, 2020, 368, 1472-1477.	12.6	205
86	C2–H Arylation of Indoles Catalyzed by Palladiumâ€Containing Metalâ€Organicâ€Framework in γâ€Valerolactone. ChemSusChem, 2020, 13, 2786-2791.	6.8	29
87	Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings. Applied Catalysis B: Environmental, 2020, 267, 118654.	20.2	61
88	Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS	8.0	4
89	S,O-Functionalized Metal–Organic Frameworks as Heterogeneous Single-Site Catalysts for the Oxidative Alkenylation of Arenes via C–H activation. ACS Catalysis, 2020, 10, 5077-5085.	11.2	45
90	Self-assembly of Janus Au:Fe ₃ O ₄ branched nanoparticles. From organized clusters to stimuli-responsive nanogel suprastructures. Nanoscale Advances, 2020, 2, 2525-2530.	4.6	10

#	Article	IF	CITATIONS
91	Improving extracellular vesicles visualization: From static to motion. Scientific Reports, 2020, 10, 6494.	3.3	26
92	Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 3339-3344.	4.6	24
93	Manganâ€Dotierung von Perowskitâ€Nanokristallen: QuanteneinschrÃ ¤ kung Aufgrund von Ruddlesdenâ€Popperâ€Defekten. Angewandte Chemie, 2020, 132, 6860-6865.	2.0	7
94	Manganeseâ€Dopingâ€Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects. Angewandte Chemie - International Edition, 2020, 59, 6794-6799.	13.8	72
95	Quantification of 3D Atomic Structures and Their Dynamics by Atom-Counting from an ADF STEM Image. Microscopy and Microanalysis, 2019, 25, 1808-1809.	0.4	O
96	Phase Transformation of Superparamagnetic Iron Oxide Nanoparticles via Thermal Annealing: Implications for Hyperthermia Applications. ACS Applied Nano Materials, 2019, 2, 4462-4470.	5.0	20
97	Tailoring Cu+for Ga3+Cation Exchange in Cu2–xS and CuInS2Nanocrystals by Controlling the Ga Precursor Chemistry. ACS Nano, 2019, 13, 12880-12893.	14.6	28
98	Quantitative 3D Characterization of Elemental Diffusion Dynamics in Individual Ag@Au Nanoparticles with Different Shapes. ACS Nano, 2019, 13, 13421-13429.	14.6	37
99	Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold–Silver Bimetallic Nanoparticles. Small, 2019, 15, e1902791.	10.0	33
100	Pt/ZrO ₂ Prepared by Atomic Trapping: An Efficient Catalyst for the Conversion of Glycerol to Lactic Acid with Concomitant Transfer Hydrogenation of Cyclohexene. ACS Catalysis, 2019, 9, 9953-9963.	11.2	53
101	Corrosion protection of Cu by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 060902.	2.1	7
102	Phase Transformation Behavior of a Twoâ€Dimensional Zeolite. Angewandte Chemie, 2019, 131, 10336-10341.	2.0	1
103	Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO ₂ Photocatalytic Systems. ACS Applied Nano Materials, 2019, 2, 4067-4074.	5.0	34
104	Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1900096.	2.3	13
105	Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO ₂ for Photoelectrochemical Water Splitting. Advanced Sustainable Systems, 2019, 3, 1900046.	5.3	15
106	Phase Transformation Behavior of a Twoâ€Dimensional Zeolite. Angewandte Chemie - International Edition, 2019, 58, 10230-10235.	13.8	3
107	Thermal Stability of Gold/Palladium Octopods Studied <i>in Situ</i> in 3D: Understanding Design Rules for Thermally Stable Metal Nanoparticles. ACS Nano, 2019, 13, 6522-6530.	14.6	51
108	Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15881-15890.	8.0	7

#	Article	IF	Citations
109	A Titanium(IV)â€Based Metal–Organic Framework Featuring Defectâ€Rich Tiâ€O Sheets as an Oxidative Desulfurization Catalyst. Angewandte Chemie - International Edition, 2019, 58, 9160-9165.	13.8	99
110	Understanding CeO ₂ â€Based Nanostructures through Advanced Electron Microscopy in 2D and 3D. Particle and Particle Systems Characterization, 2019, 36, 1800287.	2.3	22
111	Fully Inorganic Ruddlesden–Popper Double Cl–I and Triple Cl–Br–I Lead Halide Perovskite Nanocrystals. Chemistry of Materials, 2019, 31, 2182-2190.	6.7	60
112	A Facetâ€Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 2019, 31, e1805580.	21.0	87
113	Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods. ACS Nano, 2019, 13, 4424-4435.	14.6	113
114	Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems. Advanced Functional Materials, 2019, 29, 1809071.	14.9	23
115	LaFeO ₃ Nanofibers for High Detection of Sulfur-Containing Gases. ACS Sustainable Chemistry and Engineering, 2019, 7, 6023-6032.	6.7	46
116	Single-site metal–organic framework catalysts for the oxidative coupling of arenes <i>via</i> C–H/C–H activation. Chemical Science, 2019, 10, 3616-3622.	7.4	77
117	Highly porous palladium nanodendrites: wet-chemical synthesis, electron tomography and catalytic activity. Dalton Transactions, 2019, 48, 3758-3767.	3.3	25
118	Chemical and Structural Configuration of Pt-Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 9673-9683.	6.7	8
119	Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation. ACS Nano, 2019, 13, 152-162.	14.6	58
120	Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment. Nano Letters, 2019, 19, 477-481.	9.1	93
121	Controlling the formation and stability of ultra-thin nickel silicides - An alloying strategy for preventing agglomeration. Journal of Applied Physics, 2018, 123, .	2.5	21
122	Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips. Crystal Growth and Design, 2018, 18, 2579-2587.	3.0	10
123	Characterization of silver-polymer core–shell nanoparticles using electron microscopy. Nanoscale, 2018, 10, 9186-9191.	5.6	11
124	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	21.0	28
125	Reversible Clustering of Gold Nanoparticles under Confinement. Angewandte Chemie, 2018, 130, 3237-3240.	2.0	19
126	Do Binary Supracrystals Enhance the Crystal Stability?. Journal of Physical Chemistry C, 2018, 122, 13515-13521.	3.1	6

