List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442673/publications.pdf Version: 2024-02-01

		53794	27406
110	12,102	45	106
papers	citations	h-index	g-index
132	132	132	15228
all docs	docs citations	times ranked	citing authors

YCAL HALLDT

#	Article	IF	CITATIONS
1	Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387, 296-299.	27.8	4,033
2	Apoptosis - the p53 network. Journal of Cell Science, 2003, 116, 4077-4085.	2.0	1,002
3	The cellular response to p53: the decision between life and death. Oncogene, 1999, 18, 6145-6157.	5.9	538
4	Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eμ-myc transgenic mice. Cell, 1991, 65, 753-763.	28.9	525
5	c-Jun and p53 Activity Is Modulated by SUMO-1 Modification. Journal of Biological Chemistry, 2000, 275, 13321-13329.	3.4	352
6	A functional p53-responsive intronic promoter is contained within the humanmdm2gene. Nucleic Acids Research, 1995, 23, 2584-2592.	14.5	268
7	MDM4 is a key therapeutic target in cutaneous melanoma. Nature Medicine, 2012, 18, 1239-1247.	30.7	266
8	Clinical Overview of MDM2/X-Targeted Therapies. Frontiers in Oncology, 2016, 6, 7.	2.8	266
9	Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biology, 2018, 14, 100-115.	9.0	261
10	Inhibiting the system xCâ^'/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nature Communications, 2017, 8, 14844.	12.8	229
11	AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene, 2012, 31, 1949-1962.	5.9	221
12	Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene, 1999, 18, 3205-3212.	5.9	189
13	Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO Journal, 2002, 21, 3715-3727.	7.8	159
14	Tumour suppression by p53: the importance of apoptosis and cellular senescence. Journal of Pathology, 2009, 219, 3-15.	4.5	156
15	Sex disparities matter in cancer development and therapy. Nature Reviews Cancer, 2021, 21, 393-407.	28.4	136
16	The Mdm2 Oncoprotein Interacts with the Cell Fate Regulator Numb. Molecular and Cellular Biology, 1998, 18, 3974-3982.	2.3	129
17	The Promyelocytic Leukemia Protein Protects p53 from Mdm2-mediated Inhibition and Degradation. Journal of Biological Chemistry, 2003, 278, 33134-33141.	3.4	123
18	Transactivation-deficient p73α (p73Δexon2) inhibits apoptosis and competes with p53. Oncogene, 2001, 20, 514-522.	5.9	117

#	Article	IF	CITATIONS
19	Increasing Intracellular Bioavailable Copper Selectively Targets Prostate Cancer Cells. ACS Chemical Biology, 2013, 8, 1621-1631.	3.4	115
20	Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nature Communications, 2015, 6, 7389.	12.8	104
21	MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. Journal of Cell Science, 2010, 123, 2423-2433.	2.0	103
22	c-Abl Neutralizes the Inhibitory Effect of Mdm2 on p53. Journal of Biological Chemistry, 1999, 274, 8371-8374.	3.4	89
23	E6AP promotes the degradation of the PML tumor suppressor. Cell Death and Differentiation, 2009, 16, 1156-1166.	11.2	88
24	WDR5 Supports an N-Myc Transcriptional Complex That Drives a Protumorigenic Gene Expression Signature in Neuroblastoma. Cancer Research, 2015, 75, 5143-5154.	0.9	88
25	c-Abl Regulates p53 Levels under Normal and Stress Conditions by Preventing Its Nuclear Export and Ubiquitination. Molecular and Cellular Biology, 2001, 21, 5869-5878.	2.3	86
26	APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut, 2015, 64, 1506-1516.	12.1	84
27	Regulation of PRMT5–MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17990-18000.	7.1	81
28	Promyelocytic Leukemia Protein is Required for Gain of Function by Mutant p53. Cancer Research, 2009, 69, 4818-4826.	0.9	76
29	Regulation of Mutant p53 Protein Expression. Frontiers in Oncology, 2015, 5, 284.	2.8	69
30	Mutations in Proline 82 of p53 Impair Its Activation by Pin1 and Chk2 in Response to DNA Damage. Molecular and Cellular Biology, 2005, 25, 5380-5388.	2.3	66
31	PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene, 2008, 27, 3653-3661.	5.9	66
32	Role of p53 in the progression of gastric cancer. Oncotarget, 2014, 5, 12016-12026.	1.8	64
33	c-Abl Phosphorylates Hdmx and Regulates Its Interaction with p53. Journal of Biological Chemistry, 2009, 284, 4031-4039.	3.4	60
34	HPV16 E6 augments Wnt signaling in an E6AP-dependent manner. Virology, 2010, 396, 47-58.	2.4	56
35	The role of MDM2 and MDM4 in breast cancer development and prevention. Journal of Molecular Cell Biology, 2017, 9, 53-61.	3.3	56
36	P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. International Journal of Molecular Sciences, 2020, 21, 3452.	4.1	56

