Maureen G Maguire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4430357/publications.pdf Version: 2024-02-01

152	11,208	57758 44	30087 103
papers	citations	n-index	g-index
152 all docs	152 docs citations	152 times ranked	7240 citing authors

#	Article	IF	CITATIONS
1	Thiazolidinedione use and retinal fluid in the comparison of age-related macular degeneration treatments trials. British Journal of Ophthalmology, 2023, 107, 1000-1006.	3.9	Ο
2	Tutorial on Biostatistics: Receiver-Operating Characteristic (ROC) Analysis for Correlated Eye Data. Ophthalmic Epidemiology, 2022, 29, 117-127.	1.7	8
3	Intravitreal Pharmacotherapies for Diabetic Macular Edema. Ophthalmology, 2022, 129, 88-99.	5.2	28
4	Tobacco counseling in the setting of thyroid eye disease. Arquivos Brasileiros De Oftalmologia, 2022, 85, 13-18.	0.5	1
5	Prevalence and Factors Associated with Optic Disc Tilt in the Primary Open-Angle African American Glaucoma Genetics Study. Ophthalmology Glaucoma, 2022, 5, 544-553.	1.9	3
6	Association Between Depression and Severity of Dry Eye Symptoms, Signs, and Inflammatory Markers in the DREAM Study. JAMA Ophthalmology, 2022, 140, 392.	2.5	22
7	Predominantly Persistent Intraretinal Fluid in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology Retina, 2022, 6, 771-785.	2.4	5
8	Phase 4 Studies on Phosphodiesterase 5 Inhibitors. JAMA Ophthalmology, 2022, 140, 484.	2.5	1
9	Detection of Significant Hyperopia in Preschool Children Using Two Automated Vision Screeners. Optometry and Vision Science, 2022, 99, 114-120.	1.2	6
10	Integrated Visualization Highlighting Retinal Changes in Retinopathy of Prematurity From 3-Dimensional Optical Coherence Tomography Data. JAMA Ophthalmology, 2022, 140, 725.	2.5	3
11	Another Disappointment for ω-3 Fatty Acid and Dry Eye Disease. JAMA Ophthalmology, 2022, 140, 714.	2.5	2
12	Primary orbital melanoma: A report of a case and comprehensive review of the literature. Orbit, 2021, 40, 461-469.	0.8	6
13	Tutorial on Biostatistics: Longitudinal Analysis of Correlated Continuous Eye Data. Ophthalmic Epidemiology, 2021, 28, 3-20.	1.7	20
14	Association of Severity of Dry Eye Disease with Work Productivity and Activity Impairment in the Dry Eye Assessment and Management Study. Ophthalmology, 2021, 128, 850-856.	5.2	18
15	Localized Optical Coherence Tomography Precursors of Macular Atrophy and Fibrotic Scar in the Comparison of Age-Related Macular Degeneration Treatments Trials. American Journal of Ophthalmology, 2021, 223, 338-347.	3.3	9
16	Birth Weight Is a Significant Predictor of Retinal Nerve Fiber Layer Thickness at 36 Weeks Postmenstrual Age in Preterm Infants. American Journal of Ophthalmology, 2021, 222, 41-53.	3.3	13
17	Dose Response in Anti-VEGF Treatment for Neovascular Age-related Macular Degeneration. Retina, 2021, Publish Ahead of Print, 1141-1142.	1.7	0
18	A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States. Ophthalmic Epidemiology, 2021, 28, 265-276	1.7	8

#	Article	IF	CITATIONS
19	Effect of Initial Aflibercept, Laser, or Observation on Low-Contrast Visual Acuity in Eyes With Diabetic Macular Edema and Good Vision: Ancillary Study Within a Randomized Clinical Trial. Translational Vision Science and Technology, 2021, 10, 3.	2.2	5
20	Associations between visual function and magnitude of refractive error for emmetropic to moderately hyperopic 4―and 5â€yearâ€old children in the Vision in Preschoolers ―Hyperopia in Preschoolers Study. Ophthalmic and Physiological Optics, 2021, 41, 553-564.	2.0	8
