
Ryan P Murelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4429456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Troponoids on Mitochondrial Function and Cytotoxicity. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0161721.	3.2	3
2	Intermolecular oxidopyrylium [5 + 2] cycloaddition chemistry and its application toward the synthesis and study of highly oxygenated troponoids. Strategies and Tactics in Organic Synthesis, 2022, 15, 99-148.	0.1	1
3	Synthesis of α-Tropolones through Autoxidation of Dioxole-Fused Cycloheptatrienes. Journal of Organic Chemistry, 2022, 87, 4499-4507.	3.2	4
4	Synthesis of Polyoxygenated Tropolones and their Antiviral Activity against Hepatitis B Virus and Herpes Simplex Virusâ€1. Chemistry - A European Journal, 2022, 28, .	3.3	4
5	Investigations into a Stoichiometrically Equivalent Intermolecular Oxidopyrylium [5 + 2] Cycloaddition Reaction Leveraging 3-Hydroxy-4-pyrone-Based Oxidopyrylium Dimers. Journal of Organic Chemistry, 2021, 86, 3826-3835.	3.2	8
6	Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands. Nucleic Acids Research, 2021, 49, 13179-13193.	14.5	6
7	Synthesis of aryl-substituted 2-methoxyphenol derivatives from maltol-derived oxidopyrylium cycloadducts through an acid-mediated ring contraction cascade. Chemical Communications, 2020, 56, 3203-3205.	4.1	3
8	3,7-Dihydroxytropolones Inhibit Initiation of Hepatitis B Virus Minus-Strand DNA Synthesis. Molecules, 2020, 25, 4434.	3.8	8
9	Antiviral activity of Î'-hydroxytropolones on caprine alphaherpesvirus 1 in vitro. Research in Veterinary Science, 2020, 129, 99-102.	1.9	1
10	Amide-containing α-hydroxytropolones as inhibitors of hepatitis B virus replication. Antiviral Research, 2020, 177, 104777.	4.1	22
11	Maltol- and Allomaltol-Derived Oxidopyrylium Ylides: Methyl Substitution Pattern Kinetically Influences [5 + 3] Dimerization versus [5 + 2] Cycloaddition Reactions. Journal of Organic Chemistry, 2019, 84, 14670-14678.	3.2	4
12	Importance of lipophilicity for potent anti-herpes simplex virus-1 activity of α-hydroxytropolones. MedChemComm, 2019, 10, 1173-1176.	3.4	7
13	Spectrophotometric determination of α-hydroxytropolone pKa values: A structure-acidity relationship study. Tetrahedron Letters, 2019, 60, 1643-1645.	1.4	8
14	Troponoid Atropisomerism: Studies on the Configurational Stability of Tropone-Amide Chiral Axes. Organic Letters, 2019, 21, 2412-2415.	4.6	15
15	Divergent synthesis of a thiolate-based α-hydroxytropolone library with a dynamic bioactivity profile. RSC Advances, 2019, 9, 34227-34234.	3.6	9
16	Chemical Approaches to Inhibiting the Hepatitis B Virus Ribonuclease H. ACS Infectious Diseases, 2019, 5, 655-658.	3.8	26
17	Oxidopyrylium [5+2] cycloaddition chemistry: Historical perspective and recent advances (2008–2018). Tetrahedron, 2018, 74, 2501-2521.	1.9	51
18	Fluorous-Phase Approach to α-Hydroxytropolone Synthesis. Journal of Organic Chemistry, 2018, 83, 1478-1485.	3.2	10