#	Article	IF	CITATIONS
37	C-Abl as a modulator of p53. Biochemical and Biophysical Research Communications, 2005, 331, 737-749.	2.1	54
38	Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nature Communications, 2019, 10, 5385.	12.8	53
39	p73 and p63: Why Do We Still Need Them?. Cell Cycle, 2004, 3, 884-892.	2.6	52
40	Mdm2 in growth signaling and cancer. Growth Factors, 2005, 23, 183-192.	1.7	52
41	The long and the short of it: the MDM4 tail so far. Journal of Molecular Cell Biology, 2019, 11, 231-244.	3.3	52
42	Chromatin Immunoprecipitation–on-Chip Reveals Stress-Dependent p53 Occupancy in Primary Normal Cells but Not in Established Cell Lines. Cancer Research, 2008, 68, 9671-9677.	0.9	51
43	E6AP ubiquitin ligase regulates PML-induced senescence in Myc-driven lymphomagenesis. Blood, 2012, 120, 822-832.	1.4	50
44	Mutant p53 Drives Cancer by Subverting Multiple Tumor Suppression Pathways. Frontiers in Oncology, 2016, 6, 12.	2.8	49
45	A Role for the Polyproline Domain of p53 in Its Regulation by Mdm2. Journal of Biological Chemistry, 2001, 276, 3785-3790.	3.4	47
46	Clioquinol induces cytoplasmic clearance of the X-linked inhibitor of apoptosis protein (XIAP): therapeutic indication for prostate cancer. Biochemical Journal, 2011, 436, 481-491.	3.7	46
47	The E3-ligase E6AP Represses Breast Cancer Metastasis via Regulation of ECT2-Rho Signaling. Cancer Research, 2016, 76, 4236-4248.	0.9	45
48	High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. , 2020, 8, e000792.		45
49	Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33ING1 in T.Tn human esophageal carcinoma cells. Oncogene, 2002, 21, 1208-1216.	5.9	42
50	Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death and Disease, 2015, 6, e1821-e1821.	6.3	37
51	Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Reports, 2019, 27, 442-454.e5.	6.4	37
52	MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of ER-positive breast cancer. Breast Cancer Research, 2020, 22, 87.	5.0	37
53	Importance of p53 for cancer onset and therapy. Anti-Cancer Drugs, 2006, 17, 725-732.	1.4	36
54	Manipulation of the tumor suppressor p53 for potentiating cancer therapy. Seminars in Cancer Biology, 2004, 14, 244-252.	9.6	34