#	Article	IF	CITATIONS
127	Reversible Clustering of Gold Nanoparticles under Confinement. Angewandte Chemie - International Edition, 2018, 57, 3183-3186.	13.8	53
128	Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 13522-13528.	3.1	27
129	The Influence of Acids on Tuning the Pore Size of Mesoporous TiO ₂ Templated by Nonâ€lonic Block Copolymers. European Journal of Inorganic Chemistry, 2018, 2018, 62-65.	2.0	6
130	Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature. ACS Applied Materials & Solar Cells at High Temperature. ACS Applied Materials & Solar Cells at High Temperature.	8.0	11
131	Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale, 2018, 10, 3792-3798.	5.6	113
132	Near-Infrared-Emitting CuInS ₂ /ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth. Journal of the American Chemical Society, 2018, 140, 5755-5763.	13.7	45
133	Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS ₂ Nanocrystals. Chemistry of Materials, 2018, 30, 2400-2413.	6.7	85
134	Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3225-3230.	7.1	209
135	Automatic correction of nonlinear damping effects in HAADF–STEM tomography for nanomaterials of discrete compositions. Ultramicroscopy, 2018, 184, 57-65.	1.9	8
136	The Influence of Acids on Tuning the Pore Size of Mesoporous TiO ₂ Templated by Nonâ€lonic Block Copolymers. European Journal of Inorganic Chemistry, 2018, 2018, 4932-4932.	2.0	1
137	3D characterization of heat-induced morphological changes of Au nanostars by fast <i>in situ</i> electron tomography. Nanoscale, 2018, 10, 22792-22801.	5.6	56
138	Chemical Cutting of Perovskite Nanowires into Singleâ∈Photon Emissive Lowâ∈Aspectâ∈Ratio CsPbX ₃ (X=Cl, Br, I) Nanorods. Angewandte Chemie, 2018, 130, 16326-16330.	2.0	32
139	Chemical Cutting of Perovskite Nanowires into Singleâ€Photon Emissive Lowâ€Aspectâ€Ratio CsPbX ₃ (X=Cl, Br, I) Nanorods. Angewandte Chemie - International Edition, 2018, 57, 16094-16098.	13.8	79
140	Fe ²⁺ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. Nano Letters, 2018, 18, 6856-6866.	9.1	53
141	On the Control and Effect of Water Content during the Electrodeposition of Ni Nanostructures from Deep Eutectic Solvents. Journal of Physical Chemistry C, 2018, 122, 23129-23142.	3.1	27
142	Interfacial Oxidation and Photoluminescence of InP-Based Core/Shell Quantum Dots. Chemistry of Materials, 2018, 30, 6877-6883.	6.7	78
143	Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition. Surface and Coatings Technology, 2018, 349, 1032-1041.	4.8	12
144	Mono- and Multilayer Silicene-Type Honeycomb Lattices by Oriented Attachment of PbSe Nanocrystals: Synthesis, Structural Characterization, and Analysis of the Disorder. Chemistry of Materials, 2018, 30, 4831-4837.	6.7	34

#	Article	IF	CITATIONS
145	The role of MOFs in Thin-Film Nanocomposite (TFN) membranes. Journal of Membrane Science, 2018, 563, 938-948.	8.2	99
146	Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp. Materials, 2018, 11, 1304.	2.9	19
147	Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures. Optics Express, 2018, 26, A240.	3.4	9
148	Deactivation of Sn-Beta during carbohydrate conversion. Applied Catalysis A: General, 2018, 564, 113-122.	4.3	31
149	TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light. Nanomaterials, 2018, 8, 30.	4.1	27
150	Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nature Chemistry, 2018, 10, 974-980.	13.6	781
151	Exciton Fine Structure and Lattice Dynamics in InP/ZnSe Core/Shell Quantum Dots. ACS Photonics, 2018, 5, 3353-3362.	6.6	42
152	Enhanced electrochemical performance of Li-rich cathode materials through microstructural control. Physical Chemistry Chemical Physics, 2018, 20, 23112-23122.	2.8	46
153	Recent breakthroughs in scanning transmission electron microscopy of small species. Advances in Physics: X, 2018, 3, 1480420.	4.1	11
154	Spontaneous Selfâ€Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap. Advanced Materials, 2018, 30, e1801117.	21.0	163
155	Cuboidal Supraparticles Self-Assembled from Cubic CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 15706-15712.	3.1	65
156	Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods. Particle and Particle Systems Characterization, 2018, 35, 1800051.	2.3	6
157	Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis. Applied Catalysis B: Environmental, 2017, 200, 31-38.	20.2	48
158	Facile Morphologyâ€Controlled Synthesis of Organolead Iodide Perovskite Nanocrystals Using Binary Capping Agents. ChemNanoMat, 2017, 3, 223-227.	2.8	18
159	Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism. Materials and Design, 2017, 119, 270-276.	7.0	46
160	Deposition of aminosilane coatings on porous Al ₂ O ₃ microspheres by means of dielectric barrier discharges. Plasma Processes and Polymers, 2017, 14, 1600211.	3.0	6
161	Automated discrete electron tomography– Towards routine high-fidelity reconstruction of nanomaterials. Ultramicroscopy, 2017, 175, 87-96.	1.9	27
162	Heterogeneous TiO ₂ /V ₂ O ₅ /Carbon Nanotube Electrodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8055-8064.	8.0	32

#	Article	IF	CITATIONS
163	Tunable Nitrogenâ€Doped Carbon Nanoparticles from Tannic Acid and Urea and Their Potential for Sustainable Soots. ChemNanoMat, 2017, 3, 311-318.	2.8	14
164	Highly Emissive Divalent-Ion-Doped Colloidal CsPb _{1â€"<i>x</i>} M _{<i>x</i>} Br ₃ Perovskite Nanocrystals through Cation Exchange. Journal of the American Chemical Society, 2017, 139, 4087-4097.	13.7	590
165	Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation. Chemical Engineering Journal, 2017, 316, 850-856.	12.7	32
166	Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water. Journal of Physical Chemistry C, 2017, 121, 9337-9347.	3.1	75
167	Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area. ACS Applied Materials & Diterfaces, 2017, 9, 16168-16177.	8.0	27
168	Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2017, 4, 1700161.	3.7	30
169	The influence of branched alkyl side chains in $A\hat{a}\in D\hat{a}\in A$ oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells. Organic Chemistry Frontiers, 2017, 4, 1561-1573.	4.5	24
170	Time evolution studies of dithieno[3,2-b:2′,3′-d]pyrrole-based A–D–A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation. Journal of Materials Chemistry A, 2017, 5, 1005-1013.	10.3	19
171	Nanorattles with tailored electric field enhancement. Nanoscale, 2017, 9, 9376-9385.	5.6	76
172	Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities. Nanoscale, 2017, 9, 8791-8798.	5.6	44
173	Quantitative determination of residual silver distribution in nanoporous gold and its influence on structure and catalytic performance. Journal of Catalysis, 2017, 352, 52-58.	6.2	45
174	Morphological and chemical transformations of single silica-coated CdSe/CdS nanorods upon fs-laser excitation. Nanoscale, 2017, 9, 4810-4818.	5.6	4
175	Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 2017, 8, 3939-3948.	7.4	177
176	Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles. APL Materials, 2017, 5, .	5.1	23
177	Ligand-Induced Shape Transformation of PbSe Nanocrystals. Chemistry of Materials, 2017, 29, 4122-4128.	6.7	45
178	Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. Nature Communications, 2017, 8, 14925.	12.8	38
179	High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning. Journal of the American Chemical Society, 2017, 139, 107-110.	13.7	296
180	A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM. Ultramicroscopy, 2017, 174, 35-45.	1.9	32

