Juan Casado-Vela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Propranolol as a Repurposed Drug in Rare Vascular Diseases. International Journal of Molecular Sciences, 2022, 23, 4217.	4.1	7
2	A Novel Splicing Mutation in the ACVRL1/ALK1 Gene as a Cause of HHT2. Journal of Clinical Medicine, 2022, 11, 3053.	2.4	3
3	Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells, 2019, 8, 1082.	4.1	21
4	Nanotechnology in the Fabrication of Protein Microarrays. Methods in Molecular Biology, 2016, 1368, 197-208.	0.9	4
5	Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. Journal of Clinical Investigation, 2016, 126, 627-638.	8.2	56
6	NAPPA as a Real New Method for Protein Microarray Generation. Microarrays (Basel, Switzerland), 2015, 4, 214-227.	1.4	24
7	Differential protein expression in compatible and incompatible pollen-pistil interactions in almond [<i>Prunus dulcis</i> (Miller) D. A. Webb] by 2D-DIGE and HPLC-MS/MS. Journal of Horticultural Science and Biotechnology, 2015, 90, 71-77.	1.9	8
8	High-throughgput phage-display screening in array format. Enzyme and Microbial Technology, 2015, 79-80, 34-41.	3.2	1
9	High-throughput proteomic characterization of plasma rich in growth factors (PRGF-Endoret)-derived fibrin clot interactome. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E1-E12.	2.7	66
10	Evaluation of homo- and hetero-functionally activated glass surfaces for optimized antibody arrays. Analytical Biochemistry, 2014, 450, 37-45.	2.4	24
11	Differential Plant Proteome Analysis by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Methods in Molecular Biology, 2014, 1072, 155-169.	0.9	17
12	Nanovesicles Are Secreted during Pollen Germination and Pollen Tube Growth: A Possible Role in Fertilization. Molecular Plant, 2014, 7, 573-577.	8.3	63
13	Screening of Protein–Protein and Protein–DNA Interactions Using Microarrays. Advances in Protein Chemistry and Structural Biology, 2014, 95, 231-281.	2.3	6
14	Suspension-Cultured Plant Cells as a Tool to Analyze the Extracellular Proteome. Methods in Molecular Biology, 2014, 1072, 407-433.	0.9	0
15	Protein chimerism: Novel source of protein diversity in humans adds complexity to bottomâ€up proteomics. Proteomics, 2013, 13, 5-11.	2.2	10
16	Protein-Protein Interactions: Gene Acronym Redundancies and Current Limitations Precluding Automated Data Integration. Proteomes, 2013, 1, 3-24.	3.5	1
17	Protein Arrays: Recent Achievements and their Application to Study the Human Proteome. Current Proteomics, 2013, 10, 83-97.	0.3	9
18	Uromodulin and α ₁ -Antitrypsin Urinary Peptide Analysis to Differentiate Glomerular Kidney Diseases. Kidney and Blood Pressure Research, 2012, 35, 314-325.	2.0	22