#	Article	IF	CITATIONS
55	P53 licensed to kill? Operating the assassin. Journal of Cellular Biochemistry, 2003, 88, 76-82.	2.6	33
56	<scp>MDM4</scp> is a rational target for treating breast cancers with mutant p53. Journal of Pathology, 2017, 241, 661-670.	4.5	32
57	The p53-Mdm2 Loop: A Critical Juncture of Stress Response. Sub-Cellular Biochemistry, 2014, 85, 161-186.	2.4	31
58	Restoration of tumor suppression in prostate cancer by targeting the E3 ligase E6AP. Oncogene, 2016, 35, 6235-6245.	5.9	30
59	TP53 Status, Patient Sex, and the Immune Response as Determinants of Lung Cancer Patient Survival. Cancers, 2020, 12, 1535.	3.7	30
60	HPV16 E6 and E6AP differentially cooperate to stimulate or augment Wnt signaling. Virology, 2014, 468-470, 510-523.	2.4	29
61	Treatment of Chronic Myeloid Leukemia Cells with Imatinib (STI571) Impairs p53 Accumulation in Response to DNA Damage. Cell Cycle, 2004, 3, 1186-1193.	2.6	25
62	Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle, 2013, 12, 1722-1731.	2.6	25
63	E6AP promotes prostate cancer by reducing p27 expression. Oncotarget, 2017, 8, 42939-42948.	1.8	25
64	T cell survival and function requires the c-Abl tyrosine kinase. Cell Cycle, 2008, 7, 3847-3857.	2.6	24
65	Reduced abundance of the E3 ubiquitin ligase E6AP contributes to decreased expression of the <i>INK4/ARF</i> locus in non–small cell lung cancer. Science Signaling, 2017, 10, .	3.6	24
66	The Transcriptional Landscape of Radiation-Treated Human Prostate Cancer: Analysis of a Prospective Tissue Cohort. International Journal of Radiation Oncology Biology Physics, 2018, 100, 188-198.	0.8	24
67	SLC7A11 Is a Superior Determinant of APR-246 (Eprenetapopt) Response than <i>TP53</i> Mutation Status. Molecular Cancer Therapeutics, 2021, 20, 1858-1867.	4.1	24
68	The E6AP E3 ubiquitin ligase regulates the cellular response to oxidative stress. Oncogene, 2013, 32, 3510-3519.	5.9	23
69	c-Abl Phosphorylates E6AP and Regulates Its E3 Ubiquitin Ligase Activity. Biochemistry, 2013, 52, 3119-3129.	2.5	23
70	Exploring the oncoproteomic response of human prostate cancer to therapeutic radiation using dataâ€independent acquisition (DIA) mass spectrometry. Prostate, 2018, 78, 563-575.	2.3	23
71	Apoptosis by p53: mechanisms, regulation, and clinical implications. Seminars in Immunopathology, 1998, 19, 345-362.	4.0	22
72	Expression of E6AP and PML predicts for prostate cancer progression and cancer-specific death. Annals of Oncology, 2014, 25, 2392-2397.	1.2	22

#	Article	IF	CITATIONS
73	Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine) Tj ETQq1 1 0.784314 rgBT International Journal of Radiation Oncology Biology Physics, 2014, 88, 385-394.	/Overlock 0.8	10 Tf 50 74 22
74	A quantitative model to predict pathogenicity of missense variants in the <i>TP53</i> gene. Human Mutation, 2019, 40, 788-800.	2.5	21
75	E6AP is required for replicative and oncogene-induced senescence in mouse embryo fibroblasts. Oncogene, 2012, 31, 2199-2209.	5.9	20
76	p53 controls hPar1 function and expression. Oncogene, 2008, 27, 6866-6874.	5.9	19
77	PML tumour suppression and beyond: Therapeutic implications. FEBS Letters, 2014, 588, 2653-2662.	2.8	18
78	Frequent amplifications of ESR1, ERBB2 and MDM4 in primary invasive lobular breast carcinoma. Cancer Letters, 2019, 461, 21-30.	7.2	18
79	Ubiquitin ligase E6AP mediates nonproteolytic polyubiquitylation of β-catenin independent of the E6 oncoprotein. Journal of General Virology, 2016, 97, 3313-3330.	2.9	18
80	Hhex induces promyelocyte self-renewal and cooperates with growth factor independence to cause myeloid leukemia in mice. Blood Advances, 2018, 2, 347-360.	5.2	16
81	p53: An Internal Investigation. Cell Cycle, 2002, 1, 105-110.	2.6	15
82	E6AP goes viral: the role of E6AP in viral- and non-viral-related cancers. Carcinogenesis, 2019, 40, 707-714.	2.8	15
83	P53 at the start of the 21st century: lessons from elephants. F1000Research, 2017, 6, 2041.	1.6	15
84	New Strategies to Direct Therapeutic Targeting of PML to Treat Cancers. Frontiers in Oncology, 2013, 3, 124.	2.8	14
85	Moloney virus induction of T-cell lymphomas in a plasmacytomagenic strain of Eμ-V-ABL transgenic mice. International Journal of Cancer, 1993, 55, 623-629.	5.1	13
86	Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells. Molecular and Cellular Proteomics, 2018, 17, 1170-1183.	3.8	13
87	An analysis of a multiple biomarker panel to better predict prostate cancer metastasis after radical prostatectomy. International Journal of Cancer, 2019, 144, 1151-1159.	5.1	13
88	p53 Calls upon CIA (Calcium Induced Apoptosis) to Counter Stress. Frontiers in Oncology, 2015, 5, 57.	2.8	12
89	Improving Cancer Therapy through p53 Management. Cell Cycle, 2004, 3, 910-914.	2.6	11
90	Synchronized release of Doxil and Nutlin-3 by remote degradation of polysaccharide matrices and its possible use in the local treatment of colorectal cancer. Journal of Drug Targeting, 2011, 19, 859-873.	4.4	11

