
Sally E Wenzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4426905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. European Respiratory Journal, 2014, 43, 343-373.	6.7	2,898
2	Asthma phenotypes: the evolution from clinical to molecular approaches. Nature Medicine, 2012, 18, 716-725.	30.7	1,926
3	Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 315-323.	5.6	1,820
4	An Official American Thoracic Society/European Respiratory Society Statement: Asthma Control and Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 59-99.	5.6	1,591
5	Oral Glucocorticoid-Sparing Effect of Mepolizumab in Eosinophilic Asthma. New England Journal of Medicine, 2014, 371, 1189-1197.	27.0	1,331
6	Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. New England Journal of Medicine, 2018, 378, 2486-2496.	27.0	1,253
7	Dupilumab in Persistent Asthma with Elevated Eosinophil Levels. New England Journal of Medicine, 2013, 368, 2455-2466.	27.0	1,139
8	Asthma endotypes: AÂnew approach to classification of disease entities within the asthma syndrome. Journal of Allergy and Clinical Immunology, 2011, 127, 355-360.	2.9	1,007
9	Asthma: defining of the persistent adult phenotypes. Lancet, The, 2006, 368, 804-813.	13.7	892
10	Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2007, 119, 405-413.	2.9	838
11	Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. New England Journal of Medicine, 2017, 376, 2448-2458.	27.0	779
12	Exploring the Effects of Omalizumab in Allergic Asthma. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 804-811.	5.6	772
13	Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet, The, 2016, 388, 31-44.	13.7	760
14	After asthma: redefining airways diseases. Lancet, The, 2018, 391, 350-400.	13.7	744
15	Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nature Genetics, 2011, 43, 887-892.	21.4	736
16	A Study to Evaluate Safety and Efficacy of Mepolizumab in Patients with Moderate Persistent Asthma. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1062-1071.	5.6	672
17	PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 2017, 171, 628-641.e26.	28.9	589
18	Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet, The, 2007, 370, 1422-1431.	13.7	554

#	Article	IF	CITATIONS
19	Distinguishing severe asthma phenotypesâ~†Role of age at onset and eosinophilic inflammation. Journal of Allergy and Clinical Immunology, 2004, 113, 101-108.	2.9	501
20	Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. Journal of Allergy and Clinical Immunology, 2014, 133, 1557-1563.e5.	2.9	488
21	Interleukin-10 regulation in normal subjects and patients with asthma. Journal of Allergy and Clinical Immunology, 1996, 97, 1288-1296.	2.9	455
22	A Randomized, Double-blind, Placebo-controlled Study of Tumor Necrosis Factor-α Blockade in Severe Persistent Asthma. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 549-558.	5.6	444
23	Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respiratory Medicine,the, 2015, 3, 849-858.	10.7	443
24	Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respiratory Medicine,the, 2014, 2, 879-890.	10.7	435
25	The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. Journal of Allergy and Clinical Immunology, 2005, 115, 459-465.	2.9	425
26	Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. Journal of Allergy and Clinical Immunology, 2013, 132, 1086-1096.e5.	2.9	422
27	Asthma. Nature Reviews Disease Primers, 2015, 1, 15025.	30.5	413
28	Heterogeneity of severe asthma in childhood: Confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2011, 127, 382-389.e13.	2.9	392
29	Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature, 2020, 586, 763-768.	27.8	376
30	Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respiratory Medicine,the, 2016, 4, 574-584.	10.7	375
31	COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 83-90.	5.6	370
32	Activation of Pulmonary Mast Cells by Bronchoalveolar Allergen Challenge: <i>In Vivo</i> Release of Histamine and Tryptase in Atopic Subjects with and without Asthma. The American Review of Respiratory Disease, 1988, 137, 1002-1008.	2.9	366
33	Inflammatory and Comorbid Features of Patients with Severe Asthma and Frequent Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 302-313.	5.6	346
34	Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. Journal of Clinical Investigation, 2018, 128, 997-1009.	8.2	337
35	Asthma outcomes: Biomarkers. Journal of Allergy and Clinical Immunology, 2012, 129, S9-S23.	2.9	334
36	Obesity and asthma: An association modified by age of asthma onset. Journal of Allergy and Clinical Immunology, 2011, 127, 1486-1493.e2.	2.9	330

#	Article	IF	CITATIONS
37	Elevated Levels of Leukotriene C ₄ in Bronchoalveolar Lavage Fluid from Atopic Asthmatics after Endobronchial Allergen Challenge. The American Review of Respiratory Disease, 1990, 142, 112-119.	2.9	316
38	Asthma phenotypes and the use of biologic medications in asthma and allergic disease: The next steps toward personalized care. Journal of Allergy and Clinical Immunology, 2015, 135, 299-310.	2.9	305
39	High IFN-Î ³ and low SLPI mark severe asthma in mice and humans. Journal of Clinical Investigation, 2015, 125, 3037-3050.	8.2	300
40	Severe asthma: from characteristics to phenotypes to endotypes. Clinical and Experimental Allergy, 2012, 42, 650-658.	2.9	287
41	A Randomized, Controlled, Phase 2 Study of AMG 317, an IL-4Rα Antagonist, in Patients with Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 788-796.	5.6	282
42	Design and baseline characteristics of The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study: a large cohort of patients with severe or difficult-to-treat asthma. Annals of Allergy, Asthma and Immunology, 2004, 92, 32-39.	1.0	276
43	Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. Journal of Applied Physiology, 2008, 104, 394-403.	2.5	270
44	Severe Asthma in Adults. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 149-160.	5.6	267
45	Mast Cell Phenotype, Location, and Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 299-309.	5.6	265
46	Predicting Response to Omalizumab, an Anti-IgE Antibody, in Patients With Allergic Asthma. Chest, 2004, 125, 1378-1386.	0.8	261
47	Airway Remodeling Measured by Multidetector CT Is Increased in Severe Asthma and Correlates With Pathology. Chest, 2008, 134, 1183-1191.	0.8	260
48	A Multivariate Analysis of Risk Factors for the Air-Trapping Asthmatic Phenotype as Measured by Quantitative CT Analysis. Chest, 2009, 135, 48-56.	0.8	260
49	Use of Exhaled Nitric Oxide Measurement to Identify a Reactive, at-Risk Phenotype among Patients with Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1033-1041.	5.6	252
50	Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. Journal of Allergy and Clinical Immunology, 2014, 133, 1280-1288.	2.9	247
51	Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 356-362.	5.6	242
52	Effect of Vitamin D ₃ on Asthma Treatment Failures in Adults With Symptomatic Asthma and Lower Vitamin D Levels. JAMA - Journal of the American Medical Association, 2014, 311, 2083.	7.4	236
53	Recent asthma exacerbations: A key predictor of future exacerbations. Respiratory Medicine, 2007, 101, 481-489.	2.9	225
54	Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. Journal of Allergy and Clinical Immunology, 2017, 140, 63-75.	2.9	222