#	Article	IF	Citations
181	Postsynthetic High-Alumina Zeolite Crystal Engineering in Organic-Free Hyper-Alkaline Media. Chemistry of Materials, 2017, 29, 629-638.	6.7	17
182	Engineering hepatitis B virus core particles for targeting HER2 receptors inÂvitro and inÂvivo. Biomaterials, 2017, 120, 126-138.	11.4	21
183	Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science, 2017, 358, 514-518.	12.6	120
184	Mechanistic Insight into the Photocatalytic Working of Fluorinated Anatase {001} Nanosheets. Journal of Physical Chemistry C, 2017, 121, 26275-26286.	3.1	23
185	Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography. Particle and Particle Systems Characterization, 2017, 34, 1700287.	2.3	3
186	Improving the Redox Response Stability of Ceria-Zirconia Nanocatalysts under Harsh Temperature Conditions. Chemistry of Materials, 2017, 29, 9340-9350.	6.7	21
187	Disentangling the effect of seed size and crystal habit on gold nanoparticle seeded growth. Chemical Communications, 2017, 53, 11360-11363.	4.1	35
188	Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nature Communications, 2017, 8, 1074.	12.8	95
189	Advanced electron tomography of nanoparticle assemblies. Europhysics Letters, 2017, 119, 38001.	2.0	8
190	Von VorlA¤ferpulvern zu CsPbX ₃ â€Perowskitâ€NanodrA¤ten: Eintopfreaktion, Wachstumsmechanismus und gerichtete Selbstassemblierung. Angewandte Chemie, 2017, 129, 14075-14080.	2.0	24
191	From Precursor Powders to CsPbX ₃ Perovskite Nanowires: Oneâ€Pot Synthesis, Growth Mechanism, and Oriented Selfâ€Assembly. Angewandte Chemie - International Edition, 2017, 56, 13887-13892.	13.8	249
192	Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films. Journal of Physical Chemistry C, 2017, 121, 22434-22441.	3.1	33
193	Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale, 2017, 9, 16645-16651.	5.6	116
194	Highly selective gas separation membrane using in situ amorphised metal–organic frameworks. Energy and Environmental Science, 2017, 10, 2342-2351.	30.8	137
195	Composite Supraparticles with Tunable Light Emission. ACS Nano, 2017, 11, 9136-9142.	14.6	39
196	Designing Diameter-Modulated Heterostructure Nanowires of PbTe/Te by Controlled Dewetting. Nano Letters, 2017, 17, 7226-7233.	9.1	11
197	Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering. ACS Applied Materials & Interfaces, 2017, 9, 41577-41585.	8.0	34
198	3D porous nanostructured platinum prepared using atomic layer deposition. Journal of Materials Chemistry A, 2017, 5, 19007-19016.	10.3	10

#	Article	IF	Citations
199	Depth sectioning combined with atom-counting in HAADF STEM to retrieve the 3D atomic structure. Ultramicroscopy, 2017, 177, 36-42.	1.9	13
200	Toward Highâ€Temperature Stability of PTB7â€Based Bulk Heterojunction Solar Cells: Impact of Fullerene Size and Solvent Additive. Advanced Energy Materials, 2017, 7, 1601486.	19.5	53
201	Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 179-188.	6.2	35
202	Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition. Nanomaterials, 2017, 7, 442.	4.1	23
203	Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours <i>In Vivo</i> Theranostics, 2016, 6, 342-356.	10.0	55
204	Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self-assembly. Microporous and Mesoporous Materials, 2016, 234, 186-195.	4.4	7
205	Encapsulation of Single Plasmonic Nanoparticles within ZIFâ€8 and SERS Analysis of the MOF Flexibility. Small, 2016, 12, 3935-3943.	10.0	142
206	A New Method for Quantitative XEDS Tomography of Complex Heteronanostructures. Particle and Particle Systems Characterization, 2016, 33, 396-403.	2.3	30
207	Layered Silicate Clays as Templates for Anisotropic Gold Nanoparticle Growth. Chemistry of Materials, 2016, 28, 5131-5139.	6.7	13
208	Combined Macroscopic, Nanoscopic, and Atomicâ€Scale Characterization of Gold–Ruthenium Bimetallic Catalysts for Octanol Oxidation. Particle and Particle Systems Characterization, 2016, 33, 419-437.	2.3	6
209	Atomic resolution electron tomography. MRS Bulletin, 2016, 41, 525-530.	3.5	24
210	Squareâ€Centimeterâ€Sized Highâ€Efficiency Polymer Solar Cells: How the Processing Atmosphere and Film Quality Influence Performance at Large Scale. Advanced Energy Materials, 2016, 6, 1600290.	19.5	26
211	A Framework to Account for Sedimentation and Diffusion in Particle–Cell Interactions. Langmuir, 2016, 32, 12394-12402.	3.5	48
212	Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. Chemistry of Materials, 2016, 28, 9169-9180.	6.7	85
213	Phase formation and texture of thin nickel germanides on $Ge(001)$ and $Ge(111)$. Journal of Applied Physics, 2016, 119, .	2.5	16
214	Advanced electron crystallography through model-based imaging. IUCrJ, 2016, 3, 71-83.	2.2	36
215	Spectral Electron Tomography as a Quantitative Technique to Investigate Functional Nanomaterials. Microscopy and Microanalysis, 2016, 22, 274-275.	0.4	1
216	Homogeneous Protein Analysis by Magnetic Core–Shell Nanorod Probes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8893-8899.	8.0	18

