
Tomohiro Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4429155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S-Nitrosylation of p62 Inhibits Autophagic Flux to Promote α-Synuclein Secretion and Spread in Parkinson's Disease and Lewy Body Dementia. Journal of Neuroscience, 2022, 42, 3011-3024.	3.6	22
2	S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders. Cell Death and Differentiation, 2022, 29, 2137-2150.	11.2	12
3	Inhibition of autophagic flux by S-nitrosylation of SQSTM1/p62 promotes neuronal secretion and cell-to-cell transmission of SNCA/α-synuclein in Parkinson disease and Lewy body dementia. , 2022, 1, 223-225.		2
4	NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Molecular Psychiatry, 2021, 26, 5751-5765.	7.9	43
5	Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer's disease. Science, 2021, 371, .	12.6	47
6	S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
7	TCA cycle metabolic compromise due to an aberrant S-nitrosoproteome in HIV-associated neurocognitive disorder with methamphetamine use. Journal of NeuroVirology, 2021, 27, 367-378.	2.1	6
8	Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radical Biology and Medicine, 2021, 172, 562-577.	2.9	44
9	Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxidants and Redox Signaling, 2021, 35, 531-550.	5.4	19
10	Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2020, 32, 817-833.	5.4	36
11	NitroSynapsin for the treatment of neurological manifestations of tuberous sclerosis complex in a rodent model. Neurobiology of Disease, 2019, 127, 390-397.	4.4	8
12	â€~SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends in Endocrinology and Metabolism, 2017, 28, 879-892.	7.1	49
13	S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models. Cell Reports, 2017, 21, 2171-2182.	6.4	103
14	Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nature Communications, 2016, 7, 10242.	12.8	99
15	Protein S -Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends in Pharmacological Sciences, 2016, 37, 73-84.	8.7	136
16	Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation. Neurochemical Research, 2016, 41, 510-514.	3.3	14
17	Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease. Scientific Reports, 2015, 5, 14781.	3.3	47
18	Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Scientific Reports, 2015, 5, 14812.	3.3	66

Τομομικό Νακαμυγα

#	Article	IF	CITATIONS
19	Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiology of Disease, 2015, 84, 99-108.	4.4	133
20	Transnitrosylation from DJ-1 to PTEN Attenuates Neuronal Cell Death in Parkinson's Disease Models. Journal of Neuroscience, 2014, 34, 15123-15131.	3.6	88
21	Potential Effect of S-Nitrosylated Protein Disulfide Isomerase on Mutant SOD1 Aggregation and Neuronal Cell Death in Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2014, 49, 796-807.	4.0	51
22	S-Nitrosylation-Mediated Redox Transcriptional Switch Modulates Neurogenesis and Neuronal Cell Death. Cell Reports, 2014, 8, 217-228.	6.4	58
23	lsogenic Human iPSC Parkinson's Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription. Cell, 2013, 155, 1351-1364.	28.9	380
24	S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson's disease. Molecular Neurodegeneration, 2013, 8, 29.	10.8	68
25	Aberrant Protein S-Nitrosylation in Neurodegenerative Diseases. Neuron, 2013, 78, 596-614.	8.1	304
26	Emerging Role of Protein-Protein Transnitrosylation in Cell Signaling Pathways. Antioxidants and Redox Signaling, 2013, 18, 239-249.	5.4	125
27	AÎ ² induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2518-27.	7.1	495
28	Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases. Journal of Cell Death, 2013, 6, JCD.S10847.	0.8	28
29	Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Experimental Neurology, 2012, 238, 12-21.	4.1	91
30	S-Nitrosylation of Critical Protein Thiols Mediates Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2011, 14, 1479-1492.	5.4	83
31	On–off system for PI3-kinase–Akt signaling through <i>S</i> -nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10349-10354.	7.1	150
32	S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by β-amyloid peptide. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14330-14335.	7.1	165
33	Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer's and Parkinson's diseases. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1354-1363.	4.9	89
34	Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: Possible pharmacological strategies. Cell Calcium, 2010, 47, 190-197.	2.4	73
35	S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion, 2010, 10, 573-578.	3.4	120
36	Transnitrosylation of XIAP Regulates Caspase-Dependent Neuronal Cell Death. Molecular Cell, 2010, 39, 184-195.	9.7	162

Τομομικό Νακαμυγά

#	ARTICLE	IF	CITATIONS
37	Cell death: protein misfolding and neurodegenerative diseases. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 455-468.	4.9	167
38	S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury. Science, 2009, 324, 102-105.	12.6	957
39	According to GOSPEL: Filling in the GAP(DH) of NO-Mediated Neurotoxicity. Neuron, 2009, 63, 3-6.	8.1	15
40	Emerging Roles of <i>S</i> -Nitrosylation in Protein Misfolding and Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2008, 10, 87-102.	5.4	106
41	Hypoxia Enhances S-Nitrosylation-Mediated NMDA Receptor Inhibition via a Thiol Oxygen Sensor Motif. Neuron, 2007, 53, 53-64.	8.1	99
42	Contribution of glutamatergic signaling to nitrosative stress-induced protein misfolding in normal brain aging and neurodegenerative diseases. Aging Cell, 2007, 6, 351-359.	6.7	18
43	S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 2006, 441, 513-517.	27.8	825
44	Response to Comment on "S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin's Protective Function". Science, 2005, 308, 1870c-1870c.	12.6	20
45	Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proceedings of the National Academy of Sciences of the United States of America. 2004. 101. 10810-10814.	7.1	494