#	Article	IF	CITATIONS
55	Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respiratory Medicine,the, 2019, 7, 46-59.	10.7	216
56	Airway Lipoxin A ₄ Generation and Lipoxin A ₄ Receptor Expression Are Decreased in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 574-582.	5.6	215
57	Evolving Concepts of Asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 660-668.	5.6	214
58	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	3.8	210
59	Severe asthma: Lessons from the Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2007, 119, 14-21.	2.9	209
60	Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nature Medicine, 2012, 18, 1525-1530.	30.7	206
61	Pathophysiology of severe asthma. Journal of Allergy and Clinical Immunology, 2000, 106, 1033-1042.	2.9	204
62	Prostaglandin D2 pathway upregulation: Relation to asthma severity, control, and TH2 inflammation. Journal of Allergy and Clinical Immunology, 2013, 131, 1504-1512.e12.	2.9	191
63	Current concepts of severe asthma. Journal of Clinical Investigation, 2016, 126, 2394-2403.	8.2	188
64	Spectrum of Prostanoid Release after Bronchoalveolar Allergen Challenge in Atopic Asthmatics and in Control Groups: An Alteration in the Ratio of Bronchoconstrictive to Bronchoprotective Mediators. The American Review of Respiratory Disease, 1989, 139, 450-457.	2.9	187
65	Pulmonary Function Abnormalities in HIV-Infected Patients during the Current Antiretroviral Therapy Era. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 790-796.	5.6	184
66	Key findings and clinical implications from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. Journal of Allergy and Clinical Immunology, 2012, 130, 332-342.e10.	2.9	176
67	Relationship of Small Airway Chymase-Positive Mast Cells and Lung Function in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 431-439.	5.6	165
68	Risk Factors Associated With Persistent Airflow Limitation in Severe or Difficult-to-Treat Asthma. Chest, 2007, 132, 1882-1889.	0.8	165
69	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	5.6	165
70	Gene Expression in Relation to Exhaled Nitric Oxide Identifies Novel Asthma Phenotypes with Unique Biomolecular Pathways. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1363-1372.	5.6	162
71	Consistently very poorly controlled asthma, as defined by the impairment domain of the Expert Panel Report 3 guidelines, increases risk for future severe asthma exacerbations in The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. Journal of Allergy and Clinical Immunology. 2009. 124. 895-902.e4.	2.9	160
72	Neutrophil cytoplasts induce T _H 17 differentiation and skew inflammation toward neutrophilia in severe asthma. Science Immunology, 2018, 3, .	11.9	157

#	Article	IF	CITATIONS
73	Correlation of Systemic Superoxide Dismutase Deficiency to Airflow Obstruction in Asthma. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 306-313.	5.6	148
74	Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: Association with asthma severity, neutrophilic inflammation, and wound repair. Journal of Allergy and Clinical Immunology, 2003, 111, 1345-1352.	2.9	147
75	IL-4 receptor polymorphisms predict reduction in asthma exacerbations during response to an anti–IL-4 receptor α antagonist. Journal of Allergy and Clinical Immunology, 2012, 130, 516-522.e4.	2.9	142
76	An Association between <scp>l</scp> -Arginine/Asymmetric Dimethyl Arginine Balance, Obesity, and the Age of Asthma Onset Phenotype. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 153-159.	5.6	141
77	Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respiratory Medicine,the, 2021, 9, 1299-1312.	10.7	139
78	Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. Journal of Allergy and Clinical Immunology, 2003, 112, 1064-1071.	2.9	138
79	Transforming Growth Factor-β2 Induces Bronchial Epithelial Mucin Expression in Asthma. American Journal of Pathology, 2004, 165, 1097-1106.	3.8	137
80	Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2019, 143, 104-113.e14.	2.9	135
81	IL4RαMutations Are Associated with Asthma Exacerbations and Mast Cell/IgE Expression. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 570-576.	5.6	133
82	Efficacy and safety of an anti–IL-13 mAb in patients with severe asthma: AÂrandomized trial. Journal of Allergy and Clinical Immunology, 2014, 133, 989-996.e4.	2.9	133
83	The Mouse Trap. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1173-1176.	5.6	132
84	Defective Apoptotic Cell Phagocytosis Attenuates Prostaglandin E2and 15-Hydroxyeicosatetraenoic Acid in Severe Asthma Alveolar Macrophages. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 972-979.	5.6	131
85	Genome-wide association studies of asthma indicate opposite immunopathogenesis direction from autoimmune diseases. Journal of Allergy and Clinical Immunology, 2012, 130, 861-868.e7.	2.9	130
86	Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1449-1463.	5.6	130
87	Liberty Asthma QUEST: Phase 3 Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study to Evaluate Dupilumab Efficacy/Safety in Patients with Uncontrolled, Moderate-to-Severe Asthma. Advances in Therapy, 2018, 35, 737-748.	2.9	129
88	Exhaled nitric oxide identifies the persistent eosinophilic phenotype in severe refractory asthma. Journal of Allergy and Clinical Immunology, 2005, 116, 1249-1255.	2.9	127
89	TGF-β and IL-13 Synergistically Increase Eotaxin-1 Production in Human Airway Fibroblasts. Journal of Immunology, 2002, 169, 4613-4619.	0.8	125
90	Increased TGF-β2 in severe asthma with eosinophilia. Journal of Allergy and Clinical Immunology, 2005, 115, 110-117.	2.9	125

#	Article	IF	CITATIONS
91	Dupilumab Efficacy in Patients with Uncontrolled, Moderate-to-Severe Allergic Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 516-526.	3.8	123
92	Function and Regulation of SPLUNC1 Protein in Mycoplasma Infection and Allergic Inflammation. Journal of Immunology, 2007, 179, 3995-4002.	0.8	120
93	15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14246-14251.	7.1	117
94	Alterations of the Arginine Metabolome in Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 673-681.	5.6	116
95	Emerging molecular phenotypes of asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L130-L140.	2.9	116
96	Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways. Journal of Allergy and Clinical Immunology, 2008, 121, 893-902.e2.	2.9	115
97	Importance of hedgehog interacting protein and other lung function genes in asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 1457-1465.	2.9	115
98	Obstructive Sleep Apnea Risk, Asthma Burden, and Lower Airway Inflammation in Adults in the Severe Asthma Research Program (SARP) II. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 566-575.e1.	3.8	107
99	Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 973-982.	5.6	105
100	Efficacy of Omalizumab, an Anti-immunoglobulin E Antibody, in Patients with Allergic Asthma at High Risk of Serious Asthma-related Morbidity and Mortality. Current Medical Research and Opinion, 2001, 17, 233-240.	1.9	103
101	Respiratory outcomes in high-risk children 7 to 10 years after prophylaxis with respiratory syncytial virus immune globulin. American Journal of Medicine, 2002, 112, 627-633.	1.5	103
102	Complex phenotypes in asthma: Current definitions. Pulmonary Pharmacology and Therapeutics, 2013, 26, 710-715.	2.6	102
103	Intersection of biology and therapeutics: type 2 targeted therapeutics for adult asthma. Lancet, The, 2020, 395, 371-383.	13.7	102
104	Onset of effect and impact on health-related quality of life, exacerbation rate, lung function, and nasal polyposis symptoms for patients with severe eosinophilic asthma treated with benralizumab (ANDHI): a randomised, controlled, phase 3b trial. Lancet Respiratory Medicine,the, 2021, 9, 260-274.	10.7	102
105	The role of cytokines in chronic rhinosinusitis with nasal polyps. Current Opinion in Otolaryngology and Head and Neck Surgery, 2008, 16, 270-274.	1.8	101
106	An airway epithelial iNOS–DUOX2–thyroid peroxidase metabolome drives Th1/Th2 nitrative stress in human severe asthma. Mucosal Immunology, 2014, 7, 1175-1185.	6.0	101
107	Peripheral blood and airway tissue expression of transforming growth factor Î ² by neutrophils in asthmatic subjects and normal control subjects. Journal of Allergy and Clinical Immunology, 2000, 106, 1115-1123.	2.9	100
108	Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during longacting β agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respiratory Medicine,the, 2014, 2, 204-213.	10.7	100