#	Article	IF	Citations
217	Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. Journal of Physical Chemistry C, 2016, 120, 20860-20868.	3.1	69
218	Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEngComm, 2016, 18, 3422-3427.	2.6	31
219	Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. International Journal of Hydrogen Energy, 2016, 41, 14404-14428.	7.1	94
220	Shape Control of Colloidal Cu _{2–<i>x</i>} S Polyhedral Nanocrystals by Tuning the Nucleation Rates. Chemistry of Materials, 2016, 28, 6705-6715.	6.7	29
221	In situ study of the formation mechanism ofÂtwo-dimensional superlattices from PbSeÂnanocrystals. Nature Materials, 2016, 15, 1248-1254.	27.5	199
222	Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography. Ultramicroscopy, 2016, 171, 55-62.	1.9	15
223	Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material. Microporous and Mesoporous Materials, 2016, 236, 244-249.	4.4	9
224	Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. Angewandte Chemie - International Edition, 2016, 55, 13887-13892.	13.8	615
225	(Invited) Template Assisted Synthesis of Porous Metal Oxide and Metal Nanostructures by ALD. ECS Transactions, 2016, 75, 47-68.	0.5	2
226	Starke Lumineszenz in Nanokristallen aus Caesiumbleihalogenid―Perowskit mit durchstimmbarer Zusammensetzung und Dicke mittels Ultraschalldispersion. Angewandte Chemie, 2016, 128, 14091-14096.	2.0	54
227	Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. Nano Letters, 2016, 16, 5652-5660.	9.1	140
228	Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles. ACS Omega, 2016, 1, 177-181.	3.5	18
229	A combined 3D and 2D light scattering study on aqueous colloidal model systems with tunable interactions. Soft Matter, 2016, 12, 8485-8494.	2.7	3
230	Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. Journal of the American Chemical Society, 2016, 138, 11453-11456.	13.7	83
231	Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells. Nanoscale, 2016, 8, 16416-16426.	5.6	23
232	Advanced Particle Characterization Techniques. Particle and Particle Systems Characterization, 2016, 33, 350-351.	2.3	0
233	PdPb-Catalyzed Decarboxylation of Proline to Pyrrolidine: Highly Selective Formation of a Biobased Amine in Water. ACS Catalysis, 2016, 6, 7303-7310.	11.2	27
234	Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy. Physical Review Letters, 2016, 116, 246101.	7.8	45

#	Article	IF	Citations
235	Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites. ACS Nano, 2016, 10, 7604-7611.	14.6	58
236	Electrochemical Behavior of Electrodeposited Nanoporous Pt Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 5856-5864.	11.2	56
237	Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth. Journal of the American Chemical Society, 2016, 138, 14288-14293.	13.7	30
238	The reduction of benzylbromide at Ag-Ni deposits prepared by galvanic replacement. Electrochimica Acta, 2016, 196, 756-768.	5.2	21
239	Thermal Stability of CoAu ₁₃ Binary Nanoparticle Superlattices under the Electron Beam. Chemistry of Materials, 2016, 28, 716-719.	6.7	13
240	Gas-phase synthesis of Mg–Ti nanoparticles for solid-state hydrogen storage. Physical Chemistry Chemical Physics, 2016, 18, 141-148.	2.8	33
241	Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation. Nano Letters, 2016, 16, 1818-1825.	9.1	58
242	Plasmonic â€rainbow' photocatalyst with broadband solar light response for environmental applications. Applied Catalysis B: Environmental, 2016, 188, 147-153.	20.2	49
243	Janus gold nanoparticles obtained via spontaneous binary polymer shell segregation. Chemical Communications, 2016, 52, 4278-4281.	4.1	48
244	Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes. Journal of the American Chemical Society, 2016, 138, 3493-3500.	13.7	65
245	Synthesis of an IWW-type germanosilicate zeolite using 5-azonia-spiro[4,4]nonane as a structure directing agent. New Journal of Chemistry, 2016, 40, 4319-4324.	2.8	11
246	Synthesis of Janus plasmonic–magnetic, star–sphere nanoparticles, and their application in SERS detection. Faraday Discussions, 2016, 191, 47-59.	3.2	58
247	An alternative approach for ζ-factor measurement using pure element nanoparticles. Ultramicroscopy, 2016, 164, 11-16.	1.9	21
248	Quantitative 3D analysis of huge nanoparticle assemblies. Nanoscale, 2016, 8, 292-299.	5.6	38
249	Influence of the support material and the resulting particle distribution on the deposition of Ag nanoparticles for the electrocatalytic activity of benzyl bromide reduction. Applied Catalysis B: Environmental, 2016, 181, 542-549.	20.2	16
250	Materials Science Applications of Aberration Corrected TEM and/or STEM. Microscopy and Microanalysis, 2015, 21, 1131-1132.	0.4	0
251	Combination of HAADF‧TEM and ADF‧TEM Tomography for Core–Shell Hybrid Materials. Particle and Particle Systems Characterization, 2015, 32, 1063-1067.	2.3	14
252	Catalyst Design by NH ₄ OH Treatment of USY Zeolite. Advanced Functional Materials, 2015, 25, 7130-7144.	14.9	76

#	Article	IF	Citations
253	Stabilization and Encapsulation of Gold Nanostars Mediated by Dithiols. Small, 2015, 11, 4314-4320.	10.0	38
254	Heat-induced transformation of CdSe–CdS–ZnS core–multishell quantum dots by Zn diffusion into inner layers. Chemical Communications, 2015, 51, 3320-3323.	4.1	20
255	Luminescent CulnS ₂ Quantum Dots by Partial Cation Exchange in Cu _{2–<i>x</i>} S Nanocrystals. Chemistry of Materials, 2015, 27, 621-628.	6.7	127
256	Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods. Nano Letters, 2015, 15, 8282-8288.	9.1	105
257	Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates. Materials Research Express, 2015, 2, 015007.	1.6	15
258	Plasmonic Nanodiamonds: Targeted Core–Shell Type Nanoparticles for Cancer Cell Thermoablation. Advanced Healthcare Materials, 2015, 4, 460-468.	7.6	39
259	Conceptual Frame Rationalizing the Self-Stabilization of H-USY Zeolites in Hot Liquid Water. ACS Catalysis, 2015, 5, 754-768.	11.2	70
260	Novel method to synthesize highly ordered ethane-bridged PMOs under mild acidic conditions: Taking advantages of phosphoric acid. Microporous and Mesoporous Materials, 2015, 207, 61-70.	4.4	6
261	Pd-catalyzed decarboxylation of glutamic acid and pyroglutamic acid to bio-based 2-pyrrolidone. Green Chemistry, 2015, 17, 2263-2270.	9.0	50
262	Chabazite: Stable Cation-Exchanger in Hyper Alkaline Concrete Pore Water. Environmental Science & Envi	10.0	13
263	New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions. RSC Advances, 2015, 5, 5553-5562.	3.6	6
264	Governing the morphology of Pt–Au heteronanocrystals with improved electrocatalytic performance. Nanoscale, 2015, 7, 8739-8747.	5.6	42
265	Self-Assembly of Pluronic F127â€"Silica Spherical Coreâ€"Shell Nanoparticles in Cubic Close-Packed Structures. Chemistry of Materials, 2015, 27, 5161-5169.	6.7	47
266	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters, 2015, 15, 5427-5437.	9.1	122
267	Electron tomography based on highly limited data using a neural network reconstruction technique. Ultramicroscopy, 2015, 158, 81-88.	1.9	26
268	Competing Forces in the Self-Assembly of Coupled ZnO Nanopyramids. ACS Nano, 2015, 9, 3685-3694.	14.6	22
269	Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods. ACS Nano, 2015, 9, 2792-2804.	14.6	27
270	Direct-synthesis method towards copper-containing periodic mesoporous organosilicas: detailed investigation of the copper distribution in the material. Dalton Transactions, 2015, 44, 9970-9979.	3.3	11