21	Visual Acuity, Vitreous Hemorrhage, and Other Ocular Outcomes After Vitrectomy vs Aflibercept for Vitreous Hemorrhage Due to Diabetic Retinopathy. JAMA Ophthalmology, 2021, 139, 725-733.	2.5	16
22	Preterm Infant Stress During Handheld Optical Coherence Tomography vs Binocular Indirect Ophthalmoscopy Examination for Retinopathy of Prematurity. JAMA Ophthalmology, 2021, 139, 567.	2.5	17
23	Pneumatic Vitreolysis with Perfluoropropane for Vitreomacular Traction with and without Macular Hole. Ophthalmology, 2021, 128, 1592-1603.	5.2	10
24	Macular OCT Characteristics at 36 Weeks' Postmenstrual Age in Infants Examined for Retinopathy of Prematurity. Ophthalmology Retina, 2021, 5, 580-592.	2.4	29
25	Auditory and olfactory findings in patients with USH2A â€related retinal degeneration—Findings at baseline from the rate of progression in USH2A â€related retinal degeneration natural history study () Tj ETQq1 1	017284314	4 r g BT /Overl
26	SYSTEMIC MEDICATION USE AND THE INCIDENCE AND GROWTH OF GEOGRAPHIC ATROPHY IN THE COMPARISON OF AGE-RELATED MACULAR DEGENERATION TREATMENTS TRIALS. Retina, 2021, 41, 1455-1462.	1.7	6
27	Demographic and Clinical Characteristics Associated with Minimally Invasive Glaucoma Surgery Use. Ophthalmology, 2021, 128, 1292-1299.	5.2	19
28	Best Practices for the Design of Clinical Trials Related to the Visual System. Annual Review of Vision Science, 2021, 7, 867-886.	4.4	0
29	Systemic Conditions Associated with Severity of Dry Eye Signs and Symptoms in the Dry Eye Assessment and Management Study. Ophthalmology, 2021, 128, 1384-1392.	5.2	34
30	Predominantly Persistent Subretinal Fluid in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology Retina, 2021, 5, 962-974.	2.4	9
31	BETA-PERIPAPILLARY ATROPHY AND GEOGRAPHIC ATROPHY IN THE COMPARISON OF AGE-RELATED MACULAR DEGENERATION TREATMENTS TRIALS. Retina, 2021, 41, 125-134.	1.7	1
32	Lapses in Care Among Patients Assigned to Ranibizumab for Proliferative Diabetic Retinopathy. JAMA Ophthalmology, 2021, 139, 1266.	2.5	12
33	A New Screening Questionnaire to Identify Patients With Dry Eye With a High Likelihood of Having Sjögren Syndrome. Cornea, 2021, 40, 179-187.	1.7	4
34	Effects of Omega-3 Supplementation on Exploratory Outcomes in the Dry Eye Assessment and Management Study. Ophthalmology, 2020, 127, 136-138.	5.2	6
35	The Dry Eye Assessment and Management (DREAM) extension study – A randomized clinical trial of withdrawal of supplementation with omega-3 fatty acid in patients with dry eye disease. Ocular Surface, 2020, 18, 47-55.	4.4	29
36	Repeatability and Reproducibility of Axial and Lateral Measurements on Handheld Optical Coherence Tomography Systems Compared with Tabletop System. Translational Vision Science and Technology, 2020, 9, 25.	2.2	9

#	Article	IF	CITATIONS
37	Calculating Sensitivity, Specificity, and Predictive Values for Correlated Eye Data. , 2020, 61, 29.		34
38	Associations of Variation in Retinal Thickness With Visual Acuity and Anatomic Outcomes in Eyes With Neovascular Age-Related Macular Degeneration Lesions Treated With Anti–Vascular Endothelial Growth Factor Agents. JAMA Ophthalmology, 2020, 138, 1043.	2.5	77
39	The RUSH2A Study: Best-Corrected Visual Acuity, Full-Field Electroretinography Amplitudes, and Full-Field Stimulus Thresholds at Baseline. Translational Vision Science and Technology, 2020, 9, 9.	2.2	31
40	Climatic and Environmental Correlates of Dry Eye Disease Severity: A Report From the Dry Eye Assessment and Management (DREAM) Study. Translational Vision Science and Technology, 2020, 9, 25.	2.2	33