#	Article	IF	CITATIONS
109	Pathobiology of Severe Asthma. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 511-545.	22.4	100
110	Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. Journal of Allergy and Clinical Immunology, 2013, 132, 313-320.e15.	2.9	98
111	Development of New Therapies for Severe Asthma. Allergy, Asthma and Immunology Research, 2017, 9, 3.	2.9	97
112	Use of the Asthma Control Questionnaire to predict future risk of asthma exacerbation. Journal of Allergy and Clinical Immunology, 2011, 127, 167-172.	2.9	96
113	The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunology, 2014, 7, 1186-1198.	6.0	96
114	Detrimental Effects of Environmental Tobacco Smoke in Relation to Asthma Severity. PLoS ONE, 2011, 6, e18574.	2.5	96
115	Mometasone or Tiotropium in Mild Asthma with a Low Sputum Eosinophil Level. New England Journal of Medicine, 2019, 380, 2009-2019.	27.0	95
116	Lung imaging in asthmatic patients: The picture is clearer. Journal of Allergy and Clinical Immunology, 2011, 128, 467-478.	2.9	94
117	Zileuton: The First 5-Lipoxygenase Inhibitor for the Treatment of Asthma. Annals of Pharmacotherapy, 1996, 30, 858-864.	1.9	93
118	Interleukin-13–induced MUC5AC Is Regulated by 15-Lipoxygenase 1 Pathway in Human Bronchial Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 782-790.	5.6	93
119	Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1358-1367.	5.6	91
120	Expression of SARS-CoV-2 receptor ACE2 and coincident host response signature varies by asthma inflammatory phenotype. Journal of Allergy and Clinical Immunology, 2020, 146, 315-324.e7.	2.9	90
121	Narrative Review: The Role of Th2 Immune Pathway Modulation in the Treatment of Severe Asthma and Its Phenotypes. Annals of Internal Medicine, 2010, 152, 232.	3.9	89
122	Sleep quality and asthma control and quality of life in non-severe and severe asthma. Sleep and Breathing, 2012, 16, 1129-1137.	1.7	89
123	Epithelial eotaxin-2 and eotaxin-3 expression: relation to asthma severity, luminal eosinophilia and age at onset. Thorax, 2012, 67, 1061-1066.	5.6	88
124	Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1439-1448.	5.6	87
125	Prognostic and Predictive Value of Blood Eosinophil Count, Fractional Exhaled Nitric Oxide, and Their Combination in Severe Asthma: A <i>Post Hoc</i> Analysis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1308-1312.	5.6	87
126	American Thoracic Society/National Heart, Lung, and Blood Institute Asthma–Chronic Obstructive Pulmonary Disease Overlap Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 375-381.	5.6	86

#	Article	IF	CITATIONS
127	Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight, 2017, 2, .	5.0	86
128	Severity assessment in asthma: An evolving concept. Journal of Allergy and Clinical Immunology, 2005, 116, 990-995.	2.9	85
129	Theophylline: Potential antiinflammatory effects in nocturnal asthma. Journal of Allergy and Clinical Immunology, 1996, 97, 1242-1246.	2.9	84
130	Future Research Directions in Asthma. An NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1366-1372.	5.6	84
131	Immunoassay of tryptase from human mast cells. Journal of Immunological Methods, 1986, 86, 139-142.	1.4	83
132	The IL6R variation Asp358Ala is a potential modifier of lung function in subjects with asthma. Journal of Allergy and Clinical Immunology, 2012, 130, 510-515.e1.	2.9	82
133	Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. Journal of Allergy and Clinical Immunology, 2013, 131, 339-345.	2.9	82
134	<scp>eQTL</scp> of bronchial epithelial cells and bronchial alveolar lavage deciphers <scp>GWAS</scp> â€identified asthma genes. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1309-1318.	5.7	82
135	Gender Differences in IgE-Mediated Allergic Asthma in the Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) Study. Journal of Asthma, 2006, 43, 179-184.	1.7	80
136	Asthma Is More Severe in Older Adults. PLoS ONE, 2015, 10, e0133490.	2.5	80
137	Quantitative computed tomographic imaging–based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. Journal of Allergy and Clinical Immunology, 2017, 140, 690-700.e8.	2.9	79
138	The Effect of Salmeterol on Nocturnal Symptoms, Airway Function, and Inflammation in Asthma. Chest, 1997, 111, 1249-1254.	0.8	78
139	Characteristics of Perimenstrual Asthma and Its Relation to Asthma Severity and Control. Chest, 2013, 143, 984-992.	0.8	78
140	The role of leukotrienes in asthma. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 69, 145-155.	2.2	77
141	Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics. Journal of Applied Physiology, 2013, 115, 730-742.	2.5	77
142	ACE2, TMPRSS2, and furin gene expression in the airways of people with asthma—implications for COVID-19. Journal of Allergy and Clinical Immunology, 2020, 146, 208-211.	2.9	77
143	Natural killer cell–mediated inflammation resolution is disabled in severe asthma. Science Immunology, 2017, 2, .	11.9	76
144	Regional Fibroblast Heterogeneity in the Lung. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1208-1215.	5.6	74

#	Article	IF	CITATIONS
145	Effects of endogenous sex hormones on lung function and symptom control in adolescents with asthma. BMC Pulmonary Medicine, 2018, 18, 58.	2.0	74
146	Defining a Severe Asthma Super-Responder: Findings from a Delphi Process. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3997-4004.	3.8	74
147	Asthma in older adults: observations from the Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. Annals of Allergy, Asthma and Immunology, 2006, 96, 406-414.	1.0	73
148	Severe Adult Asthmas: Integrating Clinical Features, Biology, and Therapeutics to Improve Outcomes. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 809-821.	5.6	72
149	Concurrent Use of Salmeterol with Inhaled Corticosteroids is More Effective than Inhaled Corticosteroid Dose Increases. Allergy and Asthma Proceedings, 1999, 20, 173-180.	2.2	71
150	Interleukin-15 Inhibits Spontaneous Apoptosis in Human Eosinophils via Autocrine Production of Granulocyte Macrophage–Colony Stimulating Factor and Nuclear Factor- κ B Activation. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 404-412.	2.9	71
151	Eosinophils in Asthma — Closing the Loop or Opening the Door?. New England Journal of Medicine, 2009, 360, 1026-1028.	27.0	71
152	Increased T-cell receptor Vβ8+ T cells in bronchoalveolar lavage fluid of subjects with poorly controlled asthma: A potential role for microbial superantigensâ~†â~†â~†â~tâ` Journal of Allergy and Clinical Immunology, 1999, 104, 37-45.	2.9	70
153	Improvements in Distal Lung Function Correlate With Asthma Symptoms After Treatment With Oral Montelukast. Chest, 2006, 130, 1726-1732.	0.8	70
154	Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and) Tj ETQq0 C	0 rgBT /C 10.7	verlock 10 Tf
155	Baseline FeNO as a prognostic biomarker for subsequent severe asthma exacerbations in patients with uncontrolled, moderate-to-severe asthma receiving placebo in the LIBERTY ASTHMA QUEST study: a post-hoc analysis. Lancet Respiratory Medicine,the, 2021, 9, 1165-1173.	10.7	70
156	Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. Journal of Applied Physiology, 2015, 118, 1286-1298.	2.5	67
157	Urinary Leukotriene E4in Patients with Asthma: Effect of Airways Reactivity and Sodium Cromoglycate. The American Review of Respiratory Disease, 1991, 143, 1322-1328.	2.9	66
158	Automated quantification of COVID-19 severity and progression using chest CT images. European Radiology, 2021, 31, 436-446.	4.5	66
159	Safety of investigative bronchoscopy in the Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2011, 128, 328-336.e3.	2.9	65
160	Racial disparities in asthma-related health care use in the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2019, 143, 2052-2061.	2.9	65
161	IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCl Insight, 2017, 2, .	5.0	64
162	Selective downregulation of prostaglandin E2–related pathways by the TH2 cytokine IL-13. Journal of Allergy and Clinical Immunology, 2006, 117, 1446-1454.	2.9	63

