
Fawzia Louache

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4429526/publications.pdf Version: 2024-02-01

FAWZIA LOUACHE

#	Article	IF	CITATIONS
1	Endothelial and hematopoietic hPSCs differentiation via a hematoendothelial progenitor. Stem Cell Research and Therapy, 2022, 13, .	5.5	4
2	Metabolic Analysis of Mouse Hematopoietic Stem and Progenitor Cells. Methods in Molecular Biology, 2021, 2308, 107-115.	0.9	0
3	Deciphering Tumor Niches: Lessons From Solid and Hematological Malignancies. Frontiers in Immunology, 2021, 12, 766275.	4.8	13
4	CABLES1 Deficiency Impairs Quiescence and Stress Responses of Hematopoietic Stem Cells in Intrinsic and Extrinsic Manners. Stem Cell Reports, 2019, 13, 274-290.	4.8	5
5	In vitro and in vivo efficacy of an anti-CD203c conjugated antibody (ACS-16C3F) in mouse models of advanced systemic mastocytosis. Blood Advances, 2019, 3, 633-643.	5.2	5
6	A new signaling cascade linking BMP4, BMPR1A, ΔNp73 and NANOG impacts on stem-like human cell properties and patient outcome. Cell Death and Disease, 2018, 9, 1011.	6.3	28
7	Aging of Bone Marrow Microenvironment Promotes Myeloid Bias of Hematopoietic Progenitors and Is a Target in Age-Related Myeloproliferative Neoplasms. Blood, 2018, 132, 3842-3842.	1.4	2
8	Cutting Edge: NANOG Activates Autophagy under Hypoxic Stress by Binding to BNIP3L Promoter. Journal of Immunology, 2017, 198, 1423-1428.	0.8	36
9	Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. Journal of Experimental Medicine, 2017, 214, 2023-2040.	8.5	36
10	Targeting primary acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143). Scientific Reports, 2017, 7, 7305.	3.3	25
11	Expression of CD94 byex vivo-differentiated NK cells correlates with thein vitroandin vivoacquisition of cytotoxic features. Oncolmmunology, 2017, 6, e1346763.	4.6	4
12	CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner. Oncotarget, 2017, 8, 54082-54095.	1.8	25
13	Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Advances, 2017, 1, 972-979.	5.2	25
14	Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines. PLoS ONE, 2016, 11, e0149291.	2.5	26
15	CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress. Scientific Reports, 2016, 6, 37827.	3.3	69
16	Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nature Communications, 2016, 7, 12475.	12.8	95
17	A new humanized <i>in vivo</i> model of <i>KIT</i> D816V+ advanced systemic mastocytosis monitored using a secreted luciferase. Oncotarget, 2016, 7, 82985-83000.	1.8	11
18	miR-181a modulates acute myeloid leukemia susceptibility to natural killer cells. OncoImmunology, 2015, 4, e996475.	4.6	18

Fawzia Louache

#	Article	IF	CITATIONS
19	Fas Ligand Deficiency Impairs Tumor Immunity by Promoting an Accumulation of Monocytic Myeloid-Derived Suppressor Cells. Cancer Research, 2015, 75, 4292-4301.	0.9	26
20	p19INK4d Controls Hematopoietic Stem Cells in a Cell-Autonomous Manner during Genotoxic Stress and through the Microenvironment during Aging. Stem Cell Reports, 2014, 3, 1085-1102.	4.8	27
21	JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia, 2014, 28, 338-348.	7.2	137
22	Wiskott-Aldrich syndrome protein-deficient hematopoietic cells can be efficiently mobilized by granulocyte colony-stimulating factor. Haematologica, 2013, 98, 1300-1308.	3.5	8
23	Abstract 3856: Therapeutic targeting of CXCR4 in NOG mice model of human acute myeloid leukemia , 2013, , .		Ο
24	Reversing Resistance to Vascular-Disrupting Agents by Blocking Late Mobilization of Circulating Endothelial Progenitor Cells. Cancer Discovery, 2012, 2, 434-449.	9.4	49
25	Successful xenografts of AML3 samples in immunodeficient NOD/shi-SCID IL2Rγâ^'/â^' mice. Leukemia, 2012, 26, 2432-2435.	7.2	17
26	CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death and Disease, 2012, 3, e396-e396.	6.3	53
27	CXCR4 Invalidation Limits the MLL-ENL Induced Leucemogenesis in Vivo. Blood, 2012, 120, 4089-4089.	1.4	Ο
28	Generation and characterisation of <i>Rhd</i> and <i>Rhag</i> null mice. British Journal of Haematology, 2010, 148, 161-172.	2.5	17
29	An activating mutation in the <i>CSF3R</i> gene induces a hereditary chronic neutrophilia. Journal of Experimental Medicine, 2009, 206, 1701-1707.	8.5	75
30	Novel Anti-Metastatic Action of Cidofovir Mediated by Inhibition of E6/E7, CXCR4 and Rho/ROCK Signaling in HPV+ Tumor Cells. PLoS ONE, 2009, 4, e5018.	2.5	42
31	EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood, 2008, 112, 576-584.	1.4	79
32	<i>Trans</i> -Presentation of IL-15 Dictates IFN-Producing Killer Dendritic Cells Effector Functions. Journal of Immunology, 2008, 180, 7887-7897.	0.8	47
33	Proplatelet formation is regulated by the Rho/ROCK pathway. Blood, 2007, 109, 4229-4236.	1.4	153
34	p210BCR-ABL reprograms transformed and normal human megakaryocytic progenitor cells into erythroid cells and suppresses FLI-1 transcription. Leukemia, 2007, 21, 917-925.	7.2	4
35	Identification ofCXCR4as a New Nitric Oxide-Regulated Gene in Human CD34+Cells. Stem Cells, 2007, 25, 211-219.	3.2	41
36	The Chemokine Receptor CXCR4 Strongly Promotes Neuroblastoma Primary Tumour and Metastatic Growth, but not Invasion. PLoS ONE, 2007, 2, e1016.	2.5	52

