
Scott J Snipas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4425796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering caspase 7 as an affinity reagent to capture proteolytic products. FEBS Journal, 2021, 288, 1259-1270.	4.7	0
2	Evaluation of the effects of phosphorylation of synthetic peptide substrates on their cleavage by caspase-3 and -7. Biochemical Journal, 2021, 478, 2233-2245.	3.7	6
3	Exploring the prime site in caspases as a novel chemical strategy for understanding the mechanisms of cell death: a proof of concept study on necroptosis in cancer cells. Cell Death and Differentiation, 2020, 27, 451-465.	11.2	7
4	Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nature Microbiology, 2020, 5, 354-367.	13.3	33
5	Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances, 2020, 6, .	10.3	344
6	NETosis occurs independently of neutrophil serine proteases. Journal of Biological Chemistry, 2020, 295, 17624-17631.	3.4	25
7	Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. Journal of the American Chemical Society, 2020, 142, 16704-16715.	13.7	27
8	Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes. Chemical Science, 2020, 11, 6058-6069.	7.4	19
9	Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. Journal of Biological Chemistry, 2020, 295, 11292-11302.	3.4	33
10	Endothelial activation of caspase-9 promotes neurovascular injury in retinal vein occlusion. Nature Communications, 2020, 11, 3173.	12.8	22
11	Detection of Active Granzyme A in NK92 Cells with Fluorescent Activity-Based Probe. Journal of Medicinal Chemistry, 2020, 63, 3359-3369.	6.4	18
12	Noninvasive optical detection of granzyme B from natural killer cells with enzyme-activated fluorogenic probes. Journal of Biological Chemistry, 2020, 295, 9567-9582.	3.4	32
13	Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9952-9963.	7.1	32
14	Caspase selective reagents for diagnosing apoptotic mechanisms. Cell Death and Differentiation, 2019, 26, 229-244.	11.2	38
15	Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Reports, 2019, 27, 3646-3656.e5.	6.4	166
16	Potent and selective caspase-2 inhibitor prevents MDM-2 cleavage in reversine-treated colon cancer cells. Cell Death and Differentiation, 2019, 26, 2695-2709.	11.2	22
17	Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. Journal of Biological Chemistry, 2018, 293, 7058-7067.	3.4	74
18	Selective Substrates and Activity-Based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples. Journal of Medicinal Chemistry, 2018, 61, 5222-5234.	6.4	28

SCOTT J SNIPAS

#	Article	IF	CITATIONS
19	SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth. Journal of Clinical Investigation, 2017, 128, 517-530.	8.2	36
20	Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chemical Biology, 2016, 23, 1023-1035.	5.2	45
21	Design of a Selective Substrate and Activity Based Probe for Human Neutrophil Serine Protease 4. PLoS ONE, 2015, 10, e0132818.	2.5	49
22	Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526, 666-671.	27.8	2,622
23	Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2518-2523.	7.1	148
24	The pCri System: A Vector Collection for Recombinant Protein Expression and Purification. PLoS ONE, 2014, 9, e112643.	2.5	24
25	Expedient Synthesis of Highly Potent Antagonists of Inhibitor of Apoptosis Proteins (IAPs) with Unique Selectivity for ML-IAP. ACS Chemical Biology, 2013, 8, 725-732.	3.4	28
26	Cathepsin D Primes Caspase-8 Activation by Multiple Intra-chain Proteolysis. Journal of Biological Chemistry, 2012, 287, 21142-21151.	3.4	44
27	Intranasal Delivery of Caspase-9 Inhibitor Reduces Caspase-6-Dependent Axon/Neuron Loss and Improves Neurological Function after Stroke. Journal of Neuroscience, 2011, 31, 8894-8904.	3.6	84
28	Structural and kinetic determinants of protease substrates. Nature Structural and Molecular Biology, 2009, 16, 1101-1108.	8.2	118
29	Glycosylation Broadens the Substrate Profile of Membrane Type 1 Matrix Metalloproteinase. Journal of Biological Chemistry, 2004, 279, 8278-8289.	3.4	79
30	Lysosomal Protease Pathways to Apoptosis. Journal of Biological Chemistry, 2001, 276, 3149-3157.	3.4	576
31	Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure, 2000, 8, 789-797.	3.3	55
32	The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature, 1998, 395, 801-804.	27.8	382
33	Caspase-14 Is a Novel Developmentally Regulated Protease. Journal of Biological Chemistry, 1998, 273, 29648-29653.	3.4	126
34	Target Protease Specificity of the Viral Serpin CrmA. Journal of Biological Chemistry, 1997, 272, 7797-7800.	3.4	494
35	Expression of a functional α-macroglobulin receptor binding domain inEscherichia coli. FEBS Letters, 1992, 313, 198-202.	2.8	21