41	Steps Forward in Analyzing Optical Coherence Tomography in Age-Related Macular Degeneration—Capitalizing on the Power of Artificial Intelligence. JAMA Ophthalmology, 2020, 138, 747.	2.5	Ο
42	ASSOCIATION OF DIAGNOSIS CODE-BASED AND LABORATORY RESULTS-BASED KIDNEY FUNCTION WITH DEVELOPMENT OF VISION THREATENING DIABETIC RETINOPATHY. Ophthalmic Epidemiology, 2020, 27, 498-503.	1.7	3
43	Ranibizumab and Bevacizumab for Treatment of Neovascular Age-related Macular Degeneration. Ophthalmology, 2020, 127, S135-S145.	5.2	36
44	Characteristics of Eyes With Good Visual Acuity at 5 Years After Initiation of Treatment for Age-Related Macular Degeneration but Not Receiving Treatment From Years 3 to 5. JAMA Ophthalmology, 2020, 138, 276.	2.5	5
45	Visual Field Changes Over 5 Years in Patients Treated With Panretinal Photocoagulation or Ranibizumab for Proliferative Diabetic Retinopathy. JAMA Ophthalmology, 2020, 138, 285.	2.5	35
46	Incidence and Progression of Nongeographic Atrophy in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT) Clinical Trial. JAMA Ophthalmology, 2020, 138, 510.	2.5	12
47	Five-Year Outcomes after Initial Aflibercept, Bevacizumab, or Ranibizumab Treatment for Diabetic Macular Edema (Protocol TÂExtension Study). Ophthalmology, 2020, 127, 1201-1210.	5.2	87
48	Effect of Intravitreous Aflibercept vs Vitrectomy With Panretinal Photocoagulation on Visual Acuity in Patients With Vitreous Hemorrhage From Proliferative Diabetic Retinopathy. JAMA - Journal of the American Medical Association, 2020, 324, 2383.	7.4	70
49	Baseline Visual Field Findings in the RUSH2A Study: Associated Factors and Correlation With Other Measures of Disease Severity. American Journal of Ophthalmology, 2020, 219, 87-100.	3.3	22
50	Association of meibomian gland morphology with symptoms and signs of dry eye disease in the Dry Eye Assessment and Management (DREAM) study. Ocular Surface, 2020, 18, 761-769.	4.4	11
51	Orally Administered Alpha Lipoic Acid as a Treatment for Geographic Atrophy. Ophthalmology Retina, 2020, 4, 889-898.	2.4	15
52	Why DREAM should make you think twice about recommending Omega-3 supplements. Ocular Surface, 2019, 17, 617-618.	4.4	5
53	Primary Open-Angle African American Glaucoma Genetics (POAAGG) Study: gender and risk of POAG in African Americans. PLoS ONE, 2019, 14, e0218804.	2.5	32
54	Association Between Change in Visual Acuity and Change in Central Subfield Thickness During Treatment of Diabetic Macular Edema in Participants Randomized to Aflibercept, Bevacizumab, or Ranibizumab. JAMA Ophthalmology, 2019, 137, 977.	2.5	85

#	Article	IF	CITATIONS
55	Conjunctival HLA-DR Expression and Its Association With Symptoms and Signs in the DREAM Study. Translational Vision Science and Technology, 2019, 8, 31.	2.2	7
56	Association Between Cilioretinal Arteries and Advanced Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 1306.	2.5	6
57	Five-Year Follow-up of Nonfibrotic Scars in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 2019, 126, 743-751.	5.2	20
58	Factors Associated With Visual Acuity and Central Subfield Thickness Changes When Treating Diabetic Macular Edema With Anti–Vascular Endothelial Growth Factor Therapy. JAMA Ophthalmology, 2019, 137, 382.	2.5	76
59	Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images. Eye, 2019, 33, 838-844.	2.1	10
60	Association Between Progression of Retinopathy and Concurrent Progression of Kidney Disease. JAMA Ophthalmology, 2019, 137, 767.	2.5	28
61	Distribution of OCT Features within Areas of Macular Atrophy or Scar after 2 Years of Anti-VEGF Treatment for Neovascular AMD in CATT. Ophthalmology Retina, 2019, 3, 316-325.	2.4	17