Ryan P Murelli

#	Article	IF	CITATIONS
19	Broad anti-herpesviral activity of α-hydroxytropolones. Veterinary Microbiology, 2018, 214, 125-131.	1.9	14
20	Efficacy of hepatitis B virus ribonuclease H inhibitors, a new class of replication antagonists, in FRG human liver chimeric mice. Antiviral Research, 2018, 149, 41-47.	4.1	36
21	Synthesis and Evaluation of Troponoids as a New Class of Antibiotics. ACS Omega, 2018, 3, 15125-15133.	3.5	22
22	Amidation strategy for final-step α-hydroxytropolone diversification. Tetrahedron Letters, 2018, 59, 3026-3028.	1.4	17
23	Sensitivity of the C-Terminal Nuclease Domain of Kaposi's Sarcoma-Associated Herpesvirus ORF29 to Two Classes of Active-Site Ligands. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	13
24	Troponoids Can Inhibit Growth of the Human Fungal Pathogen Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	31
25	Efficacy and cytotoxicity in cell culture of novel α-hydroxytropolone inhibitors of hepatitis B virus ribonuclease H. Antiviral Research, 2017, 144, 164-172.	4.1	39
26	The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus. Journal of Virology, 2017, 91, .	3.4	26
27	Catalytic Enantioselective Intermolecular [5 + 2] Dipolar Cycloadditions of a 3-Hydroxy-4-pyrone-Derived Oxidopyrylium Ylide. Organic Letters, 2017, 19, 6356-6359.	4.6	21
28	Discovery and Development of a Three-Component Oxidopyrylium [5 + 2] Cycloaddition. Journal of Organic Chemistry, 2016, 81, 3744-3751.	3.2	26
29	Traceless solid-phase α-hydroxytropolone synthesis. MedChemComm, 2016, 7, 1789-1792.	3.4	13
30	Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase. ACS Omega, 2016, 1, 435-447.	3.5	23
31	Synthetic α-hydroxytropolones as inhibitors of HIV reverse transcriptase ribonuclease H activity. MedChemComm, 2016, 7, 1783-1788.	3.4	11
32	Synthetic α-Hydroxytropolones Inhibit Replication of Wild-Type and Acyclovir-Resistant Herpes Simplex Viruses. Antimicrobial Agents and Chemotherapy, 2016, 60, 2140-2149.	3.2	36
33	Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors. Biochemistry, 2016, 55, 809-819.	2.5	30
34	Hydroxylated Tropolones Inhibit Hepatitis B Virus Replication by Blocking Viral Ribonuclease H Activity. Antimicrobial Agents and Chemotherapy, 2015, 59, 1070-1079.	3.2	81
35	Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism. Nucleic Acids Research, 2015, 43, 11003-11016.	14.5	26
36	The biology and synthesis of α-hydroxytropolones. MedChemComm, 2014, 5, 842-852.	3.4	51

RYAN P MURELLI

#	Article	IF	CITATIONS
37	Inhibition of the ANT(2″)-la resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic α-hydroxytropolones. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4943-4947.	2.2	44
38	7,9-Diaryl-1,6,8-trioxaspiro[4.5]dec-3-en-2-ones: Readily accessible and highly potent anticancer compounds. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4035-4038.	2.2	3
39	Triflic Acid-Mediated Rearrangements of 3-Methoxy-8-oxabicyclo[3.2.1]octa-3,6-dien-2-ones: Synthesis of Methoxytropolones and Furans. Journal of Organic Chemistry, 2013, 78, 11707-11713.	3.2	35
40	Acid-mediated coupling of γ-hydroxybutenolides and aldehydes: synthesis of a new class of spirocyclic ketal-lactones. Tetrahedron Letters, 2012, 53, 6779-6781.	1.4	9
41	An Oxidopyrylium Cyclization/Ring-Opening Route to Polysubstituted α-Hydroxytropolones. Organic Letters, 2012, 14, 5988-5991.	4.6	55
42	A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules. Journal of the American Chemical Society, 2010, 132, 12711-12716.	13.7	131
43	A Biosynthetic Strategy for Re-engineering theStaphylococcus aureusCell Wall with Non-native Small Molecules. ACS Chemical Biology, 2010, 5, 1147-1155.	3.4	63
44	Chemical Control over Immune Recognition: A Class of Antibody-Recruiting Small Molecules That Target Prostate Cancer. Journal of the American Chemical Society, 2009, 131, 17090-17092.	13.7	106
45	Ruthenium-catalyzed tandem enyne-cross metathesis–cyclopropanation: three-component access to vinyl cyclopropanes. Tetrahedron Letters, 2008, 49, 5714-5717.	1.4	31
46	Conformationally Restricted (+)-Cacospongionolide B Analogues. Influence on Secretory Phospholipase A2Inhibition. Journal of Organic Chemistry, 2007, 72, 1545-1552.	3.2	19
47	Ruthenium-Catalyzed Tandem Cross-Metathesis/Wittig Olefination:Â Generation of Conjugated Dienoic Esters from Terminal Olefins. Organic Letters, 2007, 9, 1749-1752.	4.6	61
48	Total Syntheses of (+)- and (â^')-Cacospongionolide B, Cacospongionolide E, and Related Analogues. Preliminary Study of Structural Features Required for Phospholipase A2Inhibition. Journal of Organic Chemistry, 2004, 69, 5712-5719.	3.2	55