#	Article	IF	CITATIONS
163	Empowerment of 15-Lipoxygenase Catalytic Competence in Selective Oxidation of Membrane ETE-PE to Ferroptotic Death Signals, HpETE-PE. Journal of the American Chemical Society, 2018, 140, 17835-17839.	13.7	63
164	IgE expression pattern in lung: Relation to systemic IgE and asthma phenotypes. Journal of Allergy and Clinical Immunology, 2007, 119, 855-862.	2.9	62
165	Noninvasive Markers of Airway Inflammation in Asthma. Clinical and Translational Science, 2009, 2, 112-117.	3.1	62
166	Predicting Intermediate Phenotypes in Asthma Using Bronchoalveolar Lavageâ€Đerived Cytokines. Clinical and Translational Science, 2010, 3, 147-157.	3.1	62
167	Asthma diagnosis and airway bronchodilator response in HIV-infected patients. Journal of Allergy and Clinical Immunology, 2012, 129, 708-714.e8.	2.9	62
168	US and European severe asthma cohorts: what can they teach us about severe asthma?. Journal of Internal Medicine, 2012, 272, 121-132.	6.0	62
169	Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma?. Physiological Reviews, 2020, 100, 983-1017.	28.8	62
170	Determinants of Exhaled Breath Condensate pH in a Large Population With Asthma. Chest, 2011, 139, 328-336.	0.8	61
171	Predicting future risk of asthma exacerbations using individual conditional probabilities. Journal of Allergy and Clinical Immunology, 2011, 127, 1494-1502.e3.	2.9	59
172	Nitric oxide and related enzymes in asthma: relation to severity, enzyme function and inflammation. Clinical and Experimental Allergy, 2012, 42, 760-768.	2.9	58
173	Phenotypic and genotypic association of epithelial IL1RL1Âto human TH2-like asthma. Journal of Allergy and Clinical Immunology, 2015, 135, 92-99.e10.	2.9	57
174	PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14376-14385.	7.1	57
175	Impact of Age and Sex on Outcomes and Hospital Cost of Acute Asthma in the United States, 2011-2012. PLoS ONE, 2016, 11, e0157301.	2.5	57
176	Asthmatic Granulomatosis. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 501-507.	5.6	55
177	Increased Susceptibility to Pulmonary <i>Pseudomonas</i> Infection in Splunc1 Knockout Mice. Journal of Immunology, 2013, 191, 4259-4268.	0.8	53
178	Assessment of asthma control and asthma exacerbations in the epidemiology and natural history of asthma: outcomes and treatment regimens (TENOR) observational cohort. Current Respiratory Care Reports, 2012, 1, 259-269.	0.6	52
179	Nebulized dehydroepiandrosterone-3-sulfate improves asthma control in the moderate-to-severe asthma results of a 6-week, randomized, double-blind, placebo-controlled study. Allergy and Asthma Proceedings, 2010, 31, 461-471.	2.2	51
180	Association Between Insomnia and AsthmaÂBurden in the Severe Asthma Research Program (SARP) III. Chest, 2016, 150, 1242-1250.	0.8	51

#	Article	IF	CITATIONS
181	Pruning of the Pulmonary Vasculature in Asthma. The Severe Asthma Research Program (SARP) Cohort. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 39-50.	5.6	51
182	Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. Journal of Allergy and Clinical Immunology, 2021, 147, 894-909.	2.9	50
183	Clinical Implications of Having Reduced Mid Forced Expiratory Flow Rates (FEF25-75), Independently of FEV1, in Adult Patients with Asthma. PLoS ONE, 2015, 10, e0145476.	2.5	49
184	Tissue and BAL Based Biomarkers in Asthma. Immunology and Allergy Clinics of North America, 2007, 27, 623-632.	1.9	48
185	Prospective predictors of exacerbation status in severe asthma over a 3â€year followâ€up. Clinical and Experimental Allergy, 2018, 48, 1137-1146.	2.9	48
186	Ciclesonide Reduces the Need for Oral Steroid Use in Adult Patients With Severe, Persistent Asthma. Chest, 2006, 129, 1176-1187.	0.8	46
187	Distinct Phenotypes of Smokers with Fixed Airflow Limitation Identified by Cluster Analysis of Severe Asthma. Annals of the American Thoracic Society, 2018, 15, 33-41.	3.2	46
188	Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. Journal of Allergy and Clinical Immunology, 2020, 146, 1016-1026.	2.9	46
189	Racial differences in biologic predictors of severe asthma: Data from the Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2010, 126, 1149-1156.e1.	2.9	45
190	Tollâ€like receptors 2, 3 and 4 and thymic stromal lymphopoietin expression in fatal asthma. Clinical and Experimental Allergy, 2012, 42, 1459-1471.	2.9	45
191	Severe asthma during childhood and adolescence: AÂlongitudinal study. Journal of Allergy and Clinical Immunology, 2020, 145, 140-146.e9.	2.9	45
192	15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. Journal of Clinical Investigation, 2022, 132, .	8.2	45
193	Step-Up Therapy in Black Children and Adults with Poorly Controlled Asthma. New England Journal of Medicine, 2019, 381, 1227-1239.	27.0	44
194	Brain-Derived Neurotrophic Factor Expression in Asthma. Association with Severity and Type 2 Inflammatory Processes. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 844-852.	2.9	43
195	The C11orf30-LRRC32 region is associated with total serum IgE levels in asthmatic patients. Journal of Allergy and Clinical Immunology, 2012, 129, 575-578.e9.	2.9	41
196	Peripheral Eosinophilia in Patients With Inflammatory Bowel Disease Defines an Aggressive Disease Phenotype. American Journal of Gastroenterology, 2017, 112, 1849-1858.	0.4	41
197	Subtle Immunodeficiency in Severe Asthma: IgA and IgG ₂ Correlate with Lung Function and Symptoms. International Archives of Allergy and Immunology, 2006, 140, 96-102.	2.1	40
198	Human Neutrophil Elastase Degrades SPLUNC1 and Impairs Airway Epithelial Defense against Bacteria. PLoS ONE, 2013, 8, e64689.	2.5	40