62	A Workshop on Measuring the Progression of Atrophy Secondary to Stargardt Disease in the ProgStar Studies: Findings and Lessons Learned. Translational Vision Science and Technology, 2019, 8, 16.	2.2	27
63	Updated Methods for Assessing the Risk of Progression to Late Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 745.	2.5	0
64	Effect of Graft Attachment Status and Intraocular Pressure on Descemet Stripping Automated Endothelial Keratoplasty Outcomes in the Cornea Preservation Time Study. American Journal of Ophthalmology, 2019, 203, 78-88.	3.3	19
65	ASSOCIATION BETWEEN ORAL IRON SUPPLEMENTATION AND RETINAL OR SUBRETINAL HEMORRHAGE IN THE COMPARISON OF AGE-RELATED MACULAR DEGENERATION TREATMENT TRIALS. Retina, 2019, 39, 1965-1972.	1.7	2
66	Postoperative Endothelial Cell Density Is Associated with Late Endothelial Graft Failure after Descemet Stripping Automated Endothelial Keratoplasty. Ophthalmology, 2019, 126, 1076-1083.	5.2	28
67	Comparison of Donor Cornea Endothelial Cell Density Determined by Eye Banks and by a Central Reading Center in the Cornea Preservation Time Study. Cornea, 2019, 38, 426-432.	1.7	8
68	Prelamellar Dissection Donor Corneal Thickness Is Associated With Descemet Stripping Automated Endothelial Keratoplasty Operative Complications in the Cornea Preservation Time Study. Cornea, 2019, 38, 1069-1076.	1.7	4
69	Prevalence of Novel Candidate Sjögren Syndrome Autoantibodies in the Penn Sjögren's International Collaborative Clinical Alliance Cohort. Cornea, 2019, 38, 1500-1505.	1.7	7
70	Macular Morphology and Visual Acuity in Year Five of the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology, 2019, 126, 252-260.	5.2	153
71	Donor, Recipient, and Operative Factors Associated With Increased Endothelial Cell Loss in the Cornea Preservation Time Study. JAMA Ophthalmology, 2019, 137, 185.	2.5	40
72	SYSTEMIC BETA-BLOCKERS AND RISK OF PROGRESSION TO NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2019, 39, 918-925.	1.7	11

#	Article	IF	CITATIONS
73	nâ^'3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease. New England Journal of Medicine, 2018, 378, 1681-1690.	27.0	185
74	Development and Course of Scars in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 2018, 125, 1037-1046.	5.2	60
75	Linking OCT, Angiographic, and Photographic Lesion Components in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 481-493.	2.4	10
76	Association of Single-Nucleotide Polymorphisms in Age-Related Macular Degeneration With Pseudodrusen. JAMA Ophthalmology, 2018, 136, 682.	2.5	17
77	Tutorial on Biostatistics: Statistical Analysis for Correlated Binary Eye Data. Ophthalmic Epidemiology, 2018, 25, 1-12.	1.7	79
78	Baseline Predictors for Five-Year Visual Acuity Outcomes in the Comparison of AMD Treatment Trials. Ophthalmology Retina, 2018, 2, 525-530.	2.4	42
79	Prevalence of Novel Candidate Sjogren Syndrome Autoantibodies in the Dry Eye Assessment and Management (DREAM) Study. Cornea, 2018, 37, 1425-1430.	1.7	24
80	Incidence and Outcomes of Positive Donor Rim Cultures and Infections in the Cornea Preservation Time Study. Cornea, 2018, 37, 1102-1109.	1.7	35
81	Association between Primary Open-Angle Glaucoma and Cognitive Impairment as Measured by the Montreal Cognitive Assessment. Neurodegenerative Diseases, 2018, 18, 315-322.	1.4	18
82	CHANGES IN DIABETIC RETINOPATHY SEVERITY WHEN TREATING DIABETIC MACULAR EDEMA WITH RANIBIZUMAB. Retina, 2018, 38, 1896-1904.	1.7	38