JUAN CASADO-VELA

#	Article	IF	CITATIONS
19	Data Analysis Strategies for Protein Microarrays. Microarrays (Basel, Switzerland), 2012, 1, 64-83.	1.4	34
20	Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). Journal of Proteomics, 2012, 75, 2998-3014.	2.4	90
21	Human urine proteomics: building a list of human urine cancer biomarkers. Expert Review of Proteomics, 2011, 8, 347-360.	3.0	21
22	Changes to the proteome and targeted metabolites of xylem sap in <i>Brassica oleracea</i> in response to salt stress. Plant, Cell and Environment, 2011, 34, 821-836.	5.7	56
23	iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method. Molecular BioSystems, 2011, 7, 749-765.	2.9	27
24	Approaches for the study of cancer: towards the integration of genomics, proteomics and metabolomics. Clinical and Translational Oncology, 2011, 13, 617-628.	2.4	31
25	Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein postâ€translational modifications. Proteomics, 2011, 11, 590-603.	2.2	19
26	iTRAQ-based quantitative analysis of protein mixtures with large fold change and dynamic range. Proteomics, 2010, 10, 343-347.	2.2	67
27	Novel Snail1 Target Proteins in Human Colon Cancer Identified by Proteomic Analysis. PLoS ONE, 2010, 5, e10221.	2.5	29
28	A p120-catenin–CK1ε complex regulates Wnt signaling. Journal of Cell Science, 2010, 123, 2621-2631.	2.0	67
29	Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genetics and Biology, 2010, 47, 342-351.	2.1	60
30	Analysis of Root Plasma Membrane Aquaporins from <i>Brassica oleracea</i> : Post-Translational Modifications, <i>de novo</i> Sequencing and Detection of Isoforms by High Resolution Mass Spectrometry. Journal of Proteome Research, 2010, 9, 3479-3494.	3.7	25
31	Cohesin organizes chromatin loops at DNA replication factories. Genes and Development, 2010, 24, 2812-2822.	5.9	195
32	Differential phosphorylation patterns between the Cyclin-A2/CDK2 complex and their monomers. Protein Expression and Purification, 2009, 66, 15-21.	1.3	9
33	Comprehensive Proteomic Analysis of Human Endometrial Fluid Aspirate. Journal of Proteome Research, 2009, 8, 4622-4632.	3.7	107
34	Proteomics of Multigenic Families from Species Underrepresented in Databases: The Case of Loquat (<i>Eriobotrya japonica</i> Lindl.) Polyphenol Oxidases. Journal of Proteome Research, 2008, 7, 4095-4106.	3.7	16
35	Effect of detergents, trypsin and unsaturated fatty acids on latent loquat fruit polyphenol oxidase: Basis for the enzyme's activity regulation. Archives of Biochemistry and Biophysics, 2007, 464, 295-305.	3.0	23
36	A combination of neutral loss and targeted product ion scanning with two enzymatic digestions facilitates the comprehensive mapping of phosphorylation sites. Proteomics, 2007, 7, 2522-2529.	2.2	22

#	Article	IF	CITATIONS
37	Effect of composted sewage sludge application to soil on sweet pepper crop (Capsicum annuum var.) Tj ETQq1	1 0,78431 7.4	4 rgBT /Overl
38	Modified Cyclodextrins Are Chemically Defined Glucan Inducers of Defense Responses in Grapevine Cell Cultures. Journal of Agricultural and Food Chemistry, 2006, 54, 65-71.	5.2	134
39	Isolation of a latent polyphenol oxidase from loquat fruit (Eriobotrya japonica Lindl.): Kinetic characterization and comparison with the active form. Archives of Biochemistry and Biophysics, 2006, 446, 175-185.	3.0	60
40	Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein. Proteomics, 2006, 6, S196-S206.	2.2	57
41	INFLUENCE OF DEVELOPMENTAL STAGE, CULTIVAR, AND HEXAPEPTIDE AND CYCLODEXTRIN INHIBITORS ON POLYPHENOL OXIDASE ACTIVITY FROM TOMATO FRUITS. Journal of Food Biochemistry, 2006, 30, 623-640.	2.9	10
42	Evaluation of composted sewage sludge as nutritional source for horticultural soils. Waste Management, 2006, 26, 946-952.	7.4	64
43	Release of Hypoacetylated and Trimethylated Histone H4 Is an Epigenetic Marker of Early Apoptosis. Journal of Biological Chemistry, 2006, 281, 13540-13547.	3.4	34
44	PURIFICATION AND KINETIC CHARACTERIZATION OF POLYPHENOL OXIDASE FROM TOMATO FRUITS (LYCOPERSICON ESCULENTUM CV. MUCHAMIEL). Journal of Food Biochemistry, 2005, 29, 381-401.	2.9	28
45	Proteomic approach to blossom-end rot in tomato fruits (Lycopersicon esculentumâ€M.): Antioxidant enzymes and the pentose phosphate pathway. Proteomics, 2005, 5, 2488-2496.	2.2	33
46	Methodological Requirements for Lipidomics Research. , 0, , 30-53.		0
47	Biological Methods for Metabolic Research. , 0, , 54-76.		Ο