#	Article	IF	CITATIONS
199	A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO• sabotage of theft-ferroptosis. Redox Biology, 2021, 45, 102045.	9.0	40
200	MAPK Regulation of IL-4/IL-13 Receptors Contributes to the Synergistic Increase in CCL11/Eotaxin-1 in Response to TGF-β1 and IL-13 in Human Airway Fibroblasts. Journal of Immunology, 2012, 188, 6046-6054.	0.8	39
201	Aspirin or Other Nonsteroidal Inflammatory Agent Exacerbated Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 653-657.e1.	3.8	39
202	Race is associated with differences in airway inflammation in patients with asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 257-265.e11.	2.9	39
203	Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 692-701.	2.9	39
204	Mixed Sputum Granulocyte Longitudinal Impact on Lung Function in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 882-892.	5.6	39
205	Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1036-1045.	5.6	39
206	New Approaches to Anti-Inflammatory Therapy for Asthma. American Journal of Medicine, 1998, 104, 287-300.	1.5	38
207	Airway eicosanoids in acute severe respiratory syncytial virus bronchiolitis. Journal of Pediatrics, 2004, 145, 115-118.	1.8	38
208	IL-27 and type 2 immunity in asthmatic patients: Association with severity, CXCL9, and signal transducer and activator of transcription signaling. Journal of Allergy and Clinical Immunology, 2015, 135, 386-394.e5.	2.9	38
209	Investigation of the relationship between IL-6 and type 2 biomarkers in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 430-433.	2.9	38
210	Clinical Research Needs for the Management of Chronic Rhinosinusitis with Nasal Polyps in the New Era of Biologics: A National Institute of Allergy and Infectious Diseases Workshop. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1532-1549.e1.	3.8	38
211	Inactivation of Leukotriene C4in the Airways and Subsequent Urinary Leukotriene E4Excretion in Normal and Asthmatic Subjects. The American Review of Respiratory Disease, 1993, 148, 1244-1251.	2.9	37
212	IL-4 receptor \hat{I}_{\pm} polymorphisms are predictors of a pharmacogenetic response to a novel IL-4/IL-13 antagonist. Journal of Allergy and Clinical Immunology, 2010, 126, 875-878.	2.9	37
213	Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study. Journal of Applied Physiology, 2014, 117, 593-603.	2.5	37
214	A Novel CD4 ⁺ T Cell–Dependent Murine Model of <i>Pneumocystis</i> -driven Asthma-like Pathology. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 807-820.	5.6	37
215	Vitamin D Supplementation and the Risk of Colds in Patients with Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 634-641.	5.6	37
216	BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 837-856.	5.6	37

#	Article	IF	CITATIONS
217	Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 370-380.	5.7	37
218	Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 1936-1948.e9.	2.9	37
219	Phenotypes in Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 579-580.	5.6	36
220	Efficacy, Safety, and Effects on Quality of Life of Salmeterol Versus Albuterol in Patients with Mild to Moderate Persistent Asthma. Annals of Allergy, Asthma and Immunology, 1998, 80, 463-470.	1.0	35
221	Allergen-dependent solubilization of IL-13 receptor α2 reveals a novel mechanism to regulate allergy. Journal of Allergy and Clinical Immunology, 2007, 119, 375-383.	2.9	35
222	Vaccination of patients with mild and severe asthma with a 2009 pandemic H1N1 influenza virus vaccine. Journal of Allergy and Clinical Immunology, 2011, 127, 130-137.e3.	2.9	35
223	Single oral dose of prednisone decreases leukotriene B production by alveolar macrophages from patients with nocturnal asthma but not control subjects: Relationship to changes in cellular influx and FEV. Journal of Allergy and Clinical Immunology, 1994, 94, 870-881.	2.9	34
224	15-Lipoxygenase 1 in nasal polyps promotes CCL26/eotaxin 3 expression through extracellular signal-regulated kinase activation. Journal of Allergy and Clinical Immunology, 2019, 144, 1228-1241.e9.	2.9	34
225	Characterization of Differential Dynamics, Specificity, and Allostery of Lipoxygenase Family Members. Journal of Chemical Information and Modeling, 2019, 59, 2496-2508.	5.4	34
226	Associations between fluctuations in lung function and asthma control in two populations with differing asthma severity. Thorax, 2011, 66, 1036-1042.	5.6	33
227	International European Respiratory Society/American Thoracic Society guidelines on severe asthma. European Respiratory Journal, 2014, 44, 1378-1379.	6.7	33
228	ATP12A promotes mucus dysfunction during Type 2 airway inflammation. Scientific Reports, 2018, 8, 2109.	3.3	33
229	"Only a Life Lived for Others Is Worth Living― Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxidants and Redox Signaling, 2018, 29, 1333-1358.	5.4	33
230	Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. Journal of Leukocyte Biology, 2019, 106, 57-81.	3.3	33
231	Depressive symptomatology, quality of life and disease control among individuals with well-characterized severe asthma. Journal of Asthma, 2013, 50, 884-890.	1.7	32
232	High-dimensional profiling clusters asthma severity by lymphoid and non-lymphoid status. Cell Reports, 2021, 35, 108974.	6.4	32
233	Genome-wide ancestry association testing identifies a common European variant on 6q14.1 as a risk factor for asthma in African American subjects. Journal of Allergy and Clinical Immunology, 2012, 130, 622-629.e9.	2.9	31
234	Biologic therapy in asthma: entering the new age of personalized medicine. Journal of Asthma, 2014, 51, 669-676.	1.7	31

#	Article	IF	CITATIONS
235	Differentiation of quantitative CT imaging phenotypes in asthma versus COPD. BMJ Open Respiratory Research, 2017, 4, e000252.	3.0	30
236	Quantitative CT metrics are associated with longitudinal lung function decline and future asthma exacerbations: Results from SARP-3. Journal of Allergy and Clinical Immunology, 2021, 148, 752-762.	2.9	30
237	Antileukotriene Drugs in the Management of Asthma. JAMA - Journal of the American Medical Association, 1998, 280, 2068.	7.4	29
238	Mechanisms of tissue inhibitor of metalloproteinase 1 augmentation by IL-13 on TGF-β1–stimulated primary human fibroblasts. Journal of Allergy and Clinical Immunology, 2007, 119, 1388-1397.	2.9	29
239	Role of Insulin-like Growth Factor Binding Protein-3 in Allergic Airway Remodeling. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 611-617.	5.6	29
240	Characterisation of an OCS-dependent severe asthma population treated with mepolizumab. Thorax, 2014, 69, 1141-1142.	5.6	29
241	15-Hydroxyprostaglandin Dehydrogenase Generation of Electrophilic Lipid Signaling Mediators from Hydroxy Ω-3 Fatty Acids. Journal of Biological Chemistry, 2015, 290, 5868-5880.	3.4	29
242	<scp>l</scp> â€citrulline prevents asymmetric dimethylarginineâ€mediated reductions in nitric oxide and nitrosative stress in primary human airway epithelial cells. Clinical and Experimental Allergy, 2017, 47, 190-199.	2.9	29
243	ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight, 2017, 2, .	5.0	29
244	Managing severe asthma. Journal of Allergy and Clinical Immunology, 2006, 117, 508-511.	2.9	28
245	Dupilumab in Persistent Asthma. New England Journal of Medicine, 2013, 369, 1275-1276.	27.0	28
246	Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface. Biomechanics and Modeling in Mechanobiology, 2017, 16, 583-596.	2.8	28
247	The Impact of Insulin Resistance on Loss of Lung Function and Response to Treatment in Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1096-1106.	5.6	28
248	Mast Cells, Their Subtypes, and Relation to Asthma Phenotypes. Annals of the American Thoracic Society, 2013, 10, S158-S164.	3.2	27
249	Characterization of factors associated with systemic corticosteroid use in severe asthma: Data from the Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2014, 133, 915-918.	2.9	27
250	<i>HSD3B1</i> genotype identifies glucocorticoid responsiveness in severe asthma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2187-2193.	7.1	27
251	PrecISE: Precision Medicine in Severe Asthma: An adaptive platform trial with biomarker ascertainment. Journal of Allergy and Clinical Immunology, 2021, 147, 1594-1601.	2.9	27
252	Immunoaffinity Resin for Purification of Urinary Leukotriene E4. Prostaglandins and Other Lipid Mediators, 1998, 55, 301-321.	1.9	26