83	Factors Associated With Graft Rejection in the Cornea Preservation Time Study. American Journal of Ophthalmology, 2018, 196, 197-207.	3.3	41
84	Donor, Recipient, and Operative Factors Associated with Graft Success in the Cornea Preservation Time Study. Ophthalmology, 2018, 125, 1700-1709.	5.2	73
85	Understanding Variation in Response to Anti–Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2018, 136, 884.	2.5	1
86	Early Response to Anti–Vascular Endothelial Growth Factor and Two-Year Outcomes Among Eyes With Diabetic Macular Edema in Protocol T. American Journal of Ophthalmology, 2018, 195, 93-100.	3.3	77
87	Dry Eye Assessment and Management (DREAM©) Study: Study design and baseline characteristics. Contemporary Clinical Trials, 2018, 71, 70-79.	1.8	45
88	Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data. Ophthalmic Epidemiology, 2017, 24, 130-140.	1.7	108
89	Visual and Morphologic Outcomes in Eyes with Hard Exudate in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology Retina, 2017, 1, 25-33.	2.4	10

5.2 0

#	Article	IF	CITATIONS
91	Association between pseudodrusen and delayed patchy choroidal filling inÂthe comparison of ageâ€related macular degeneration treatments trials. Acta Ophthalmologica, 2017, 95, e518-e520.	1.1	6
92	Evaluating Effects of Switching Anti–Vascular Endothelial Growth Factor Drugs for Age-Related Macular Degeneration and Diabetic Macular Edema. JAMA Ophthalmology, 2017, 135, 145.	2.5	56
93	Further Scrutiny of Vision Outcomes When Aflibercept Is Used as Rescue Treatment for Eyes With Diabetic Macular Edema Treated With Laser. JAMA Ophthalmology, 2017, 135, 114.	2.5	Ο
94	Development and Evaluation of Semiautomated Quantification of Lissamine Green Staining of the Bulbar Conjunctiva From Digital Images. JAMA Ophthalmology, 2017, 135, 1078.	2.5	8
95	Attention and Visual Motor Integration in Young Children with Uncorrected Hyperopia. Optometry and Vision Science, 2017, 94, 965-970.	1.2	18
96	Comparison of cycloplegic refraction between Grand Seiko autorefractor and Retinomax autorefractor in the Vision in Preschoolers–Hyperopia in Preschoolers (VIP-HIP) Study. Journal of AAPOS, 2017, 21, 219-223.e3.	0.3	11
97	Incidence and Growth of Geographic Atrophy during 5 Years of Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 2017, 124, 97-104.	5.2	158
98	Pseudodrusen and Incidence of Late Age-Related Macular Degeneration in Fellow Eyes in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 2016, 123, 1530-1540.	5.2	92
99	Single-Nucleotide Polymorphisms Associated With Age-Related Macular Degeneration and Lesion Phenotypes in the Comparison of Age-Related Macular Degeneration Treatments Trials. JAMA Ophthalmology, 2016, 134, 674.	2.5	16
100	Five-Year Outcomes with Anti–Vascular Endothelial Growth Factor Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 1751-1761.	5.2	541
101	Visual Function of Moderately Hyperopic 4- and 5-Year-Old Children in the Vision in Preschoolers – Hyperopia in Preschoolers Study. American Journal of Ophthalmology, 2016, 170, 143-152.	3.3	23
102	Outcomes in Eyes with RetinalÂAngiomatous Proliferation in theÂComparison of Age-Related Macular Degeneration Treatments Trials (CATT). Ophthalmology, 2016, 123, 609-616.	5.2	93
103	Association between Antiplatelet or Anticoagulant Drugs and Retinal or Subretinal Hemorrhage in the Comparison ofÂAge-Related Macular Degeneration Treatments Trials. Ophthalmology, 2016, 123, 352-360.	5.2	37
104	Uncorrected Hyperopia and Preschool EarlyÂLiteracy. Ophthalmology, 2016, 123, 681-689.	5.2	94