#	Article	IF	CITATIONS
91	E6AP Promotes a Metastatic Phenotype in Prostate Cancer. IScience, 2019, 22, 1-15.	4.1	11
92	Interplay between p53 and VEGF: how to prevent the guardian from becoming a villain. Cell Death and Differentiation, 2013, 20, 852-854.	11.2	10
93	Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Frontiers in Genetics, 2021, 12, 632719.	2.3	10
94	Introduction: p53 Regulation—A Family Affair. Cell Cycle, 2004, 3, 882-883.	2.6	8
95	Biodosimetric transcriptional and proteomic changes are conserved in irradiated human tissue. Radiation and Environmental Biophysics, 2018, 57, 241-249.	1.4	8
96	Immune molecular profiling of a multiresistant primary prostate cancer with a neuroendocrine-like phenotype: a case report. BMC Urology, 2020, 20, 171.	1.4	7
97	Celecoxib can induce cell death independently of cyclooxygenase-2, p53, Mdm2, c-Abl and reactive oxygen species. Anti-Cancer Drugs, 2006, 17, 609-619.	1.4	6
98	Mutant p53 subverts PLK2 function in a novel, reinforced loop of corruption. Cell Cycle, 2012, 11, 217-218.	2.6	6
99	Uncovering a novel pathway for p16 silencing: Therapeutic implications for lung cancer. Molecular and Cellular Oncology, 2017, 4, e1299273.	0.7	6
100	Flow Cytometric Analysis of p53-Induced Apoptosis. , 2003, 234, 245-256.		5
101	p53: an internal investigation. Cell Cycle, 2002, 1, 111-6.	2.6	5
102	Cannibalism in Breast Cancer: The Dangers of Overeating. Trends in Cancer, 2019, 5, 761-762.	7.4	4
103	Restoring PML tumor suppression to combat cancer. Cell Cycle, 2012, 11, 3705-3706.	2.6	3
104	Editorial: Human Tumor-Derived p53 Mutants: A Growing Family of Oncoproteins. Frontiers in Oncology, 2016, 6, 170.	2.8	3
105	Certainly No ARFterthought: Oncogenic Cooperation in ARF Induction —A Key Step in Tumor Suppression. Cell Cycle, 2003, 2, 113-115.	2.6	2
106	New insights on the regulation of INK4/ARF locus expression. Oncotarget, 2017, 8, 106147-106148.	1.8	2
107	Abstract A72: The E3-ligase E6AP represses breast cancer metastasis through regulation of ECT2-Rho-GTPases signaling. , 2016, , .		1
108	The p53-Mdm2 Loop: A Critical Juncture of Stress Response. Molecular Biology Intelligence Unit, 2010, , 65-84.	0.2	0

#	Article	IF	CITATIONS
109	Abstract 4357: Harnessing system xCT- to target mutant p53 cancer cells. , 2016, , .		Ο
110	New exciting possibilities for the development of precision medicine therapies to restore the expression of the INK4/ARF locus. Annals of Research Hospitals, 0, 1, 1-1.	0.0	0