#	Article	IF	CITATIONS
253	Phenotype of asthmatics with increased airway <i>S</i> -nitrosoglutathione reductase activity. European Respiratory Journal, 2015, 45, 87-97.	6.7	26
254	Benefits of Airway Androgen Receptor Expression in Human Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 285-293.	5.6	26
255	Historical Redlining Impacts Contemporary Environmental and Asthma-related Outcomes in Black Adults. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 824-837.	5.6	26
256	Genomic Differences Distinguish the Myofibroblast Phenotype of Distal Lung Fibroblasts from Airway Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1256-1262.	2.9	25
257	Baseline sputum eosinophilÂ+ neutrophil subgroups' clinical characteristics and longitudinal trajectories for NHLBI Severe Asthma Research Program (SARP 3) cohort. Journal of Allergy and Clinical Immunology, 2020, 146, 222-226.	2.9	25
258	Interleukin-13 augments transforming growth factor-β1-induced tissue inhibitor of metalloproteinase-1 expression in primary human airway fibroblasts. American Journal of Physiology - Cell Physiology, 2005, 288, C435-C442.	4.6	24
259	The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. Journal of Allergy and Clinical Immunology, 2022, 149, 488-516.e9.	2.9	24
260	Establishment of Extracellular Signal-Regulated Kinase 1/2 Bistability and Sustained Activation through Sprouty 2 and Its Relevance for Epithelial Function. Molecular and Cellular Biology, 2010, 30, 1783-1799.	2.3	23
261	Expression of asthma susceptibility genes in bronchial epithelial cells and bronchial alveolar lavage in the Severe Asthma Research Program (SARP) cohort. Journal of Asthma, 2016, 53, 775-782.	1.7	23
262	Exacerbation-prone asthma in the context of race and ancestry in Asthma Clinical Research Network trials. Journal of Allergy and Clinical Immunology, 2019, 144, 1524-1533.	2.9	23
263	Interleukin-22 Inhibits Respiratory Syncytial Virus Production by Blocking Virus-Mediated Subversion of Cellular Autophagy. IScience, 2020, 23, 101256.	4.1	23
264	The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium. JCI Insight, 2019, 4, .	5.0	23
265	Update in Asthma 2005. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 698-706.	5.6	21
266	IL-13 desensitizes β2-adrenergic receptors in human airway epithelial cells through a 15-lipoxygenase/G protein receptor kinase 2 mechanism. Journal of Allergy and Clinical Immunology, 2015, 135, 1144-1153.e9.	2.9	21
267	Antiinflammatory effects of bromodomain and extraterminal domain inhibition in cystic fibrosis lung inflammation. JCl Insight, 2016, 1, .	5.0	21
268	Differences in Particle Deposition Between Members of Imaging-Based Asthma Clusters. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2019, 32, 213-223.	1.4	21
269	Dysfunctional ErbB2, an EGF receptor family member, hinders repair of airway epithelial cells from asthmatic patients. Journal of Allergy and Clinical Immunology, 2019, 143, 2075-2085.e10.	2.9	21
270	Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Medicine, 2021, 13, 66.	8.2	21

#	Article	IF	CITATIONS
271	Interactions of RKIP with Inflammatory Signaling Pathways. Critical Reviews in Oncogenesis, 2014, 19, 497-504.	0.4	20
272	Severe/Fatal Asthma. Chest, 2003, 123, 405S-410S.	0.8	19
273	Physiologic and Pathologic Abnormalities in Severe Asthma. Clinics in Chest Medicine, 2006, 27, 29-40.	2.1	19
274	Should lung biopsies be performed in patients with severe asthma?. European Respiratory Review, 2015, 24, 525-539.	7.1	19
275	Adiposity influences airway wall thickness and the asthma phenotype of HIV-associated obstructive lung disease: a cross-sectional study. BMC Pulmonary Medicine, 2016, 16, 111.	2.0	19
276	Internet-Based Cognitive-Behavioral Therapy for Insomnia in Adults With Asthma: A Pilot Study. Behavioral Sleep Medicine, 2020, 18, 10-22.	2.1	19
277	Development and initial validation of the Asthma Severity Scoring System (ASSESS). Journal of Allergy and Clinical Immunology, 2020, 145, 127-139.	2.9	19
278	Should Antileukotriene Therapies Be Used Instead of Inhaled Corticosteroids in Asthma?. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 1699-1701.	5.6	18
279	Immune response modifiers in the treatment of asthma: AÂPRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. Journal of Allergy and Clinical Immunology, 2012, 130, 311-324.	2.9	18
280	Enhanced suppressive function of regulatory T cells from patients with immune-mediated diseases following successful ex vivo expansion. Clinical Immunology, 2010, 136, 329-337.	3.2	17
281	Epigenome Variation in Severe Asthma. Biological Research for Nursing, 2015, 17, 263-269.	1.9	17
282	Expression of intelectin-1 in bronchial epithelial cells of asthma is correlated with T-helper 2 (Type-2) related parameters and its function. Allergy, Asthma and Clinical Immunology, 2017, 13, 35.	2.0	17
283	Defective STING expression potentiates IL-13 signaling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2021, 147, 1692-1703.	2.9	17
284	Dual role for CXCR3 and CCR5 in asthmatic type 1 inflammation. Journal of Allergy and Clinical Immunology, 2022, 149, 113-124.e7.	2.9	17
285	Characterization of autopsy-proven fatal asthma patients in São Paulo, Brazil. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2008, 23, 418-23.	1.1	17
286	Comment on: International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. European Respiratory Journal, 2014, 44, 267-268.	6.7	16
287	A Genome-Wide Association Study of Post-bronchodilator Lung Function in Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 634-637.	5.6	16
288	Allergic Rhinitis, Asthma, Airway Biology, and Chronic Obstructive Pulmonary Disease inAJRCCMin 2004. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 686-698.	5.6	15