#	Article	IF	Citations
271	The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy, 2015, 157, 35-47.	1.9	652
272	Multifunctional self-assembled composite colloids and their application to SERS detection. Nanoscale, 2015, 7, 10377-10381.	5.6	54
273	N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2. Applied Catalysis B: Environmental, 2015, 176-177, 212-224.	20.2	117
274	Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale. Nano Letters, 2015, 15, 6634-6642.	9.1	28
275	Near-Infrared Emitting CuInSe ₂ /CuInS ₂ Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange. ACS Nano, 2015, 9, 11430-11438.	14.6	104
276	Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control. Chemistry of Materials, 2015, 27, 8032-8040.	6.7	17
277	Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells. ACS Nano, 2015, 9, 10489-10497.	14.6	124
278	3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography. Chemistry of Materials, 2015, 27, 6771-6778.	6.7	64
279	Measuring Lattice Strain in Three Dimensions through Electron Microscopy. Nano Letters, 2015, 15, 6996-7001.	9.1	110
280	Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals. ACS Photonics, 2015, 2, 1482-1488.	6.6	75
281	Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination. Journal of Materials Chemistry A, 2015, 3, 2642-2649.	10.3	25
282	Shelf Life Degradation of Bulk Heterojunction Solar Cells: Intrinsic Evolution of Charge Transfer Complex. Advanced Energy Materials, 2015, 5, 1401997.	19.5	32
283	Solution-Processable Ultrathin Size- and Shape-Controlled Colloidal Cu2–xS Nanosheets. Chemistry of Materials, 2015, 27, 283-291.	6.7	76
284	Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity. Organic Electronics, 2015, 16, 227-233.	2.6	25
285	The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Water Research, 2015, 68, 249-261.	11.3	52
286	Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials. Ultramicroscopy, 2015, 148, 10-19.	1.9	7
287	Gallium Oxide Nanorods: Novel, Templateâ€Free Synthesis and High Catalytic Activity in Epoxidation Reactions. Angewandte Chemie - International Edition, 2014, 53, 1585-1589.	13.8	63
288	The superconducting proximity effect in epitaxial Al/Pb nanocomposites. Superconductor Science and Technology, 2014, 27, 015008.	3.5	2

#	Article	IF	Citations
289	Wet-STEM Tomography: Principles, Potentialities and Limitations. Microscopy and Microanalysis, 2014, 20, 366-375.	0.4	14
290	Enhanced Selfâ€Assembly of Metal Oxides and Metalâ€Organic Frameworks from Precursors with Magnetohydrodynamically Induced Longâ€Lived Collective Spin States. Advanced Materials, 2014, 26, 5173-5178.	21.0	8
291	The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections. Ultramicroscopy, 2014, 147, 137-148.	1.9	45
292	Single-step alcohol-free synthesis of core–shell nanoparticles of β-casein micelles and silica. RSC Advances, 2014, 4, 25650-25657.	3.6	3
293	Multimodal imaging of micronâ€sized iron oxide particles following ⟨i⟩in vitro⟨/i⟩ and ⟨i⟩in vivo⟨/i⟩ uptake by stem cells: down to the nanometer scale. Contrast Media and Molecular Imaging, 2014, 9, 400-408.	0.8	9
294	Entrapment of a neutral Tm(III)â€based complex with two innerâ€sphere coordinated water molecules into PEGâ€stabilized vesicles: towards an alternative strategy to develop highâ€performance LipoCEST contrast agents for MR imaging. Contrast Media and Molecular Imaging, 2014, 9, 391-399.	0.8	12
295	Preparation and study of 2-D semiconductors with Dirac type bands due to the honeycomb nanogeometry. , 2014, , .		2
296	Zeolite \hat{l}^2 nanoparticles based bimodal structures: Mechanism and tuning of the porosity and zeolitic properties. Microporous and Mesoporous Materials, 2014, 185, 204-212.	4.4	12
297	Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells. Small, 2014, 10, 1106-1115.	10.0	88
298	Atomic Resolution Monitoring of Cation Exchange in CdSe-PbSe Heteronanocrystals during Epitaxial Solid–Solid–Vapor Growth. Nano Letters, 2014, 14, 3661-3667.	9.1	48
299	Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping. Nano Letters, 2014, 14, 3220-3226.	9.1	136
300	Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template. Nanoscale, 2014, 6, 6939.	5.6	14
301	Self-Organization of Highly Symmetric Nanoassemblies: A Matter of Competition. ACS Nano, 2014, 8, 3869-3875.	14.6	36
302	Seeing and measuring in 3D with electrons. Comptes Rendus Physique, 2014, 15, 140-150.	0.9	17
303	A protecting group approach toward synthesis of Au–silica Janus nanostars. Chemical Communications, 2014, 50, 79-81.	4.1	28
304	Threeâ€Dimensional Characterization of Nobleâ€Metal Nanoparticles and their Assemblies by Electron Tomography. Angewandte Chemie - International Edition, 2014, 53, 10600-10610.	13.8	59
305	Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering. Nanoscale, 2014, 6, 14991-14998.	5.6	44
306	Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates. RSC Advances, 2014, 4, 11648.	3.6	48