Fawzia Louache

#	Article	IF	CITATIONS
37	178 Radiation-induced up-regulation of CXCR4 is counteracted by association of irradiation with cidofovir. Radiotherapy and Oncology, 2006, 78, S61.	0.6	0
38	Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4–/– chimeric mice. Blood, 2006, 107, 2243-2251.	1.4	103
39	Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood, 2006, 108, 134-140.	1.4	183
40	RGS16 is a negative regulator of SDF-1–CXCR4 signaling in megakaryocytes. Blood, 2005, 106, 2962-2968.	1.4	92
41	p210BCR-ABL inhibits SDF-1 Chemotactic Response via Alteration of CXCR4 Signaling and Down-regulation of CXCR4 Expression. Cancer Research, 2005, 65, 2676-2683.	0.9	57
42	Intracellular Localization and Constitutive Endocytosis of CXCR4 in Human CD34+Hematopoietic Progenitor Cells. Stem Cells, 2004, 22, 1015-1029.	3.2	93
43	The Hematopoietic Reconstitution Defect of Mice Lacking CXCR4 Is Related to an Altered Retention of Hematopoietic Cells in the Bone Marrow Blood, 2004, 104, 120-120.	1.4	3
44	A defect in hematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome. Blood, 2003, 102, 1282-1289.	1.4	77
45	The interaction between Cdc42 and WASP is required for SDF-1–induced T-lymphocyte chemotaxis. Blood, 2001, 97, 33-38.	1.4	191
46	Rapid generation of a tetracycline-inducible BCR-ABL defective retrovirus using a single autoregulatory retroviral cassette. Leukemia, 2001, 15, 1658-1662.	7.2	24
47	Early and Persistent Bone Marrow Hematopoiesis Defect in Simian/Human Immunodeficiency Virus-Infected Macaques despite Efficient Reduction of Viremia by Highly Active Antiretroviral Therapy during Primary Infection. Journal of Virology, 2001, 75, 11594-11602.	3.4	41
48	Regulation of CCR6 chemokine receptor expression and responsiveness to macrophage inflammatory protein-31±/CCL20 in human B cells. Blood, 2000, 96, 2338-2345.	1.4	14
49	Phenotypic and Functional Evidence for the Expression of CXCR4 Receptor During Megakaryocytopoiesis. Blood, 1999, 93, 1511-1523.	1.4	110
50	The Thrombocytopenia of Wiskott Aldrich Syndrome Is Not Related to a Defect in Proplatelet Formation. Blood, 1999, 94, 509-518.	1.4	85
51	Identification of human T-lymphoid progenitor cells in CD34+ CD38low and CD34+ CD38+ subsets of human cord blood and bone marrow cells using NOD-SCID fetal thymus organ cultures. British Journal of Haematology, 1999, 104, 809-819.	2.5	47
52	Phenotypic and Functional Evidence for the Expression of CXCR4 Receptor During Megakaryocytopoiesis. Blood, 1999, 93, 1511-1523.	1.4	11
53	The Thrombocytopenia of Wiskott Aldrich Syndrome Is Not Related to a Defect in Proplatelet Formation. Blood, 1999, 94, 509-518.	1.4	4
54	Lipofectamine and Related Cationic Lipids Strongly Improve Adenoviral Infection Efficiency of Primitive Human Hematopoietic Cells. Human Gene Therapy, 1998, 9, 2493-2502.	2.7	56

FAWZIA LOUACHE

#	Article	IF	CITATIONS
55	Retrovirus-Mediated Gene Transfer into Human CD34 ⁺ 38 ^{low} Primitive Cells Capable of Reconstituting Long-Term Cultures <i>In Vitro</i> and Nonobese Diabetic–Severe Combined Immunodeficiency Mice <i>In Vivo</i> . Human Gene Therapy, 1998, 9, 1497-1511.	2.7	84
56	Susceptibility of Human Bone Marrow Stromal Cells to Human Immunodeficiency Virus (HIV). Virology, 1995, 208, 779-783.	2.4	40
57	In Vitro Infection of Bone Marrow-Adherent Cells by Human Immunodeficiency Virus Type 1 (HIV-1) Does Not Alter Their Ability to Support Hematopoiesis. Virology, 1995, 213, 245-248.	2.4	26
58	Autocrine regulation of terminal differentiation by interleukin-6 in the pluripotent KU812 cell line. Biochemical and Biophysical Research Communications, 1990, 169, 184-191.	2.1	13
59	Specific modulation of surface receptors in J.774 macrophages by anchorage. Experimental Cell Research, 1987, 170, 290-299.	2.6	8
60	Induction of (2′–5â€2) oligoadenylate synthetase activity during granulocyte and monocyte differentiation. Molecular and Cellular Biochemistry, 1985, 67, 125-133.	3.1	19
61	The iron-chelating agent picolinic acid enhances transferrin receptors expression in human erythroleukaemic cell lines. British Journal of Haematology, 1985, 60, 491-502.	2.5	28
62	Differentiation of U-937 human monocyte-like cell line by 1α,25-dihydroxyvitamin D3 or by retinoic acid. Experimental Cell Research, 1985, 157, 539-543.	2.6	12
63	Molecular mechanisms regulating the synthesis of transferrin receptors and ferritin in human erythroleukemic cell lines. FEBS Letters, 1985, 183, 223-227.	2.8	13
64	The role of iron in the growth of human leukemic cell lines. Journal of Cellular Physiology, 1984, 121, 251-256.	4.1	45