#	Article	IF	CITATIONS
289	Distinct Phenotypes of Cigarette Smokers Identified by Cluster Analysis of Patients with Severe Asthma. Annals of the American Thoracic Society, 2015, 12, 1771-1780.	3.2	15
290	An invisible disease: severe asthma is more than just "bad asthma― European Respiratory Journal, 2017, 50, 1701109.	6.7	15
291	Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Scientific Reports, 2021, 11, 17788.	3.3	15
292	Immunofiltration Purification for Urinary Leukotriene E4 Quantitation. Analytical Biochemistry, 1997, 248, 202-210.	2.4	14
293	Pathology of difficult asthma. Paediatric Respiratory Reviews, 2003, 4, 306-311.	1.8	14
294	Crosstalk between mAChRM3 and β2AR, via acetylcholine PI3/PKC/PBEP1/Raf-1 MEK1/2/ERK1/2 pathway activation, in human bronchial epithelial cells after long-term cigarette smoke exposure. Life Sciences, 2018, 192, 99-109.	4.3	14
295	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	5.6	14
296	P. aeruginosa augments irradiation injury via 15-lipoxygenase–catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis. JCI Insight, 2022, 7, .	5.0	14
297	Use of leukotriene antagonists in childhood asthma. Current Opinion in Pediatrics, 1999, 11, 540-548.	2.0	13
298	Lumen area change (Delta Lumen) between inspiratory and expiratory multidetector computed tomography as a measure of severe outcomes in asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 142, 1773-1780.e9.	2.9	13
299	DUPILUMAB REDUCES SEVERE EXACERBATION RATE AND IMPROVES LUNG FUNCTION IN ADOLESCENT PATIENTS WITH UNCONTROLLED, MODERATE-TO-SEVERE ASTHMA: FROM THE LIBERTY ASTHMA QUEST STUDY. Chest, 2018, 154, 25A-27A.	0.8	13
300	Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight, 2019, 4, .	5.0	13
301	Structural and Functional Features on Quantitative Chest Computed Tomography in the Korean Asian versus the White American Healthy Non-Smokers. Korean Journal of Radiology, 2019, 20, 1236.	3.4	13
302	Leukotriene Receptor Antagonists and Related Compounds. Canadian Respiratory Journal, 1999, 6, 189-193.	1.6	12
303	Histologic Findings of Severe/Therapy-Resistant Asthma From Video-assisted Thoracoscopic Surgery Biopsies. American Journal of Surgical Pathology, 2017, 41, 182-188.	3.7	12
304	Geography, generalisability, and susceptibility in clinical trials. Lancet Respiratory Medicine,the, 2021, 9, 330-332.	10.7	12
305	Machine learning implicates the IL-18 signaling axis in severe asthma. JCI Insight, 2021, 6, .	5.0	12
306	A profile of US asthma centers, 2006. Annals of Allergy, Asthma and Immunology, 2007, 99, 419-423.	1.0	11

#	Article	IF	CITATIONS
307	RNA-seq in Pulmonary Medicine: How Much Is Enough?. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 389-391.	5.6	11
308	Severe asthma and asthma-chronic obstructive pulmonary disease syndrome – Authors' reply. Lancet, The, 2016, 388, 2742.	13.7	11
309	The precision interventions for severe and/or exacerbation-prone asthma (PrecISE) adaptive platform trial: statistical considerations. Journal of Biopharmaceutical Statistics, 2020, 30, 1026-1037.	0.8	11
310	Collaborative Cohort of Cohorts for COVID-19 Research (C4R) Study: Study Design. American Journal of Epidemiology, 2022, 191, 1153-1173.	3.4	11
311	Leukotriene inhibitors and non-steroidal therapies in the treatment of asthma. Expert Opinion on Pharmacotherapy, 2001, 2, 47-65.	1.8	10
312	Severe Asthma. Annals of the American Thoracic Society, 2014, 11, 996-997.	3.2	10
313	Clinical significance of the bronchodilator response in children with severe asthma. Pediatric Pulmonology, 2019, 54, 1694-1703.	2.0	10
314	Pharmacogenetic studies of long-acting beta agonist and inhaled corticosteroid responsiveness in randomised controlled trials of individuals of African descent with asthma. The Lancet Child and Adolescent Health, 2021, 5, 862-872.	5.6	10
315	Reply to Mabalirajan et al.: 15LO1 pathway activationAre receptors important?. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2-E2.	7.1	9
316	Consistency of T2 Gene Signatures in Severe Asthma. Key to Effective Treatments or Merely the Tip of the Iceberg?. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 411-412.	5.6	9
317	Association of interleukin 1 receptor-like 1 gene polymorphisms with eosinophilic phenotype in Japanese adults with asthma. Respiratory Investigation, 2017, 55, 338-347.	1.8	9
318	Severe asthma: epidemiology, pathophysiology and treatment. Mount Sinai Journal of Medicine, 2003, 70, 185-90.	1.9	9
319	Myofibroblast or Smooth Muscle. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 364-365.	5.6	8
320	Mucociliary Clearance Differs in Mild Asthma by Levels of Type 2 Inflammation. Chest, 2021, 160, 1604-1613.	0.8	8
321	Peritoneal lavage fluid alters patterns of eicosanoid production in murine bone marrow-derived and peritoneal macrophages: Dependency on inflammatory state of the peritoneum. Inflammation, 1993, 17, 743-756.	3.8	7
322	Inflammatory phenotypes in asthma pathogenesis. Drug Discovery Today Disease Mechanisms, 2012, 9, e75-e81.	0.8	7
323	Airway hyperresponsiveness and chronic obstructive pulmonary disease outcomes. Journal of Allergy and Clinical Immunology, 2016, 138, 1580-1581.	2.9	7
324	IL-4 Induces IL17Rb Gene Transcription in Monocytic Cells with Coordinate Autocrine IL-25 Signaling. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 346-354.	2.9	7