#	Article	IF	Citations
307	Conformal and Atomic Characterization of Ultrathin CdSe Platelets with a Helical Shape. Nano Letters, 2014, 14, 6257-6262.	9.1	46
308	Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts: a facile way to large-scale ordered arrays of transition-metal nanoparticles. Journal of Materials Chemistry C, 2014, 2, 701-707.	5. 5	5
309	Highly Efficient Hyperbranched CNT Surfactants: Influence of Molar Mass and Functionalization. Langmuir, 2014, 30, 12200-12209.	3.5	17
310	Three-Dimensional Valency Mapping in Ceria Nanocrystals. ACS Nano, 2014, 8, 10878-10884.	14.6	91
311	Co–Fe Nanodumbbells: Synthesis, Structure, and Magnetic Properties. Nano Letters, 2014, 14, 2747-2754.	9.1	29
312	Plasmon Mapping in Au@Ag Nanocube Assemblies. Journal of Physical Chemistry C, 2014, 118, 15356-15362.	3.1	45
313	The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environmental Pollution, 2014, 194, 130-137.	7.5	47
314	Synthesis and Characterization of Photoreactive TiO ₂ â€"Carbon Nanosheet Composites. Journal of Physical Chemistry C, 2014, 118, 21031-21037.	3.1	8
315	Hydride destabilization in core–shell nanoparticles. International Journal of Hydrogen Energy, 2014, 39, 2115-2123.	7.1	33
316	The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers. International Journal of Hydrogen Energy, 2014, 39, 17092-17103.	7.1	17
317	The Role of Nanocluster Aggregation, Coalescence, and Recrystallization in the Electrochemical Deposition of Platinum Nanostructures. Chemistry of Materials, 2014, 26, 2396-2406.	6.7	58
318	Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science, 2014, 344, 1377-1380.	12.6	343
319	Phase formation in intermixed Ni–Ge thin films: Influence of Ge content and low-temperature nucleation of hexagonal nickel germanides. Microelectronic Engineering, 2014, 120, 168-173.	2.4	11
320	Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells <i>in Vitro</i> and <i>in Vivo</i> ACS Nano, 2014, 8, 1384-1401.	14.6	155
321	Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates. Applied Catalysis B: Environmental, 2014, 160-161, 204-210.	20.2	37
322	Formation and Thermal Stability of Gold–Silica Nanohybrids: Insight into the Mechanism and Morphology by Electron Tomography. Angewandte Chemie - International Edition, 2014, 53, 3970-3974.	13.8	11
323	Advanced reconstruction algorithms for electron tomography: From comparison to combination. Ultramicroscopy, 2013, 127, 40-47.	1.9	74
324	Three-Dimensional Elemental Mapping at the Atomic Scale in Bimetallic Nanocrystals. Nano Letters, 2013, 13, 4236-4241.	9.1	101

#	Article	IF	CITATIONS
325	Experimental Evidence for Oxygen Sublattice Control in Polar Infinite Layer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrCuO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2013, 111, 096102.	7.8	28
326	Tailoring ZnSe–CdSe Colloidal Quantum Dots <i>via</i> Cation Exchange: From Core/Shell to Alloy Nanocrystals. ACS Nano, 2013, 7, 7913-7930.	14.6	161
327	Synthesis of Highly Luminescent Silica-Coated CdSe/CdS Nanorods. Chemistry of Materials, 2013, 25, 3427-3434.	6.7	49
328	High resolution electron tomography. Current Opinion in Solid State and Materials Science, 2013, 17, 107-114.	11.5	31
329	Quantitative Structure Determination of Large Threeâ€Dimensional Nanoparticle Assemblies. Particle and Particle Systems Characterization, 2013, 30, 84-88.	2.3	24
330	Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment. Nano Letters, 2013, 13, 2317-2323.	9.1	218
331	Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. Journal of Catalysis, 2013, 300, 70-80.	6.2	132
332	Quantitative electron tomography: The effect of the three-dimensional point spread function. Ultramicroscopy, 2013, 135, 1-5.	1.9	6
333	Band structure quantization in nanometer sized ZnO clusters. Nanoscale, 2013, 5, 3757.	5.6	13
334	Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. Nanoscale, 2013, 5, 4776.	5.6	51
335	Annular Dark-Field Transmission Electron Microscopy for Low Contrast Materials. Microscopy and Microanalysis, 2013, 19, 629-634.	0.4	7
336	Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition. Nanoscale, 2013, 5, 5001.	5 . 6	23
337	Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons. Microporous and Mesoporous Materials, 2013, 177, 66-74.	4.4	27
338	Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM. Beilstein Journal of Nanotechnology, 2013, 4, 77-86.	2.8	15
339	Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae. Planta, 2013, 237, 1453-1464.	3.2	23
340	Au@Ag Nanoparticles: Halides Stabilize {100} Facets. Journal of Physical Chemistry Letters, 2013, 4, 2209-2216.	4.6	138
341	A Generalized Electrochemical Aggregative Growth Mechanism. Journal of the American Chemical Society, 2013, 135, 11550-11561.	13.7	140
342	Atomic scale investigation of a PbTiO3/SrRuO3/DyScO3 heterostructure. Applied Physics Letters, 2013, 102, .	3.3	8