105	Angiographic Cystoid Macular Edema and Outcomes in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 2016, 123, 858-864.	5.2	12
106	Macular Morphology and Visual Acuity inÂtheÂSecond Year of the Comparison of Age-RelatedÂMacular Degeneration Treatments Trials. Ophthalmology, 2016, 123, 865-875.	5.2	181
107	Poorer Neurodevelopmental Outcomes Associated with Cystoid Macular Edema Identified in Preterm Infants in the Intensive Care Nursery. Ophthalmology, 2015, 122, 610-619.	5.2	42
108	Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 2015, 122, 1846-1853.e5.	5.2	144

#	Article	IF	CITATIONS
109	VEGFR2 Gene Polymorphisms and Response to Anti–Vascular Endothelial Growth Factor Therapy in Age-Related Macular Degeneration. Ophthalmology, 2015, 122, 1563-1568.	5.2	29
110	Analyses Comparing Visual Acuity Between Ranibizumab and Bevacizumab in the Comparison of Age-Related Macular Degeneration Treatments Trials. JAMA Ophthalmology, 2015, 133, 726.	2.5	2
111	Postinjection Endophthalmitis in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). Ophthalmology, 2015, 122, 817-821.	5.2	73
112	Influence of the Vitreomacular Interface on Treatment Outcomes in the Comparison ofÂAge-Related Macular Degeneration Treatments Trials. Ophthalmology, 2015, 122, 1203-1211.	5.2	48
113	Growth of Geographic Atrophy in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology, 2015, 122, 809-816.	5.2	186
114	Retinopathy and the Risk of Cardiovascular Disease in Patients With Chronic Kidney Disease (from the) Tj ETQq0	0 0 rgBT /	Overlock 10
115	Association of Baseline Characteristics and Early Vision Response with 2-Year Vision Outcomes in the Comparison of AMD Treatments Trials (CATT). Ophthalmology, 2015, 122, 2523-2531.e1.	5.2	84
116	Outcomes of Eyes with Lesions Composed ofÂ>50% Blood in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). Ophthalmology, 2015, 122, 391-398.e5.	5.2	46
117	Cost-Related Motivations for Research. JAMA - Journal of the American Medical Association, 2014, 312, 847.	7.4	0
118	Outer Retinal Tubulation in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). Ophthalmology, 2014, 121, 2423-2431.	5.2	53
119	Sustained Visual Acuity Loss in the Comparison of Age-Related Macular Degeneration Treatments Trials. JAMA Ophthalmology, 2014, 132, 915.	2.5	87
120	Stereoacuity of Preschool Children with and without Vision Disorders. Optometry and Vision Science, 2014, 91, 351-358.	1.2	41
121	Associations between Hyperopia and Other Vision and Refractive Error Characteristics. Optometry and Vision Science, 2014, 91, 383-389.	1.2	35
122	<i>>VEGFA</i> and <i>>VEGFR2</i> Gene Polymorphisms and Response to Anti–Vascular Endothelial Growth Factor Therapy. JAMA Ophthalmology, 2014, 132, 521.	2.5	53
123	Endothelial PAS Domain-Containing Protein 1 (EPAS1) Gene Polymorphisms and Response to Anti-VEGF Therapy in the Comparison of AMD Treatments Trials (CATT). Ophthalmology, 2014, 121, 1663-1664.e1.	5.2	12
124	Landmark matching based retinal image alignment by enforcing sparsity in correspondence matrix. Medical Image Analysis, 2014, 18, 903-913.	11.6	32
125	Prevalence of Vision Disorders by Racial and Ethnic Group among Children Participating in Head Start. Ophthalmology, 2014, 121, 630-636.	5.2	75
126	Risk Factors for Amblyopia in the Vision in Preschoolers Study. Ophthalmology, 2014, 121, 622-629.e1.	5.2	112

#	Article	IF	CITATIONS
127	Delayed Patchy Choroidal Filling in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). American Journal of Ophthalmology, 2014, 158, 525-531.e2.	3.3	9