#	Article	IF	CITATIONS
325	Association of free vitamin D3 concentrations and asthma treatment failures in the VIDA Trial. Annals of Allergy, Asthma and Immunology, 2018, 121, 444-450.e1.	1.0	7
326	Solving insomnia electronically: Sleep treatment for asthma (SIESTA): A study protocol for a randomized controlled trial. Contemporary Clinical Trials, 2019, 79, 73-79.	1.8	7
327	Internet-Based Monitoring in the Severe Asthma Research Program Identifies a Subgroup of Patients With Labile Asthma Control. Chest, 2018, 153, 378-386.	0.8	6
328	Loss of bronchoprotection with ICS plus LABA treatment, β-receptor dynamics, and the effect of alendronate. Journal of Allergy and Clinical Immunology, 2019, 144, 416-425.e7.	2.9	6
329	Aerosol deposition predictions in computed tomography-derived skeletons from severe asthmatics: A feasibility study. Clinical Biomechanics, 2019, 66, 81-87.	1.2	6
330	Biomarkers to Predict Response to Inhaled Corticosteroids and Long-Acting Muscarinic Antagonists in Adolescents and Adults with Mild Persistent Asthma. Annals of the American Thoracic Society, 2022, 19, 372-380.	3.2	6
331	Fractional Exhaled Nitric Oxide as a Marker of Mucosal Inflammation in Chronic Rhinosinusitis. American Journal of Rhinology and Allergy, 2022, 36, 465-472.	2.0	6
332	Tissue-Based and Bronchoalveolar Lavage–Based Biomarkers in Asthma. Immunology and Allergy Clinics of North America, 2012, 32, 401-411.	1.9	5
333	Type V Collagen–induced Tolerance Prevents Airway Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 454-457.	5.6	5
334	What Is Allergic Bronchopulmonary Aspergillosis (ABPA)?. American Journal of Respiratory and Critical Care Medicine, 2014, 190, P3-P4.	5.6	5
335	Exploration of plasma interleukin-27 levels in asthma patients and the correlation with lung function. Respiratory Medicine, 2020, 175, 106208.	2.9	5
336	β-Agonist exposure preferentially impacts lung macrophage cyclic AMP-related gene expression in asthma and asthma COPD overlap syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L837-L843.	2.9	5
337	Improvement in Health Care Utilization and Pulmonary Function with Fluticasone Propionate in Patients with Steroid-Dependent Asthma at a National Asthma Referral Center. Journal of Asthma, 2001, 38, 405-412.	1.7	4
338	Revisiting fatal asthma. Annals of Allergy, Asthma and Immunology, 2014, 112, 4-5.	1.0	4
339	Clinical Issues in Severe Asthma. Chest, 2018, 154, 1459-1460.	0.8	4
340	As-needed β agonist-inhaled corticosteroid in mild asthma. Lancet, The, 2019, 394, 897-898.	13.7	4
341	Adapting clinical trial design to maintain meaningful outcomes during a multicenter asthma trial in the precision medicine era. Contemporary Clinical Trials, 2019, 77, 98-103.	1.8	4
342	Estimated Ventricular Size, Asthma Severity,Âand Exacerbations. Chest, 2020, 157, 258-267.	0.8	4

#	Article	IF	CITATIONS
343	Digital Imaging Analysis Reveals Reduced Alveolar α-Smooth Muscle Actin Expression in Severe Asthma. Applied Immunohistochemistry and Molecular Morphology, 2021, 29, 506-512.	1.2	4
344	Impact of a pollution breach at a coke oven factory on asthma control in nearby vulnerable adults. Journal of Allergy and Clinical Immunology, 2021, 148, 225-233.	2.9	4
345	Real-time imaging of asthmatic epithelial cells identifies migratory deficiencies under type-2 conditions. Journal of Allergy and Clinical Immunology, 2022, 149, 579-588.	2.9	4
346	The relationship of induced-sputum inflammatory cells to BAL and biopsy. Chest, 2003, 123, 371S-2S.	0.8	3
347	Pathology of difficult asthma. Paediatric Respiratory Reviews, 2003, 4, 306-11.	1.8	3
348	Quantitative CT Characteristics of Cluster Phenotypes in the Severe Asthma Research Program Cohorts. Radiology, 2022, 304, 450-459.	7.3	3
349	Asthma as an Inflammatory Disease. Seminars in Respiratory and Critical Care Medicine, 1994, 15, 106-116.	2.1	2
350	Role of estradiol metabolism in asthma. Bioscience Hypotheses, 2009, 2, 128-134.	0.2	2
351	The Effect of Aging and Menopause on Asthma Severity in Women. Chest, 2014, 145, 22A.	0.8	2
352	Little orphan asthmas?. Journal of Allergy and Clinical Immunology, 2015, 135, 903-904.	2.9	2
353	Clinical Issues in Severe Asthma. Chest, 2018, 154, 982-983.	0.8	2
354	The emerging role of quantitative imaging in asthma. British Journal of Radiology, 2022, 95, 20201133.	2.2	2
355	SARP: dissecting subphenotypes and endotypes of asthma. , 2019, , 167-183.		2
356	Tiotropium for severe asthma: a step forward or more of the same?. Polish Archives of Internal Medicine, 2012, 122, 525-526.	0.4	2
357	Author's response to Persson letter. Thorax, 2013, 68, 189-189.	5.6	1
358	Bronchial Epithelial Cell Gene Expression In Relation To Exhaled Nitric Oxide Identifies New Molecular Asthma Phenotypes. Journal of Allergy and Clinical Immunology, 2014, 133, AB176.	2.9	1
359	Using ICLite for deconvolution of bulk transcriptional data from mixed cell populations. STAR Protocols, 2021, 2, 100847.	1.2	1
360	Precision medicine in pediatric severe asthma: Targeted blockade of type 2 inflammation. Cell Reports Medicine, 2022, 3, 100570.	6.5	1

#	Article	IF	CITATIONS
361	Peripheral Lung Mechanics May Account for the Rise in the Maximal:Partial Ratio Which Follows Hyperpnea-Induced Bronchospasm. Chest, 1995, 107, 152S-153S.	0.8	0
362	The Immunobiology of leukotriene inhibitors. Clinical Reviews in Allergy and Immunology, 1999, 17, 1-2.	6.5	0
363	Texture-based CT Image analysis of asthma. , 2013, , .		Ο
364	Poster 1023: Dupilumab suppresses Th2 inflammation in adult asthma and atopic dermatitis. World Allergy Organization Journal, 2014, 7, P13.	3.5	0
365	Non Type-2 Severe Asthma Has Increased Bronchoalveolar Mast Cell Mediator Release and Health Care Utilization. Journal of Allergy and Clinical Immunology, 2016, 137, AB176.	2.9	0
366	Severe Asthma with Joint Pain, Thrombophilia, and Irritable Bowel Syndrome. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 1011-1012.	3.8	0
367	Reply: Secreted Brain-Derived Neurotrophic Factor and Asthma Severity. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 297-298.	2.9	Ο
368	Giants in Chest Medicine. Chest, 2017, 151, 529-530.	0.8	0
369	Reply. Journal of Allergy and Clinical Immunology, 2019, 144, 873-874.	2.9	Ο
370	Predicting response to inhaled corticosteroid or long-acting muscarinic antagonist in mild persistent asthma. Journal of Allergy and Clinical Immunology, 2020, 145, AB338.	2.9	0
371	Age of Asthma Onset, not Severity, Predicts Environmental Allergy Clusters. Journal of Allergy and Clinical Immunology, 2020, 145, AB207.	2.9	Ο
372	Reply to Yilmaz and Çetin. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1444-1445.	5.6	0
373	Ensuring Quality in Pharmaceutical Studies. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1010-1012.	5.6	Ο
374	Chymase-positive Mast Cells. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 648-648.	5.6	0
375	Antileukotriene Therapy in Asthma. , 2014, , 1602-1615.		0
376	Insulin Promotes Cellular Growth in an In Vitro Model of Mucosal Healing after Endoscopic Endonasal Approaches. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, .	0.8	0
377	Reply. Journal of Allergy and Clinical Immunology, 2022, , .	2.9	0
378	COVID-19 Concerns, Resilient Coping, and Socioeconomic Burden among Asthmatic Adults. Journal of Allergy and Clinical Immunology, 2022, 149, AB183.	2.9	0

#	Article	IF	CITATIONS
379	Case 2: assessment. A 17-year-old white male with a history of lifelong asthma. Paediatric Respiratory Reviews, 2003, 4, 347, 349.	1.8	Ο