#	Article	IF	CITATIONS
343	Defect Engineering in Oxide Heterostructures by Enhanced Oxygen Surface Exchange. Advanced Functional Materials, 2013, 23, 5240-5248.	14.9	88
344	Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties. Journal of Applied Crystallography, 2013, 46, 1690-1698.	4.5	18
345	In Situ Study of ALD Processes Using Synchrotron-based X-ray Fluorescence and Scattering Techniques. ECS Transactions, 2013, 50, 35-42.	0.5	6
346	Publisher's Note: Experimental Evidence for Oxygen Sublattice Control in Polar Infinite Layer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrCuO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> [Phys. Rev. Lett. 111 , 096102 (2013)]. Physical Review Letters, 2013, 111, .	. ^{7.8}	1
347	Procedure to count atoms with trustworthy single-atom sensitivity. Physical Review B, 2013, 87, .	3.2	121
348	Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano, 2012, 6, 11059-11065.	14.6	338
349	Glycogen as a Biodegradable Construction Nanomaterial for in vivo Use. Macromolecular Bioscience, 2012, 12, 1731-1738.	4.1	25
350	Atomic scale dynamics of ultrasmall germanium clusters. Nature Communications, 2012, 3, 897.	12.8	101
351	Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin. Chemical Communications, 2012, 48, 12159.	4.1	37
352	Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si. Journal Physics D: Applied Physics, 2012, 45, 035301.	2.8	6
353	Seedless Synthesis of Single Crystalline Au Nanoparticles with Unusual Shapes and Tunable LSPR in the near-IR. Chemistry of Materials, 2012, 24, 1393-1399.	6.7	47
354	Multiple Dot-in-Rod PbS/CdS Heterostructures with High Photoluminescence Quantum Yield in the Near-Infrared. Journal of the American Chemical Society, 2012, 134, 5484-5487.	13.7	44
355	Advanced Electron Microscopy for Advanced Materials. Advanced Materials, 2012, 24, 5655-5675.	21.0	115
356	Design of zeolite by inverse sigma transformation. Nature Materials, 2012, 11, 1059-1064.	27.5	161
357	Atomic-scale determination of surface facets in gold nanorods. Nature Materials, 2012, 11, 930-935.	27.5	299
358	Anisotropic Cation Exchange in PbSe/CdSe Core/Shell Nanocrystals of Different Geometry. Chemistry of Materials, 2012, 24, 294-302.	6.7	144
359	New Insights into the Early Stages of Nanoparticle Electrodeposition. Journal of Physical Chemistry C, 2012, 116, 2322-2329.	3.1	118
360	Thermally Induced Structural and Morphological Changes of CdSe/CdS Octapods. Small, 2012, 8, 937-942.	10.0	21

#	Article	IF	CITATIONS
361	Tuning the Pore Size of Ink-Bottle Mesopores by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 1992-1994.	6.7	59
362	A Simple Road for the Transformation of Few-Layer Graphene into MWNTs. Journal of the American Chemical Society, 2012, 134, 13310-13315.	13.7	58
363	Preventing the Reconstruction of the Polar Discontinuity at Oxide Heterointerfaces. Advanced Functional Materials, 2012, 22, 2235-2240.	14.9	72
364	Direct Determination of Polarity, Faceting, and Core Location in Colloidal Core/Shell Wurtzite Semiconductor Nanocrystals. ACS Nano, 2012, 6, 6453-6461.	14.6	61
365	Steric Hindrance Induces crosslike Self-Assembly of Gold Nanodumbbells. Nano Letters, 2012, 12, 4380-4384.	9.1	91
366	Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections. Carbon, 2012, 50, 2524-2529.	10.3	10
367	Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity. Microporous and Mesoporous Materials, 2012, 156, 62-72.	4.4	9
368	Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy, 2012, 113, 120-130.	1.9	204
369	Accurate segmentation of dense nanoparticles by partially discrete electron tomography. Ultramicroscopy, 2012, 114, 96-105.	1.9	41
370	Correction of non-linear thickness effects in HAADF STEM electron tomography. Ultramicroscopy, 2012, 116, 8-12.	1.9	75
371	Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization. Physical Chemistry Chemical Physics, 2011, 13, 4318.	2.8	22
372	Barrier efficiency of sponge-like La ₂ Zr ₂ O ₇ buffer layers for YBCO-coated conductors. Superconductor Science and Technology, 2011, 24, 065019.	3. 5	35
373	Ultra-High Resolution Electron Tomography for Materials Science: a Roadmap. Microscopy and Microanalysis, 2011, 17, 934-935.	0.4	2
374	Three-Dimensional Atomic Imaging of Colloidal Core–Shell Nanocrystals. Nano Letters, 2011, 11, 3420-3424.	9.1	134
375	Exploring different inelastic projection mechanisms for electron tomography. Ultramicroscopy, 2011, 111, 1262-1267.	1.9	23
376	Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas. Chemical Engineering Journal, 2011, 175, 585-591.	12.7	6
377	Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales). Micron, 2011, 42, 863-870.	2.2	23
378	Well Shaped Mn ₃ O ₄ Nanoâ€octahedra with Anomalous Magnetic Behavior and Enhanced Photodecomposition Properties. Small, 2011, 7, 475-483.	10.0	131

#	Article	IF	CITATIONS
379	Catalytic and molecular separation properties of Zeogrids and Zeotiles. Catalysis Today, 2011, 168, 17-27.	4.4	15
380	A practical method to determine the effective resolution in incoherent experimental electron tomography. Ultramicroscopy, 2011, 111, 330-336.	1.9	42
381	Structural and electrical characterization of carbon nanotube interconnects by combined transmission electron microscopy and scanning spreading resistance microscopy. Materials Research Society Symposia Proceedings, 2011, 1349, 140401.	0.1	O
382	Optimized fabrication of high-quality La _{0.67} Sr _{0.33} MnO ₃ thin films considering all essential characteristics. Journal Physics D: Applied Physics, 2011, 44, 205001.	2.8	105
383	Measuring Porosity at the Nanoscale by Quantitative Electron Tomography. Nano Letters, 2010, 10, 5014-5019.	9.1	87
384	Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution. Journal of Nanoparticle Research, 2010, 12, 615-622.	1.9	26
385	Threeâ€Dimensional Characterization of Helical Silver Nanochains Mediated by Protein Assemblies. Advanced Materials, 2010, 22, 2193-2197.	21.0	59
386	Electrodeposition of Ag nanoparticles onto carbon coated TEM gridsA direct approach to study early stages of nucleation. Electrochemistry Communications, 2010, 12, 1706-1709.	4.7	57
387	Three-Dimensional Analysis of Carbon Nanotube Networks in Interconnects by Electron Tomography without Missing Wedge Artifacts. Microscopy and Microanalysis, 2010, 16, 210-217.	0.4	47
388	Electronic reconstruction at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -type <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< th=""><th>3.2 >3<th>32 nn></th></th></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	3.2 >3 <th>32 nn></th>	32 nn>
389	Physical Review B. 2010. 81 Iransport, magnetic, and structural properties of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><films: .<="" 2009,="" 79,="" b,="" evidence="" for="" hole-doping.="" physical="" review="" th=""><th>.<mark>3.2</mark> <ṁml:mn∶</th><th>>2.4 >0.7 < /mmkm</th></films:></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>	. <mark>3.2</mark> <ṁml:mn∶	>2.4 >0.7 < /mmkm
390	Endâ€toâ€End Assembly of Shapeâ€Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains. Advanced Materials, 2009, 21, 550-554.	21.0	114
391	TEM sample preparation by FIB for carbon nanotube interconnects. Ultramicroscopy, 2009, 109, 1353-1359.	1.9	25
392	Effect of amorphous layers on the interpretation of restored exit waves. Ultramicroscopy, 2009, 109, 237-246.	1.9	16
393	3D imaging of nanomaterials by discrete tomography. Ultramicroscopy, 2009, 109, 730-740.	1.9	255
394	Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy, 2009, 109, 1236-1244.	1.9	195
395	Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles. Applied Catalysis B: Environmental, 2009, 88, 515-524.	20.2	70
396	Quantitative Three-Dimensional Modeling of Zeotile Through Discrete Electron Tomography. Journal of the American Chemical Society, 2009, 131, 4769-4773.	13.7	66