128	Risk of Scar in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology, 2014, 121, 656-666.	5.2	232
129	Comparison of Optical Coherence Tomography Assessments in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 2014, 121, 1956-1965.e2.	5.2	34
130	Author reply. Ophthalmology, 2014, 121, e44-e45.	5.2	0
131	Risk of Geographic Atrophy in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology, 2014, 121, 150-161.	5.2	483
132	Sporadic Visual Acuity Loss in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). American Journal of Ophthalmology, 2014, 158, 128-135.e10.	3.3	16
133	Retinopathy and Progression of CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1217-1224.	4.5	25
134	Incidence of Choroidal Neovascularization inÂthe Fellow Eye in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology, 2013, 120, 2035-2041.	5.2	81
135	Pharmacogenetics for Genes Associated with Age-related Macular Degeneration in the Comparison of AMD Treatments Trials (CATT). Ophthalmology, 2013, 120, 593-599.	5.2	137
136	Baseline Predictors for One-Year Visual Outcomes with Ranibizumab or Bevacizumab for Neovascular Age-related Macular Degeneration. Ophthalmology, 2013, 120, 122-129.	5.2	268
137	An automated drusen detection system for classifying age-related macular degeneration with color fundus photographs. , 2013, , .		19
138	Associations of Anisometropia with Unilateral Amblyopia, Interocular Acuity Difference, and Stereoacuity in Preschoolers. Ophthalmology, 2013, 120, 495-503.	5.2	24
139	Macular Morphology and Visual Acuity in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology, 2013, 120, 1860-1870.	5.2	226
140	Retrospective illumination correction of retinal fundus images from gradient distribution sparsity. , 2012, , .		13
141	Photographic Assessment of Baseline Fundus Morphologic Features in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology, 2012, 119, 1634-1641.	5.2	53
142	Ranibizumab and Bevacizumab for Treatment of Neovascular Age-related Macular Degeneration. Ophthalmology, 2012, 119, 1388-1398.	5.2	1,550
143	Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration. New England Journal of Medicine, 2011, 364, 1897-1908.	27.0	2,355
144	Statin Use and the Incidence of Advanced Age-related Macular Degeneration in the Complications of Age-related Macular Degeneration Prevention Trial. Ophthalmology, 2009, 116, 2381-2385.	5.2	48

#	Article	lF	CITATIONS
145	Characteristics of Choroidal Neovascularization in the Complications of Age-Related Macular Degeneration Prevention Trial. Ophthalmology, 2008, 115, 1468-1473.e2.	5.2	12
146	Sensitivity of Screening Tests for Detecting Vision In Preschoolers-targeted Vision Disorders When Specificity Is 94%. Optometry and Vision Science, 2005, 82, 432-438.	1.2	67
147	Association of psychological and physiological measures of stress in healthâ€care professionals during an 8â€week mindfulness meditation program: mindfulness in practice. Stress and Health, 2005, 21, 255-261.	2.6	162
148	Testability of Preschoolers on Stereotests Used to Screen Vision Disorders. Optometry and Vision Science, 2003, 80, 753-757.	1.2	25
149	Corneal surface area: an index of anterior segment growth. Ophthalmic and Physiological Optics, 2001, 21, 286-295.	2.0	5
150	reply: Myopia and ambient night-time lighting. Nature, 2000, 404, 144-144.	27.8	4
151	Myopia and ambient lighting at night. Nature, 1999, 399, 113-114.	27.8	132
152	Risk Factors for Corneal Graft Failure and Rejection in the Collaborative Corneal Transplantation Studies. Ophthalmology, 1994, 101, 1536-1547.	5.2	423