#	Article	IF	Citations
397	The Remarkable and Intriguing Resistance to Oxidation of 2D Ordered hcp Co Nanocrystals. A New Intrinsic Property. Chemistry of Materials, 2009, 21, 2335-2338.	6.7	29
398	Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation. Physical Review B, 2009, 80, .	3.2	30
399	Atomic Resolution Mapping Using Quantitative High-angle Annular Dark Field Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2009, 15, 464-465.	0.4	1
400	Structural characterization of Er-doped Li2O–Al2O3–SiO2 glass ceramics. Optical Materials, 2008, 30, 1183-1188.	3.6	13
401	Redeposition and differential sputtering of La in transmission electron microscopy samples of LaAlO ₃ /SrTiO ₃ multilayers prepared by focused ion beam. Journal of Microscopy, 2008, 231, 359-363.	1.8	0
402	The benefits of statistical parameter estimation theory for quantitative interpretation of electron microscopy data., 2008,, 97-98.		0
403	DART explained: how to carry out a discrete tomography reconstruction. , 2008, , 295-296.		0
404	High-Quality Sample Preparation by Low kV FIB Thinning for Analytical TEM Measurements. Microscopy and Microanalysis, 2007, 13, 80-86.	0.4	82
405	Evaluation of top, angle, and side cleaned FIB samples for TEM analysis. Microscopy Research and Technique, 2007, 70, 1060-1071.	2.2	37
406	On the use of TEM in the characterization of nanocomposites. Materials Letters, 2007, 61, 3446-3450.	2.6	30
407	Quantitative Three-Dimensional Reconstruction of Catalyst Particles for Bamboo-like Carbon Nanotubes. Nano Letters, 2007, 7, 3669-3674.	9.1	88
408	Electronically coupled complementary interfaces between perovskite band insulators. Nature Materials, 2006, 5, 556-560.	27.5	325
409	An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images. Ultramicroscopy, 2006, 106, 933-940.	1.9	23
410	Crystallographic Shear Structures as a Route to Anion-Deficient Perovskites. Angewandte Chemie - International Edition, 2006, 45, 6697-6700.	13.8	52
411	A New Bi4Mn1/3W2/3O8Cl Sillén–Aurivillius Intergrowth: Synthesis and Structural Characterisation by Quantitative Transmission Electron Microscopy. European Journal of Inorganic Chemistry, 2006, 2006, 1853-1858.	2.0	13
412	A New Approach for Electron Tomography: Annular Dark-Field Transmission Electron Microscopy. Advanced Materials, 2006, 18, 892-895.	21.0	62
413	Superconducting single-phase Sr1â^xLaxCuO2 thin films with improved crystallinity grown by pulsed laser deposition. Applied Physics Letters, 2006, 89, 092504.	3.3	32
414	Statistical Estimation of Atomic Positions from Exit Wave Reconstruction with a Precision in the Picometer Range. Physical Review Letters, 2006, 96, 096106.	7.8	82

#	Article	IF	Citations
415	Mixed (Sr1â^'xCax)33Bi24Al48O141fullerenoids: the defect structure analysed by (S)TEM techniques. International Journal of Materials Research, 2006, 97, 978-984.	0.3	1
416	Nonlinear imaging using annular dark field TEM. Ultramicroscopy, 2005, 104, 281-289.	1.9	17
417	Quantitative Electron Microscopy of (Bi,Pb)2Sr2Ca2Cu3O10+delta/Ag Multifilament Tapes During Initial Stages of Annealing. Journal of the American Ceramic Society, 2005, 88, 431-436.	3.8	0
418	Interplay of doping and structural modulation in superconductingBi2Sr2â^'xLaxCuO6+Î'thin films. Physical Review B, 2005, 71, .	3.2	12
419	Comparison of As- and P-based metamorphic buffers for high performance InP heterojunction bipolar transistor and high electron mobility transistor applications. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena. 2004. 22. 1565.	1.6	24
420	Annular dark field imaging in a TEM. Solid State Communications, 2004, 130, 675-680.	1.9	51
421	Investigation of (Bi,Pb)2212 crystals: observation of modulation-free phase. Physica C: Superconductivity and Its Applications, 2004, 401, 270-272.	1.2	9
422	Modulation-free phase in heavily Pb-doped (Bi,Pb)2212 crystals. Physica C: Superconductivity and Its Applications, 2003, 399, 1-7.	1.2	32
423	Transmission electron microscopy on interface engineered superconducting thin films. IEEE Transactions on Applied Superconductivity, 2003, 13, 2834-2837.	1.7	12
424	Role of Nd/Ba substitution on the growth mode and on the structural properties of Nd-rich Re1(NdxBa2â^2x)Cu3O7â^2Î^(Re=Nd, Y) thin films. Physica C: Superconductivity and Its Applications, 2002, 372-376, 675-678.	1.2	5
425	Optimisation of superconducting thin films by TEM. Physica C: Superconductivity and Its Applications, 2002, 372-376, 711-714.	1.2	4
426	Why are sputter deposited Nd1+xBa2â^'xCu3O7â^'Î' thin films flatter than NdBa2Cu3O7â^'Î' films?. Applied Physics Letters, 2001, 79, 3660-3662.	3.3	13
427	Transmission electron microscopy investigation of Bi-2223/Ag tapes. Physica C: Superconductivity and Its Applications, 2001, 353, 251-257.	1.2	10
428	TEM of ultra-thin DyBa2Cu3O7â€"x films deposited on TiO2 terminated SrTiO3. Physica C: Superconductivity and Its Applications, 2001, 355, 225-230.	1.2	28
429	Growth of R1+xBa2-xCu3O7-? Epitaxial Films Investigated by In Situ Scanning Tunneling Microscopy. Physica Status Solidi A, 2001, 186, 339-364.	1.7	18
430	Strain relaxation and dislocation filtering in metamorphic HBT and HEMT structures grown on GaAs substrates by MBE. , 0, , .		2
431	3D characterization of nanocrystal and their transformations , 0, , .		0